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Intrusion detection systems (IDSs) have an important 
effect on system defense and security. Recently, most IDS 
methods have used transformed features, selected features, 
or original features. Both feature transformation and 
feature selection have their advantages. Neighborhood 
component analysis feature transformation and genetic 
feature selection (NCAGAFS) is proposed in this research. 
NCAGAFS is based on soft computing and data mining 
and uses the advantages of both transformation and 
selection. This method transforms features via 
neighborhood component analysis and chooses the best 
features with a classifier based on a genetic feature 
selection method. This novel approach is verified using the 
KDD Cup99 dataset, demonstrating higher performances 
than other well-known methods under various classifiers 
have demonstrated. 
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I. Introduction 

With the development of communication and the 
interchanging of information, the Internet has also provided a 
superior opportunity to disorder and impair data that was 
previously considered safe. While we are benefiting from the 
convenience that the novel technology has brought us, 
computer systems and networks are facing an increasing 
number of security threats, some of which are initiated 
externally and others internally [1]-[4]. An intrusion detection 
system (IDS) is an efficient tool for system security and policy, 
of which there are two types: misuse detection and anomaly 
detection. The misuse detection IDS works with familiar 
patterns, and the anomaly detection IDS recognizes 
abnormalities against the normal network functions. In a hybrid 
detection system, these detection systems are united. A number 
of approaches based on soft computing have been proposed for 
detecting network intrusions. Soft computing consists of many 
concepts, including neural networks, artificial intelligence, 
fuzzy logic, genetic algorithms (GAs), information, and 
probabilistic reasoning [5]. Soft computing techniques are 
frequently used in combination with rule-based expert systems 
in the form of “if-then” rules. Although several approaches 
based on soft computing have been suggested recently, the 
probability of using one of the techniques for intrusion 
detection remains low [6]. Intrusion detection could be 
regarded as a data analysis procedure. Network behaviors can 
be classified as either normal or abnormal. Because of the high 
volume of real network traffic, considering the quantity of 
records and features, it is very difficult to process all the traffic 
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information before making decisions. Numerous learning 
methods have been designed for feature selection, feature 
extraction, or construction, but empirical studies and theoretical 
analyses have proven that many of them fail when the number 
of samples and redundant features is high [7]. Feature selection 
and feature transformation are commonly used techniques in 
data preprocessing. Feature transformation is a process that 
creates a new collection of features. 

In this process, the high-dimensional data is transformed into 
a meaningful representation of reduced dimensionality [8]. 
Feature transformation is important in many areas since it 
mitigates dimensionality and other undesired properties of 
high-dimensional spaces [9]. Finally, feature transformation 
provides simplicity and accuracy regarding classification, 
visualization, and compression of high-dimensional data. 
Traditionally, feature transformation was done using linear 
techniques, such as principal component analysis (PCA) [10], 
factor analysis [11], linear discriminant analysis (LDA) (which 
is one of the most favored supervised linear dimensionality 
reduction techniques) [12], and classical scaling [13]. In 
detection approaches based on data mining methods, different 
features are used. These features are obtained by static and 
dynamic analysis. Performance of a pattern recognition system 
depends strongly on the employed feature selection method. 
Due to the increasing computational cost of a system with a 
rising number of features, it is important to implement a system 
that contains as few features as possible. Regarding many high-
dimensional issues, the selection of the effective features and 
the removal of other features can greatly increase the precision 
of classification and reduce the intricacy of data processing at 
different steps. In [14], the authors carried out a simple GA that 
develops weights for the features of the data collection. After 
that, the k nearest neighbor algorithm (k-NN) classifier was 
used to evaluate the fitness function. Xia and others [15] 
introduced an approach that uses information theory and GAs 
to recognize abnormal network actions. Chittur [16] planned a 
genetic algorithm that raises a high detection rate of malicious 
behavior and classifies a low false positive rate of normal 
behavior as attack. Lu and Traore [17] planned an approach 
that uses genetic programming to directly obtain a collection of 
classification rules from historical network data. Li [18] 
suggested a GA-based method to recognize anomalous 
network behaviors. In this approach, quantitative and 
categorical features need to drive the classification rules by GA. 
Jian and others [19] developed a rule-based classifier to hinder 
the abnormal traffic; their classifier shows an acceptable 
recognition rate if applied to 10% of the training KDD Cup99 
dataset, but there is no evidence that this classifier achieves 
accurate results when applied to a larger dataset. In this paper, 
the nonlinear and nonparametric feature transformation method 

introduced in [20], that is, neighborhood component analysis 
(NCA), is used. NCA chooses a projection that promotes the 
performance of an NN classifier in the projected space. We 
need to choose the most important data that can be used to 
desirably detect network attacks. The feature selection is 
different from feature transformation. In feature selection, the 
new features will not be produced; rather, only a subset of 
primary features is selected and the feature space is reduced. In 
the feature transformation process, new features will generate 
and previous features’ values will change [7]. 

