
A Novel Approach for Branch Buffer Consuming Power Reduction

Behzad Zamani1,2, Ehsan Adeli2, Haleh Gharedaghi2, Mohsen Soryani2
1Engineering Department, Islamic Azad University, ShahreKord Branch

2Computer Department, Iran University of Science and Technology
{bzamani,eadeli,gharedaghi,soryani}@iust.ac.ir

Abstract

By increasing the pipeline length in processors, the
accuracy of the branch predictor unit plays an
important role in processors efficiencies. In addition to
the accuracy, consuming power is also an essential in
portable systems. Therefore, in the processors these
days the prediction unit is used to determine the
branch destination, while most of these accesses are
not necessary. In this paper, a method is proposed to
reduce the consuming power in the jump prediction
unit. In this proposed method, the non-necessary
accesses to BTB are reduced by taking into account
this fact that there exists distances between different
consecutive branch instructions. This method decides
the access to BTB by a constant value and a counter.
After an instruction entrance, the BTB is accessed if
the counter is zero, and if the instruction is a branch
instruction and exists in the BTB the counter is reset.
The simulation and experimental results illustrate the
suitable performance of the proposed method in
comparisons to the other methods. This superiority is
for both the execution time and for the consuming
power. Also it is more strengthened by increasing the
distance.

1. Introduction

The accuracy of the branch predictor unit gets more

important by increasing the pipeline length [1]. In the
architecture of the modern processors, other than
accuracy, the power consumption should be taken into
precise account in the branch predictor unit. This is
because up to 10% of the total consuming power of the
processor is consumed in this part. [2] Synchronizes
access to the cache memory of Branch Target Buffer
(BTB) and Prediction History Table (PHT) to increase
the processor's clock rate in the fetch step. It is obvious
that when accessing BTB and PHT it is not known
whether the instruction being fetched is a control
instruction or not. As a result, for all the instructions
being fetched from the cache memory an access to the

branch predictor unit (BTB and PHT) is done and
therefore a significant power is being wasted in this
unit. This is because accesses to the branch predictor
unit for non-control instructions are not necessary. In
other words, less than 13% of the program instructions
are for control purposes [2, 3], but for all the
instructions in the fetch step an access to the branch
predictor unit needs to be done [3, 4].

Note that all the predictions of the branch predictor
unit are not used for fetching the next instruction. Only
the predictions that make a collision to the BTB table
and the PHT table prediction predict a branch would be
used for next instruction fetch. So solutions should be
found to reduce non-necessary accesses within possible
limits, to enhance the performance of the branch
predictor unit. Also a portion of the information stored
in the BTB is redundant; eliminating this information
from the BTB makes its size smaller and lessens the
power consumption of the unit, without affecting its
performance.

In this paper, an approach is proposed to reduce the
number of accesses to the BTB unit. This approach
assumes that between each two successive branch
instructions there exist a number of non-branch
instructions. To reduce the non-necessary accesses to
the BTB a constant value is used for determining
whether to access or not. The proposed approach does
not impose any static power to the system due to the
need to no extra memory and just by adding a 5-bit
counter to the branch predictor unit can reduce the
consuming power.

The paper is organized as follows: in section 2 a
literature review of the works done in the area of
branch predictor unit consuming power reduction is
brought. Section 3 the proposed approach is discussed
and after that in section 4 demonstrates the simulation
results and evaluation process of the proposed system.
Finally the conclusion is given.

2. Related Works

Reducing the consuming power of the processors

has been greatly of interest in the recent decades. This

2008 International Conference on Computer and Electrical Engineering

978-0-7695-3504-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCEE.2008.48

436

Authorized licensed use limited to: Iran Univ of Science and Tech Trial User. Downloaded on January 18, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

reduction can be done in the bus, cache or branch
predictor units. In this section, some of the papers
recently published on how to reduce the consuming
power in the branch predictor unit are reviewed.

Skadron et al. in 2000 presented a method for static
consuming power reduction by decreasing the BTB
unit size [5]. In the target field of the BTB the target
addresses of the control instructions are placed, while
most of the control instructions are internal braches in
a single program and less than 10% are external branch
instructions (function call)[4]. Therefore, incorporating
this fact, they have divided the BTB into two parts: one
is for the internal branches, in which the target
addresses are stored relatively, and the other that keeps
the target addresses completely. This approach could
save almost 25% from the BTB volume.

