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Recurrent Neural Networks

The conventional feedforward neural networks can be used to
approximate any spatiality finite function. That is, for functions
which have a fixed input space there is always a way of encoding
these functions as neural networks.

For example in function approximation, we can use the automatic
learning techniques such as backpropagation to find the weights
of the network if sufficient samples from the function is available.

Recurrent neural networks are fundamentally different from
feedforward architectures in the sense that they not only operate on
an input space but also on an internal state space.

These are proposed to learn sequential or time varying patterns.
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Recurrent Neural Networks
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Recurrent Neural Networks,
unlike the feed-forward neural
networks, contain the feedback
connections among the neurons.
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Three subsets of neurons are presented in the recurrent networks:

1. Input neurons
2. Output neurons
3. Hidden neurons, which are neither input nor output neurons.

Note that a neuron can be simultaneously an input and output neuron; such

neurons are said to be autoassociative.
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Recurrent Neural Networks

Figure 1. An example of a fully connected recurrent newral network
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Recurrent Neural Networks

Forward Equations:
y (k) =u(k)

ul(k): WOl(k)YO(k)+Wr1(k)y§(k 71)
W (K)o (k) +w , (K)y;(k —1)

y' (k) =f,@'(k))

(k) =w,, (k)y (k) +w o, (k)y; (k) y (k) =Ff U2(k))
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Recurrent Neural Networks
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Back Propagation Equations:

POT— ul(k){wm(k)yakwwﬂ(k)y;(k 1)}

Wy W (K)o (K)+w o (K)y; (k =1)
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Recurrent Neural Networks
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Back Propagation Equations: u'(k) Z{W a(K)yo(k)+w  (k)yz(k -1)
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Linear Prediction
yk-p) yik-2) k)
Linear Prediction: ‘ [ Y{“|:') |-h
(k-p) e (k-2) k-1) k Discrete
— v/ — Time

P
¥ a; yik-i)
i=]

P
y(k)=>ayk-i)
e(k)=y(k)—>7(k)=Y(k)—iaiy(k )

The estimation of the parameters a; is based on minimizing a function of error.
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Prediction using FF Neural Network

yk)

F.F. Neural Network
structure for Prediction:

input layer hidden layer output layer
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Prediction using Recurrent N. N.

Recurrent Neural _
Network architecture for
Prediction:

local feedback

global feedback
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Example for one step ahead Prediction

y(k=n), y(k=n+1), -, y(k-n+p-1), y(k-n+p)

y(k-n+p) |

e(k—n+p)=y(k—n+p)-J(k-n+p)|
}

It is used for back-propagatoin.

Window size: P

y(k—=n), y(k-n+1) -+ y(k-n+p-1) yk-n+p), y(k—n+p+1)

N3
§(k—n+p+1) l

ek—n+p+)=y(k-n+p+D)—Jk—n+p+1)|
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Example for one step ahead Prediction

y(k=n), -, y(k=p-1), y(k=p), -, yk-2), yk-1)
M
y(k)

—>  x=9y(K)
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4™ Mini Project

In this project, a chaotic time series is considered, logistic map, whose
dynamics is governed by the following difference equation

Window size =5 x(n) =4x(n-1)(1-x(n-1))

* Do this project using MLP and compare the results.
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Final Project

In this project, a typical time series like the Lorenz data should be employed
to one step ahead prediction by using of any neural network.

Time step = 0.01
Window size =5

X =0o(y —x)
y=—XZ+r(x-y)
Z =xy —bz

r=4592, b=4, 0=165
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