In this paper, we suggest a new approach based on soft 
computing and data mining techniques, called neighborhood 
component analysis feature transformation and genetic feature 
selection (NCAGAFS). Our method uses the advantages of 
feature transformation and feature selection, which transforms 
features via NCA and chooses the effective features with a 
classifier-based genetic feature selection method. The principal 
issues in developing feature selection techniques are selecting a 
small feature set to reduce the cost and running time of a given 
system and reaching an acceptably high detection rate. Several 
techniques have been developed for choosing a desirable 
subset of features from a larger set of probable features. The 
proposed method has been classified as a misuse detection type 
of IDS because patterns have high importance in NCAGAFS. 
The proposed method is evaluated using the KDD Cup99 
dataset, which includes 41 different features and one label as a 
class. Empirical results show that the NCAGAFS method has a 
higher performance than traditional methods.  

The reminder of the paper is structured as follows. Section II 
discusses NCA, GA-based feature selection, and the proposed 
method, which is a hybrid NCA and classifier-based GA. 
Section III presents the experiment results obtained using the 
KDD Cup99 dataset. Finally, conclusions are explained in 
section IV. 

II. Framework of NCA and GAFS 

In this section, we elaborate on our novel approach, 
NCAGAFS. We discuss the two main modules, that is, the 
NCA module as a feature transformation and the GA module 
as a feature selection. 

1. NCA as Feature Transformation Method 

NCA was proposed by Goldberger and others [20]; we 
explain the details of the method here for clarification. NCA 
adopts a linear projection of vectors into a space that improves 
a criterion depending on the leave-one-out accuracy of an NN 
classifier on a training set. Specifically, NCA takes as input a 
training set containing vectors {x1, x2,…, xN}, where ,m

ix R∈  
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and an associated set of labels {y1, y2,…,yN}, where .iy ∈L  
The method then adopts a projection matrix A of size p×m that 
projects the training vectors xi into a p dimensional 
representation, ,i iz Ax′ = where an NN classifier is operative 
at discriminating amongst the classes. The NN classifier uses 
this projection matrix A to define a Mahalanobis distance 
metric in the projected space [21]. 

( , ) ( ) ( )T
i j i j i jd x x Ax Ax Ax Ax= − − .         (1) 

The method makes use of “soft-neighbor” assignments 
instead of directly using the k-NNs to define a differentiable 
optimization criterion. Specifically, each point of j in the 
training set has a probability of pij to assign its label to a point i 
that decays as the distance between points i and j increases. 
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The method attempts to enhance the expected number of 
points correctly classified in a leave-one-out setting over the 
training set. First, the value of pi is defined to characterize the 
probability of a point i being assigned the correct class label. 

, { | }
i

i ij i j i
j C

p p C j y y
=

= = =∑ .           (3) 

The final improvement criterion f(A) can then be defined 
simply as the sum of the probabilities of classifying each point 
correctly. 

( ) i
i

f A p= ∑ .                 (4) 

This criterion gives rise to a gradient rule that can be used to 
improve the matrix A (note that xij is shorthand for xi – xj). 
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∂ ∑ ∑ ∑ .       (5) 

By using a number of gradient methods, such as conjugate 
gradient ascent or stochastic gradient ascent, this function can 
be improved. Note that the function f(A) is not convex, so care 
needs to be taken when initializing the matrix A to avoid 
suboptimal solutions. 

The above gradient method can have high computational 
costs. Computing the soft-neighbor probabilities alone requires  
O(N2p) cost. However, as many of these probabilities will be 
very close to zero, we can truncate the gradient calculation. 
Moreover, we can decrease the amount of calculation required 
by rearranging terms of the gradient as follows [21]. 

2 ( ( ( ) ( ) )
i

T T
i ik ik ik ij ij ij

i k j C

f A p p A x x p Ax x
A ∈

∂
= −

∂ ∑ ∑ ∑    (6) 

In our experiments, we optimize f(A) using conjugate 
gradient ascent. 

2. GA as Feature Selection Method 

It is impossible to search all subsets to find an optimal subset 
since it requires a great number of computational attempts. 
Different heuristic search strategies have been used, including 
hill-climbing, branch and bound algorithms, forward selection, 
backward elimination, and such stochastic algorithms as 
simulated annealing and GA [22]. 