Petrov and Orailoglu in 2003 proposed a method
called Application Customized BTB (ACBTB) [6].
They used a static controller to obtain the critical
points and the distance between two successive
branches, which are stored in the ACBTB hardware
table during the execution. The processor accesses this
table in the program critical sections to make decisions.

Monchiero et al. in 2004 used a compiler-based
method to reduce the accesses to the BTB unit for the
VLIW processors. The compiler scans the code and
informs the fetcher whether to access the BTB or not.
In other words, the fetcher does not access the BTB
unless the compiler lets it to [7].

Parikh et al. in 2004 presented a method named
banking [2]. They have divided the BTB and PHT into
several parts, in anytime only one of the parts is active.
This leads to a less dynamic power usage of the branch
predictor unit. The banking algorithm needs an extra
decoder to determine the active bank, also bank
prediction and disconnecting and connecting the banks
are themselves problems. They have also proposed a
method to dynamically reduce the accesses to the BTB;
it avoids the access to the BTB if there is a non-branch
instruction on the cache memory line [2].

Hu et al. in 2005 presented the idea to use Next
Branch Distance (NBD) to reduce the accesses to the
BTB [3]. In fact, a new section called NBD is added to
each entry in the BTB. NBD is an 8-bit number which
stores the distance of the branch target from the first
control instruction after that. As far as the distance
between two consecutive branch instructions does not
exceed 50 instructions [2], 8 bits for NBD would be a
right choice.

Regularly BTB is updated when a control
instruction is reached which causes a branch and does
not exist in the BTB. The updating process occurs
when the branch instruction is on one of the pipeline
steps. But to calculate the NBD, BTB updating should
be postponed until the next control instruction is

reached. This is because in order to calculate the NBD,
we need the address to the first control instruction after
the target, so that by subtracting the target address
from that NBD is achieved. As this method adds a
NDB field to each BTB entry, it increases the size of
the BTB and as a result the static power usage is
increased.

Furthermore, they have presented a static approach
to decrease the accesses to the BTB [3]. Taking into
account a constant number, n, the decision whether to
access BTB or not is made. This means that they set a
counter, and do not refer to the BTB until it equals
zero. While the counter is not still zero, it is possible
that a branch instruction be reached. This method pays
the cost in such cases [3]. In the following an approach
is proposed that modifies the Hu et al. method to
enhance the performance.

3. Proposed Method

Hu et al. assumed a constant value n to make
decisions on accessing BTB. This means that they have
assumed that until the next branch instruction there are
n non-branch instructions. This algorithm is as what
follows [3]:

if (counter > 0) then
 counter = counter – 1
else
 access BTB
 if (BTB hits) then
 counter = n
 end
end
The counter is set when the branch instruction exists

in the BTB. In this method the value n affects the
consuming power reduction rate. In fact, smaller n
reduces less the accesses to the BTB than a larger n,
instead searches more instructions in the BTB and is
faster. In this method, it is possible that before
decreasing the counter to zero, a branch instruction
would be reached which increases the execution time
by 3 cycles for each instruction.

In the proposed approach in this paper, the aim is to
reduce these branches. When the branch instruction is
in the BTB and the branch is taken, the counter is set.
The proposed algorithm would be of the following
form:

if (counter > 0) then
 counter = counter – 1
else
 access BTB
 if (BTB hits and branch is taken) then
 counter = n
 end

437

Authorized licensed use limited to: Iran Univ of Science and Tech Trial User. Downloaded on January 18, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

end
It is obvious that the number of the times that the

above condition is executed is less than the number of
the previous one. So, it is expected that the number of
accesses to the BTB be reduced, on the other hand it
also reduces the number of the branches before the
counter goes zero.

In the Hu et al. method and the proposed method,
the determination of the value n is very important. The
effectiveness of the method is strongly dependent in
this value. For different benchmarks there are different
scatters for the branches, therefore a unified behavior
for all the benchmarks is not suitable. It is better to
change the value of n during the execution of the
benchmarks, and adapt it with the structure and the
procedure of the branches. When the counter reaches
zero, without the entrance of any branch instruction an
access to the BTB is made, which is a non-necessary
access. To enhance the proposed approach n could be
increased. On the other hand, when the counter has not
still got zero and a branch instruction is entered, the
method decreases n, as a penalty. The modified Hu
algorithm could be found as the following:

if (counter > 0) then
 counter = counter – 1
 if (instrument is branch) then
 n = n - 1
 end
else
 access BTB
 if (instrument isn’t branch) then
 n = n + 1
 end
 if (BTB hits) then
 counter = n
 end
end
And the modified proposed algorithm:

if (counter > 0) then
 counter = counter – 1
 if (instrument is branch) then
 n = n - 1
 end
else
 access BTB
 if (instrument isn’t branch) then
 n = n + 1
 end
 if (BTB hits and branch is taken) then
 counter = n
 end
end

In the above method the initial value of n is not very
important, so we start with any value of n, the
performance would not so differ.

4. Simulations and Results Evaluation

To calculate the measure of power reduction

Simwattch and Simplescalar simulators are used and
Spec95 benchmarks are taken into use. The
configuration of the branch predictor unit, used in these
simulations is as in table 1.

Table 1. The BPU configuration
bimod Branch predictor unit type
2048 The predictor table size

512×4 Size and the number of the sets of
the BTB table
The power of the branch predictor unit in each cycle

is almost 4.5231 which are 6.27% of the total chip
power. Also the BTB power in the branch predictor
unit is of size 4.16837 in each cycle, which this is
almost 92.16% of the branch predictor unit consuming
power.

The evaluation is done on the Go and Anagram
benchmarks. Figure 1 shows the reduction rate of the
accesses to the BTB for different value of n. As what
the diagram says, when n gets larger the number of
accesses falls smaller. In fact, as also mentioned
before, the time interval of accesses to BTB is
controlled by n, where the larger n gets the more the
number of accesses reduce. For the two benchmarks
Hu method has better performance in reducing the
accesses to the BTB, where this difference reaches
15% in some portions. For the two Go and Anagram
benchmarks after n almost 10, changes get slower.

In the above two methods, since it is possible there
is the chance that before n reaches zero a branch
occurs, the systems need to pay the cost. This cost is a
time delay of three steps in the pipeline and an increase
of the consuming power. Therefore, the less the
number of branches while n is not zero, the less the
consuming power would be. What's more, the
execution time of the processes would be less.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
n

Proposed Method Hu Method

a) Anagram benchmark

438

Authorized licensed use limited to: Iran Univ of Science and Tech Trial User. Downloaded on January 18, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
n

Proposed Method Hu Method

b) Go benchmark
Figure 1. The percentage of the reduction of

the accesses to BTB related to the total
number of the instructions

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
n

Proposed Method Hu Method

a) Anagram benchmark

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21n

Proposed Method Hu Method

b) Go benchmark
Figure 2. The rate of the number of branches

happened in the time interval that n is not zero
to the total number of the branch instructions

Figure 2 shows the number of these branches in
different values of n. As could be seen in the figure, the
number of branch instructions for the proposed
approach relative to the one for the Hu method is less.
The reason is that in the proposed approach the re-
initialization condition occurs less often compared to
the same condition in the Hu et al. [3] method. Because
if the 'BTB hits and branch is taken' condition occurs,
for sure the 'BTB hit' condition also occurs, while the
vice versa is not necessarily satisfied. Also after a
specific number of n the level difference of the two
curves is almost constant. This value of n is different
regarding the benchmark type.

Figure 4 shows the consuming power for the two
above method in each execution cycle for different
values of n. As also obvious in the figure, the proposed
approach has less consuming power. As n increases the
reduction in the proposed approach get more

comparing to the Hu approach. According to the
figure, after the values of almost 10 for n, the changes
in the consuming power decreases, and the execution
time increases. Therefore, regarding the execution time
and the consuming power the value of n should be
chosen correctly. Meanwhile, one can draw histograms
for the program using the compiler and initialize n
before the program starts

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30

initial n

a) The percentage of the branch instructions
not accessing the BTB

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30

initial n

b) The rate of not accessing the BTB to the
total number of instructions

Figure 3. Properties of the modified proposed
approach for the Anagram benchmark

Figure 3a gives the percentage of the branch
instructions that no BTB access is needed for them, for
different values of n in the modified proposed
algorithm. Figure 3b shows the rate of not accessing
the BTB to the total number of instructions for
different values of n in the modified proposed
approach. According to the diagrams in figure 3the
initial value of n does not affect the performance. As
the result, it does not matter what initial value of n to
be used.