The first step of the GA is creating a chromosome. Every 
chromosome is a collection of genes. In the feature selection 
problem, each gene shows a feature and a chromosome is a 
representation of a set of features. To determine whether a 
specific feature is present or not in the chromosome, one and 
zero are used. One in a gene position indicates that a particular 
feature is present, and zero indicates that it is absent. The other 
question is about quantity and the nature of the feature in a 
chromosome gained through information [23]. The first 
population is created randomly by values present in the 
chromosome. After that, the individuals are evaluated by a fitness 
function, which is a classification error in our experiment, the 
false positive and false negative values being measured for each 
chromosome. The fitness function must examine the efficacy of 
each individual in a population, so it considers each individual an 
input and provides a numerical estimation that should show the 
benefits of the features. The chromosome with the best fitness 
value is regarded as the elite one. 

In the next stage, crossover and mutation are to be applied on 
the chromosomes that have the highest fitness value. A 
mutation operator tries to preserve diversity in the population 
since mutation chooses one position randomly from the 
chromosome [23]. 

3. Hybrid NCA and GA-Based Feature Selection 

In this subsection, we present our proposed method, which 
integrates NCA as a feature transformation and the GA as the 
process of feature selection. Then, we use selected transformed 
features in the classifier to increase the accuracy rate. The main 
goal of our work is to use information gained by the 
significance of features and then select a set of significant 
features using the proposed GA. As we mentioned above, 
NCA has desirable performance in transformation for a pattern 
classification system, and, after applying the NCA, the 
dimension is reduced, data is correlated, and the error rate of 
classification is decreased. The performance of the method is 
useful for various datasets, both for dimensionality reduction 
and metric learning. In general, there are two classes of 
regularization assumption that are common in linear methods 
for classification. The first is a robust parametric supposition 
about the structure of the class distributions (typically enforcing 
connected or even convex structure); the second is a 
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Fig. 1. Detailed block diagram of proposed method. 

(NCA) as feature 
transformer 

Generate initial 
population  

Evaluate the fitness 
function  

No
Selection

Crossover

Mutation

Selected 
features 

Feature 
extraction 

Yes 

Classification Observation 

Feature transformation

Feature selection

Features 
Transformed 

features 

Are optimization 
criteria?  

supposition on the decision boundary (typically enforcing a 
hyper plane). The NCA method makes neither of these 
suppositions, relying instead on the robust regularization 
imposed by restricting ourselves to a linear transformation of 
the original inputs. In the dataset with n features, we can set the 
value for the output dimension from n to 1 feature. However, if 
we set the output dimension value near 1, the important 
features could be lost. In this paper, we combine the NCA and 
GA to keep the best and significant features and not lose the 
important features. GA finds global maximum optimum and so 
we can expect GA to choose the best subset of features. GA is 
an iterative process, and the cycle of production and evaluation 
is continuous until it reaches the best fitness. 

We use NCA as a preprocessor for GA. A detailed block 
diagram of our method is shown in Fig. 1. 

III. Results and Discussions 

1. Data Preparation  

To experiment and to work with the system classifier, the 
KDD Cup99 [24] dataset is suitable to use. In KDD Cup99, 
each TCP/IP connection is particularly explained by 41 
different contiguous features, such as duration, protocol type 
flag, and so on. Attacks fall into four main categories: 

• DOS: denial-of-service (for example, syn flood);  
• R2L: unauthorized access from a remote machine (for 

example, to guess passwords);  
• U2R: unauthorized access to local super user (root or admin) 

prominences (for example, several “buffer_overflow” 
attacks);  

• Probe: surveillance and other probing methods (for example, 
scanning of ports). 

In our experiments, we randomly select the records from 

Table 1. Number and distribution of training and testing dataset 
used in experiments. 

Connection 
type Count Probability Training dataset 

in 66% split 
Testing dataset 

in 66% split
DOS 5,000 0.449 3,300 1,700 

Normal 2,432 0.243 1,605 827 

Probe 1,520 0.151 1,003 517 

R2L 1,000 0.099 660 340 

U2R 49 0.004 32 17 

 

each category. Table 1 shows detailed information about the 
number of samples for the normal class and the attack class, the 
size of training, and the testing dataset. 

2. Calculation Criteria 

The following calculations are usually suggested to calculate 
the detection precision of IDS [25]: true positives rate (TP), 
true negatives rate (TN), false positives rate (FP), and false 
negatives rate (FN). A true positive shows that the IDS detects 
precisely a specific attack having happened. A true negative 
shows that the IDS has not made a mistake in recognizing a 
normal condition. A false positive results from losing 
recognition conditions, a limitation of detection methods in the 
IDS, or unusual conditions caused by particular environmental 
parameters. It represents accuracy and precision of the IDS. A 
false negative shows the inability of IDS to detect the intrusion 
after the occurrence of a particular attack. This might happen 
due to a lack of information about an intrusion type or because 
the recognition information regarding such an intrusion event is 
excluded from the IDS. This shows the perfection of the 
detection system. However, if the quantity of samples for the 
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U2R, Probe, and R2L attacks in the training set and test set is 
very low, these numbers as a standard operation measure are 
not enough [26]. Hence, if these numbers are regarded as a 
measure for testing the performance of the system, it could be 
inexact. Therefore, we use the precision, recall, and F-measure, 
which are not related to the size of the training and the testing 
instance. They are mentioned as follows: 

TPPrecision
TP+FP

= ,                 (8) 

TPRecall ,
TP+FN

=                  (9) 

2

2

(1+ ) Recall PrecisionF-measure ,
Recall Precision

β
β

∗ ∗
=

∗ +
      (10) 

where β corresponds to the relative importance of precision 
versus recall and is usually set to 1. On the other hand, we 
calculate the percent of correction rate for each used classifier, 
such as BPNN, RBF net, Bayesian net, and so on. 

Furthermore, the criteria of the receiver operating 
characteristic (ROC) area and the precision-recall (PRC) area 
are calculated. PRC has superior performance over area under 
curve (AUC) when the class distribution is significantly 
skewed [27]. In this paper, because we have a large number of 
selections, transformation methods, and classifiers, if we want 
to draw curves, the diagrams will be intricate. For this reason, 
we calculate the weighted average values of the ROC and PRC 
areas as results.  

The total time required to build the model is also a crucial 
parameter in comparing the classification algorithms. To 
compute the difficulty of solving a computational problem, we 
measure how much time the classifiers require to solve the 
problem. We try to reduce the time by two steps, one of them 
described in the body of the NCA algorithm in subsection II.1, 
to reduce the computational costs, and the second is in the body 
of the GA (with feature selection and reduction of data). 

3. Experiment Results 

Each connection in the KDD CUP99 dataset has 41 features 
and a label reflecting the name of the attack. The label is used 
only for the training dataset (Table 1). The selection of this 
dataset is owing to its generality and content richness, and it 
enables us to evaluate our experiment results with accessible 
research in the area of IDSs. In the first step of preprocessing, 
we discard three symbolic values (for example, udp, private, 
and SF) out of the 41 features of the dataset [28], [29]. The 
transformation of these symbolic features to numeric values 
might vary throughout the database, but, in this research, we 

Table 2. Number of selected features per each classifier with 
NCAGAFS and GAFS. 

Classifier Number of selected  
features with NCAGAFS 

Number of selected  
features with GAFS 

Bayes 
network 11 1, 5, 14, 15, 19, 20, 25, 

27, 30, 34, 37 9 6, 12, 20, 22, 24, 33,
39, 40, 41 

BPNN 22

1, 5, 6, 8, 9, 11, 12, 13, 
15, 17, 20, 23, 26, 27, 
29, 32, 35, 36, 38, 39, 
40, 41 

9 6, 12, 20, 22, 24, 33,
39, 40, 41 

RBF 
network 9 9, 10, 19, 20, 25, 27, 36, 

37, 38 13 5, 8, 9, 13, 16, 22, 24,
27, 30, 33, 39, 40, 41 

Naïve 
Bayes 3 8, 18, 20 15 

3, 10, 11, 13, 14, 16,
18, 19, 20, 21, 22, 24,
25, 28, 37 

Decision 
table 11 9, 15, 19, 21, 23, 25, 26, 

30, 31, 33, 36 9 6, 12, 20, 22, 24, 33,
39, 40, 41 

IBK 
(k-NN)

20
5, 6, 7, 9, 10, 11, 13, 16, 
17, 18, 19, 21, 22, 25, 
28, 30, 36, 37, 39, 41 

9 6, 12, 20, 22, 24, 33,
39, 40, 41 

  

 are left with a random selection of only 10,001 samples from 
all five million connection records (Table 1) after the test 
decides these symbolic features do not have a positive effect on 
our results. The NCA works based on the Mahalanobis 
distance, and the k-NN classifier works based on Euclidean 
distances, so the algorithm does not have a powerful 
calculation of the neighbors if the features are very diffuse. 
Then, we feed the normal dataset with 38 features to three 
types of classifiers and compute the values of precision, recall, 
F-measure, percent of correctly classified, PRC area, and ROC 
area for each classifier. In the next step, we apply the PCA, 
LDA, PCA+LDA, NCA, GAFS, and NCA+PCA in normal 
data and feed this new data to classifiers and compute the 
evaluation criteria.  