72

74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
n

to
ta

l P
ow

er
 p

er
 c

yc
le

Proposed method
Hu method
Modified proposed method
Modified Hu Method

a) Anagram benchmark

439

Authorized licensed use limited to: Iran Univ of Science and Tech Trial User. Downloaded on January 18, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

69

71

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
n

to
ta

l P
ow

er
 p

er
 c

yc
le

Proposed method
Hu method
Modified proposed method
Modified Hu Method

b) Go benchmark
Figure 4 The consuming power in each cycle

for different values of n
Figure 4 shows the consuming power in each

execution cycle for different values of n for the four
methods: Hu method, proposed approach, modified Hu
method and the modified proposed approach. As
shown in the figure, the modified approaches have
lower consuming power during the execution and
changes of n, comparing to the original approaches.
These results are drawn for the two Go and Anagram
benchmarks. This is because the algorithm tries to
adapt the value of n with the scatters of the branches in
the program. Furthermore, it is obvious that the
modified proposed approach outperform the modified
Hu approach.

5. Conclusions

As the pipeline length in the processors increases,
the accuracy of the branch predictor unit plays an
important role in the performance of the processors.
When designing the branch predictor unit we need to
consider the consuming power. The processors these
days, in order to determine the branch target and
direction in each cycle refer to a unit called branch
prediction unit, but most of the accesses to this unit are
redundant. To reduce the consuming power in the
branch predictor unit, we can restructure the BTB. Of
these we can exemplify eliminating the non-necessary
address section of the branch instructions in the BTB
and reducing the number of accesses to the BTB.

In this paper, a method was proposed to reduce the
number of accesses to the BTB. This proposed
approach was to modify and enhance the performance
of the Hu et al. [3] method. In these two approaches, a
counter is assumed to make decision on whether to
access the BTB or not. This counter is initialized after
a condition is satisfied. These approaches are efficient
for reducing the consuming power, and the larger
values of the counter would lead to better performance,
that's because the access to the BTB is postponed. But
on the other hand, as discussed clearly in the paper, the
branch instructions may enter before the counter has
reached zero. This leads to an increase in the execution

time and also the power. The simulation results
indicate the better performance of the proposed
approach.

After explaining the proposed approach, in order to
further enhance the algorithm and solve the problems
of initializing n, modified versions of the Hu and
propped algorithm are also discussed. In these
approaches, n is adapted during the execution of the
program relative to the program structure. The
simulation and experimental results show that these
modified methods have less consuming power during
the execution of the program.

6. References

[1] D.A. Jiménez, S.W. Keckler, and C. Lin, “The impact of
delay on the design of branch predictors”, Proc. 33rd Int'l
Symp. Microarchitecture, 2000, pp. 67–77.
[2] D. Parikh, K. Skadron, Y. Zhang, and M. Stan, “Power-
Aware Branch Prediction: Characterization and Design”,
IEEE Transaction on Computers, Vol. 53, No. 2, 2004, pp.
168-186.
[3] Y.C. Hu, W.H. Chiao, J.J. Shann, C.P. Chung and W.F.
Chen, “Low-Power Branch Prediction,” In Proceedings of
the 2005 International Conference on Computer Design
(CDES’05), pp. 211-217.
[4] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M.
Stan, “Power issues related to branch prediction”, in Proc.
8th HPCA, 2002, pp. 233–244.
[5] K. Skadron, M. Martonosi, and D. Clark, “Speculative
updates of local and global branch history: A quantitative
analysis”, JILP, Vol. 2, 2000.
[6] P. Petrov and A. Orailoglu, "Low-power Branch Target
Buffer for Application-Specific Embedded Processors," DSD
2003, pp. 158-165.
[7] M. Monchiero, G. Palermo, M. Sami, C. Silvano, V.
Zaccaria, and R. Zafalon, “Power-aware branch prediction
techniques: A compiler-hints based approach for VLIW
processors,” In Proceedings 14th Great Lakes Symposium
VLSI, Boston, USA, 2004, pp.440-443.

440

Authorized licensed use limited to: Iran Univ of Science and Tech Trial User. Downloaded on January 18, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