On the other hand, we apply the NCA algorithm to all  
datasets with 38 features to transform the features. Therefore, 
the input of the NCA algorithm is the dataset with 38 features 
with diffuse and discrete instances and the output is the data 
with more correlation and more proximity without any feature 
reduction. After that, we adjust the GA parameters for features 
subset selection. In our experiment, we set these parameters to: 
population size: 80, number of generations: 100, probability of 
crossover: 0.6, probability of mutation: 0.033, type of mutation: 
uniform, and type of selection: rank-based. Choosing an 
appropriate evaluation function is an essential step for 
successful application of GAs to any problem domain. The 
fitness function in our method is the classification error. It 
means that for each model of classifiers, the fitness function is 
adjustable, and, in the feature selection step, the GA selects the 
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Table 3. Abbreviation of implemented methods in our
experiments. 

Method 
name Description No. of features

Normal Without any feature transformation 
and feature reduction 38 

PCA1 
PCA transformation without  

any feature reduction 
38 

PCA2 Feature reduction of PCA 18 

LDA 
LDA transformation without  

any feature reduction 
38 

PCA+LDA 
Hybrid PCA and LDA 
transformation without  
any feature reduction 

38 

NCA 
NCA transformation without  

any feature reduction 
38 

NCA+PCA 
Hybrid NCA and PCA 

 (NCA as a transformation method 
and PCA as a reduction method) 

5 

GAFS 
Genetic feature selection  

without any transformation 
Depend on 

classifier (Table 2)

NCAGAFS Proposed method Depend on 
classifier (Table 2)

  

features based on the type of classifiers. In our method, the best 
fitness value is the lowest error for each feature. Finally, after 
executing the GA and evaluating the fitness function for each 
model of classifiers and computation of the best fitness value, 
important features based on the model of classifier are selected. 
Table 2 shows the number of selected features for six classifiers 
in NCAGAFS and GAFS. 

Experiment results are evaluated by three types of classifiers, 
that is, model-based classifiers, distance-based classifiers, and 
rule-based classifiers. Table 3 shows abbreviations of the 
implemented methods. 

As shown by the following tables, we can clearly see the 
difference of every evaluation criterion under different 
transformation and selection methods that are shown in Table 3. 
Different classifiers are used to evaluate our method and other 
feature transformation and selection methods. The obtained 
results prove that our proposed method has higher performance 
than traditional methods. The results correlating to each case 
are reported in the following subsections. 

A. Bayesian Network Results 

A Bayesian network is a probable graphical model that 
shows a collection of random variables and their conditional 
dependencies through a directed acyclic graph. Bayes network 
learning uses several search algorithms and quality evaluations. 
In our experiments, a simple estimator is used to estimate the 

conditional probability tables of a Bayes network once the 
structure has been learned. Additionally, this Bayes network 
learning algorithm uses a hill-climbing algorithm restricted by 
an order on the variables. Table 4 shows values of different 
evaluation criteria and correct classification rate for various 
feature transformation and feature selection methods. As shown 
in Table 4, our method performs better than other methods. The 
highest evaluation criteria values and correct classification rate in 
each row are marked by the bold and underline formats, and the 
second ranked values are marked by the bold format only. The 
proposed method improves the correct classification rate in 
relation to normal data by about 2.15%. 

B. BPNN Results 

The multilayer perceptron is the standard network to use for 
supervised and nonparametric learning. In our experiment, we 
put one hidden layer composed of n neurons where  

n = (number of all features + number of class)/2. 
We decide on n because experiments show that adding more 

neurons inside the hidden layer does not increase the accuracy 
as expected for this particular problem. The sigmoid function, a 
gradient descent with momentum, and an adaptive learning 
rate back-propagation training function, namely, the Levenberg 
Marquadt method, are used. Based on the results shown in 
Table 5, the proposed method has a higher recognition rate than 
other methods. Also, NCAGAFS increases the precision 
criterion about 0.4. Our method uses NCA as a transformation 
feature and selects transformed features by the GA, which 
finds the global optimum, so we expect NCAGAFS to perform 
better than other methods. The last row of table 5 shows that 
the proposed method is about three times faster than the normal 
method. GAFS has desirable modeling time but lower 
accuracy than NCAGAFS. 

C. RBF Network Results 

The RBF network is a classifier that implements a 
normalized Gaussian radial basis function network. This 
classifier uses the k-means clustering algorithm to create the 
basic functions and learns either a logistic regression (discrete 
class problems) or linear regression (numeric class problems) 
on top of that. Symmetric multivariate Gaussians are fit to the 
data from each cluster. It uses the given number of clusters per 
class if the class is nominal. It normalizes all numeric attributes 
to zero mean and unit variance. In our experiments, the RBF 
network options are:  

• number of clusters (basis functions) = 2; 
• ridge parameter for the logistic regression or linear 

regression = 1.0E-8; 
• minimum standard deviation for the clusters = 0.1; 
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Table 4. Bayes net classifier results. 

Weighted avg.  
of 5 classes 

Normal LDA PCA1 LDA+PCA PCA2 NCA NCA+PCA GAFS NCAGAFS

Precision 0.878 0.84 0.886 0.822 0.871 0.869 0.849 0.827 0.891 

Recall 0.83 0.798 0.841 0.79 0.819 0.816 0.816 0.839 0.851 

F-measure 0.85 0.816 0.856 0.797 0.841 0.838 0.829 0.832 0.867 

ROC area 0.983 0.97 0.979 0.968 0.978 0.975 0.976 0.978 0.982 

PRC area 0.983 0.849 0.886 0.845 0.871 0.881 0.872 0.881 0.912 

Correctly classified 83.00% 79.76% 84.06% 78.97% 81.91% 81.59% 81.56% 83.94% 85.15% 

Modeling time (s) 2.48 4.29 4.78 0.82 2.82 5.28 1.01 0.39 1.4 

Table 5. BPNN classifier results. 

Weighted avg.  
of 5 classes 

Normal LDA PCA1 LDA+PCA PCA2 NCA NCA+PCA GAFS NCAGAFS

Precision 0.856 0.82 0.866 0.759 0.855 0.909 0.901 0.787 0.924 

Recall 0.881 0.857 0.882 0.764 0.878 0.907 0.876 0.861 0.908 

F-measure 0.844 0.815 0.843 0.731 0.838 0.892 0.845 0.818 0.89 

ROC area 0.983 0.976 0.983 0.947 0.981 0.989 0.978 0.977 0.988 

PRC area 0.89 0.857 0.896 0.792 0.89 0.937 0.894 0.869 0.932 

Correctly classified 88.15% 85.74% 88.24% 76.41% 87.79% 90.71% 87.56% 86.15% 90.79% 

Modeling time (s) 1037.43 936.66 888.79 104.64 313.39 888.96 78.59 50.64 382.62 

Table 6. RBF network classifier results. 

Weighted avg. 
of 5 classes 

Normal LDA PCA1 LDA+PCA PCA2 NCA NCA+PCA GAFS NCAGAFS

Precision 0.797 0.758 0.755 0.583 0.775 0.717 0.769 0.789 0.765 

Recall 0.824 0.825 0.827 0.565 0.823 0.808 0.809 0.803 0.826 

F-measure 0.796 0.786 0.787 0.519 0.784 0.759 0.76 0.777 0.79 

ROC area 0.946 0.965 0.96 0.765 0.967 0.949 0.963 0.951 0.969 

PRC area 0.792 0.83 0.82 0.55 0.842 0.831 0.853 0.803 0.879 

Correctly classified 82.44% 82.47% 82.73 56.47% 82.26% 80.79% 80.85% 80.27% 82.62% 

Modeling time (s) 79.01 42.06 25.55 77.37 25.82 68.38 16.23 18.72 58.59 

 

• random seed used by k-means when generating clusters = 1. 
 
As the values show in Table 6, NCAGAFS increases correct 

recognition rate. NCAGAFS produces results similar to those 
of the PCA1 method, but our method has just nine features as 
opposed to the 38 features used in the PCA1 method. 
Therefore, we decrease the computational cost by selecting 
fewer features and only the significant features. 

In some cases, our results are comparable to results of other 
methods; however, in this paper, we try to achieve 

multiobjective optimization, which simultaneously increases 
the accuracy and decreases the computational costs. Therefore, 
we potentially have more time to build the model than we do if 
using such methods as RBF.  

D. Naïve Bayes Results 

The Naïve Bayes classifier is one of the ordinary probable 
classifiers based on Bayes’ theorem that strong (naïve) 
independence suppositions assume that the presence (or 
absence) of a specific feature of a class is independent of the 
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Table 7. Naïve-Bayes classifier results. 

Weighted avg. of  
5 classes 

Normal LDA PCA1 LDA+PCA PCA2 NCA NCA+PCA GAFS NCAGAFS

Precision 0.769 0.742 0.755 0.757 0.773 0.77 0.813 0.816 0.812 

Recall 0.564 0.658 0.58 0.616 0.73 0.666 0.691 0.715 0.754 

F-measure 0.615 0.649 0.611 0.622 0.714 0.683 0.695 0.725 0.777 

ROC area 0.916 0.916 0.881 0.868 0.927 0.904 0.907 0.921 0.941 

PRC area 0.762 0.765 0.748 0.733 0.788 0.77 0.783 0.758 0.824 

Correctly classified 56.44% 65.82% 57.97% 61.65% 72.97% 66.59% 69.15% 71.47% 75.41% 

Modeling time (s) 1.47 1.14 1.94 0.23 0.62 1.23 0.26 0.18 0.1 

Table 8. Decision table classifier results. 

Weighted avg.  
of 5 classes 

Normal LDA PCA1 LDA+PCA PCA2 NCA NCA+PCA GAFS NCAGAFS

Precision 0.858 0.822 0.847 0.831 0.834 0.867 0.84 0.84 0.865 

Recall 0.877 0.85 0.876 0.851 0.851 0.876 0.856 0.867 0.878 

F-measure 0.849 0.818 0.84 0.834 0.838 0.867 0.844 0.826 0.868 

ROC area 0.981 0.976 0.98 0.976 0.976 0.978 0.976 0.97 0.982 

PRC area 0.877 0.859 0.877 0.86 0.863 0.887 0.888 0.846 0.905 

Correctly classified 87.71% 85.03% 87.59% 85.09% 85.06% 87.65% 85.59% 86.74% 87.79% 

Modeling time (s) 36.54 29.98 32.06 3.28 12.55 31.7 1.76 1.42 7.51 

 

presence (or absence) of any other feature, given the class 
variable. Even if these features relate to every other or depend 
upon the existence of the other features, this classifier considers 
all of these features to independently relate to the probability. 
Table 7 shows the results for the Naïve Bayes method. As 
shown, NCAGAFS has superior results. We evaluate our 
method as preprocessing of model-based, decision-based, and 
distance-based classifiers. The results shown in III.3.A, III.3.B, 
III.3.C, and III.3.D verify that our method increases the correct 
recognition rate. 

E. Decision Table Results  

A decision table as a nonmetric classification method 
presents a group of rules that can be supposed for building and 
using a simple decision table majority classifier. Decisions are 
related to predicates or variables whose possible values are 
listed among the condition alternatives. Each action is a 
function to be executed. Many decision tables use a “don’t care” 
symbol to simplify their structure. In digital logic, a “don’t care” 
term is an input-string (a sequence of bits) to a function that the 
creator does not care about, typically since that input would 
never happen or because variation in that input would not result 
in any changes to the output. RMSE is used to evaluate the 

performance of attribute combinations in our experiments, and 
a genetic search is used as a search method to find good 
attribute combinations for the decision table. Results of the 
decision table classifier are shown in Table 8. We obtain the 
same results as before. We have negligible improvement, but 
the computational complexity is reduced. The proposed 
method decreases the simulation time threefold in comparison 
to a normal method. This decrement is due to fewer features as 
well as the correlation between data. We can see that GAFS 
takes 1.42 seconds but has poor performances in other 
evolution criteria. 

F. Results of k-NN 

The k-NN is a robust nonparametric method for classifying 
objects based on closest training samples in the feature space: 
an object is classified by a majority vote of its neighbors, with 
the object related to the class with the most current k-NNs (k is 
a positive integer number, usually small). If we set k=1, then 
the object is simply related to the NN classes. Results of the  
k-NN classifier by k=3 are shown in Table 9. In our experiment, 
we use the LinearNNSearch, which implements the Euclidean 
distance function as an NN search algorithm. Based on our 
results, NCAGAFS performs better than other methods. Our 
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Table 9. k-NN classifier results (k=3). 

Weighted avg. of  
5 classes 

Normal LDA PCA1 LDA+PCA PCA2 NCA NCA+PCA GAFS NCAGAFS

Precision 0.864 0.874 0.864 0.866 0.866 0.902 0.894 0.838 0.897 

Recall 0.874 0.883 0.875 0.876 0.877 0.907 0.9 0.853 0.905 

F-measure 0.868 0.878 0.869 0.871 0.871 0.904 0.897 0.845 0.9 

ROC area 0.967 0.964 0.964 0.963 0.965 0.952 0.948 0.972 0.972 

PRC area 0.861 0.86 0.855 0.855 0.862 0.858 0.849 0.851 0.894 

Correctly classified 87.44% 88.32% 87.53% 87.65% 87.73% 90.71% 90% 85.33% 90.5% 

Modeling time (s) 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.01 0.02 

 

method has an acceptable performance, which is used as 
preprocessing for distance-based classifiers. If the comparison 
of classifiers is done with respect to the time taken to build the 
model and the identification of correct instances, among  
other evaluation criteria, then it is concluded that NCAGAFS 
provides better results. Table 9 shows that the construction time 
in NCAGAFS is equal to that of normal methods, but the 
results regarding other criteria are different and this is due to the 
correlation of data and significant features selection. 

G. Dunn Index and SD Index Measure 

In this experiment, we use the Dunn index as performance 
criterion. The Dunn index is a validity index which identifies  
compact and well-separated classes defined by (11) for a 
specific number of classes [30], [31]. 

1,..., 1,...,
1,...,

( , )
min min ,

max ( )
i j

nc i nc j i nc
kk nc

dist c c
D

diam c= = +
=

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= ⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

      (11) 

where nc is the number of classes, and dist(ci,cj) is the 
dissimilarity function between classes ci and cj, defined by  

,
( , ) min ( , ),

i j
i j x c y c

dist c c dist x y
∈ ∈

=          (12) 

and diam(c) is the diameter of the class c, a measure of the 
dispersion of the class. The diameter of a class c can be defined 
as 

,
( ) max ( , ).

x y c
diam c dist x y

∈
=            (13) 

It is clear that if the data classes are compact and well 
separated, the distance between the classes will be too large, 
and the diameter of the classes will be too small. Thus, based 
on the Dunn index definition, we can conclude that large 
values in the index indicate the presence of compact and well-
separated classes. The Dunn index measures compression of 
data classes. As such, higher values of the Dunn index indicate 
well separated and more compact classes. The SD validity 

index is defined based on the average scattering of classes and 
total separation between classes. Average scattering of classes 
is defined as  

1

1( ) ( ) ( ) ,
nc

i
i

Scat nc v X
nc

σ σ
=

= ∑         (14) 

where nc is the number of classes, vi is the center of class I, X is 
the dataset, σi is the variance of the i-th class, and σ is the 
variance of the dataset [30], [32]. 

Total separation between classes is defined as 
1

max

1 1min

( ) ,
nc nc

k z
k z

D
Dis nc v v

D

−

= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑         (15) 

where Dmax and Dmin are the maximum and minimum distance 
between class centers, respectively. 

max max( ) , {1, 2,..., },i jD v v i j nc= − ∀ ∈       (16) 

min min( ) , {1, 2,..., }i jD v v i j nc= − ∀ ∈ .        (17) 

The SD validity index is then defined as  

( ) . ( ) ( ).SD nc Scat nc Dis ncλ= +         (18) 

In this equation, the first term, Scat(nc), defined in (14), 
represents the average scattering (or average compactness) of 
classes. The smaller value of Scat(nc) indicates greater 
compactness of the class. The second term, Dis(nc), is a 
function of the location of a class’s center. It measures the 
separation between the nc classes and increases with the 
number of classes. A small value of the SD index indicates the 
presence of compact and well-separated classes. Since the two 
terms of SD have different ranges, the weighting factor λ is 
used to balance their overall contribution. Here, we calculate 
the Dunn and SD indexes for each dataset. Table 10 shows the 
results of this experiment. The bold and underlined values are 
the best results achieved on each dataset, the bold values 
without underlining are the second best results, and the 
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Table 10. Dunn index and SD index for all methods. 

Methods Dunn index SD index 

Normal 1.44E-10 0.4121 

LDA 2.81E-05 546.7815 

PCA1 1.44E-10 0.4121 

LDA+PCA 3.33E-04 284.6215 

PCA2 6.08E-04 0.6107 

NCA 0.0031 0.2338 

NCA+PCA 0.0045 0.3135 
GAFS for Bayes net, 

BPNN, decision table, IBK 
8.00E-07 0.5403 

GAFS for Naïve Bayes 6.59E-06 0.4836 

GAFS for RBF 1.44E-10 0.4131 

NCAGF for Bayes net 0.0045 0.3591 

NCAGF for BPNN 0.003 0.2714 

NCAGF for decision table 0.0039 0.2745 

NCAGF for IBK 0.003 0.2493 

NCAGF for Naïve Bayes 0.0063 0.5833 

NCAGF for RBF 0.0046 0.3352 
 

underlined values without boldface type are the third best 
values. 

IV. Conclusion 

In this paper, we introduced a new approach based on the 
nonlinear and nonparametric method NCA and a classifier-
based GA feature selection method to create an efficient and 
powerful tool for selecting significant features. As we used 
fewer features than 41 to describe the data, its training time was 
noticeably decreased and the accuracy of its classification was 
improved. We compared our result with the results of seven 
feature selection and feature transformation methods and 
normal data used to preprocess three models of classifiers (six 
classifiers). The results showed that the classification method 
that uses selected features is more accurate than the 
classification method that uses all of the features. In all of the 
classifiers used, our method achieved better results than all 
other known methods achieved. In some cases, the results were 
notably close; however, our method uses fewer and more 
important features, thus reducing the modeling time and 
computational costs. 
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