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On Unscented Kalman Filtering for State Estimation
of Continuous-Time Nonlinear Systems
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Abstract—This paper considers the application of the unscented
Kalman filter (UKF) to continuous-time filtering problems,
where both the state and measurement processes are modeled
as stochastic differential equations. The mean and covariance
differential equations which result in the continuous-time limit of
the UKF are derived. The continuous-discrete UKF is derived as a
special case of the continuous-time filter, when the continuous-time
prediction equations are combined with the update step of the
discrete-time UKF. The filter equations are also transformed into
sigma-point differential equations, which can be interpreted as
matrix square root versions of the filter equations.

Index Terms—Continuous-discrete filter, continuous-time filter,
continuous-time state space model, nonlinear state space model,
nonlinear system, stochastic differential equation, unscented
Kalman filter (UKF).

I. INTRODUCTION

THE unscented Kalman filter (UKF) [1]–[3] is an efficient
derivative free filtering algorithm for computing approxi-

mate solutions to discrete-time nonlinear optimal filtering prob-
lems. It has been successfully applied to numerous practical
problems and it has been shown to outperform the extended
Kalman filter (EKF) in many cases [4]. However, in its original
form, the UKF is a discrete-time algorithm and it cannot be di-
rectly applied to continuous-discrete filtering problems, where
the state dynamics are modeled as continuous-time stochastic
processes, or to continuous-time filtering problems, where both
the state and measurement processes are modeled as contin-
uous-time stochastic processes.

Phenomena, which can be modeled as time varying systems,
where a continuous-time signal is observed discretely or contin-
uously in time are very common in engineering and physics ap-
plications. Examples of such applications are GPS and inertial
navigation [5], [6], target tracking [7]–[9], estimation of biolog-
ical processes [10], telecommunications [11], [12], stochastic
optimal control [13], [14], and inverse problems in physics [15].

In this paper, the differential equations which result in the
continuous-time limit of the UKF are derived. Both the contin-
uous-time and continuous-discrete cases are considered. The
derived continuous-time filtering equations, which could be
called the unscented Kalman-Bucy filter (UKBF) equations, are
similar to the extended Kalman-Bucy filter (EKBF) equations
[16]–[18] and consist of a pair of differential equations for the
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mean and covariance of the posterior state process. A square
root version of the filter is also derived and it consists of a
matrix differential equation for the sigma points.

The continuous-discrete UKF is derived as a special case of
the continuous-time filter, when the continuous-time prediction
equations are combined with the update step of the discrete-time
UKF. A square root version of this continuous-discrete filter is
also presented.

II. PROBLEM STATEMENT

A. Optimal Continuous-Time Filtering

In analog communication systems [11] the measured signals
are typically continuous-time processes and analog receivers are
devices, which demodulate or estimate the actual transmitted
continuous-time signals from the noisy measured signals. Also
in many analog (electrical or mechanical) control systems (see,
e.g., [13] and [14]) operating without digital computers the mea-
sured signals are continuous-time, not discrete-time signals. The
optimal recursive estimation of this kind of systems is called op-
timal continuous-time filtering [16], [17].

The most general form of the optimal continuous-time fil-
tering models considered in this paper is

(1)

where is the state process; is the
(integrated) measurement process; is the drift function; is
the measurement model function; and are arbitrary
time varying matrices, independent of and ; and

are independent Brownian motions with diagonal diffu-
sion matrices and , respectively.The dynamic and
measurement models can be equivalently interpreted as Ito or
Stratonovich type stochastic differential equations [19], [20].

The filtering model can also be formulated in terms of formal
white noises , , and differen-
tial measurement as follows [16]:

(2)

where the white noise processes and have spectral den-
sities and , respectively.

The purpose of the optimal (Bayesian) continuous-time fil-
tering is to recursively compute the posterior distribution

(3)
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or at least the relevant moments of the distribution (e.g., mean
and covariance). The formal solution to the filtering problem is
well known and it is given by the Kushner-Stratonovich equa-
tion [21]–[23], which is a measure valued stochastic partial dif-
ferential equation. The unnormalized version of the equation is
called the Zakai equation [24], [25]. However, these equations
only give the formal solution, and the actual computation of the
distribution or its expectations (such as mean and covariance)
would require an infinite amount of computational resources. In
certain special cases, the equations do have finite dimensional
solutions, which leads to Kalman-Bucy filters [26] and Benes
filters [27].

Because the exact solution to the continuous-time optimal fil-
tering problem is generally intractable, approximations must be
used. The most common approximation method is the EKBF
(see, e.g., [16]–[18]), which approximates the exact solution by
replacing the nonlinear model with a suitably linearized approx-
imate model, which can be solved by the Kalman-Bucy filter.
Another general way of forming approximations is Monte Carlo
sampling [28], [29], where a set of weighted particles is used for
approximating the posterior probability measure.

B. Optimal Continuous-Discrete Filtering

Nowadays, in many signal processing systems, the sensor
measurements are obtained at discrete instances of time either
due to sampling, due to processing delays in the device or be-
cause the sensor operates in scans. Still in the Nature time is
continuous, not discrete, and for this reason often a physically
more realistic approach than discrete-time filtering or contin-
uous-time filtering is continuous-discrete filtering [16], [17]. In
continuous-discrete filtering the state dynamics are modeled as
continuous-time stochastic processes, and the measurements are
obtained at discrete instances of time. This differs from dis-
crete-time filtering, because in that approach both the dynamics
and measurements are modeled as discrete-time processes.

The continuous-discrete filtering models considered here
have the general form

(4)

where is the state; is the measurement;
is the drift function; is the dispersion matrix; is

Brownian motion with diffusion matrix; , is the mea-
surement model function; is a zero mean Gaussian measure-
ment noise with covariance matrix . The dynamic model can
be equivalently interpreted as a Ito or Stratonovich type sto-
chastic differential equation. As in the continuous-time filtering
case the dynamic model can also be written in terms of white
noise process as

(5)

The purpose of (Bayesian) continuous-discrete filtering is to re-
cursively compute the posterior distribution

(6)

where is the time of measurement . By using optimal pre-
diction the corresponding distribution can also be computed for
all time instances before the next measurement .

In theory, the solution to the continuous-discrete filtering
problem can be computed by the following prediction and
update steps [16]:

• Prediction step: solves the predicted probability density at
time step from the Kolmogorov forward partial differ-
ential equation using the old posterior probability density
at time step as the boundary condition.

• Update step: uses the Bayes’ rule for computing the pos-
terior probability density of state at time step from the
predicted probability density of the prediction step, and the
likelihood of the measurement .

As in the continuous-time case, the closed form solutions to
these equations or to the equations for the moments (e.g., mean
and covariance) of the distributions can only be found in a
few special cases [30]–[32] and approximations are generally
needed. The continuous-discrete EKF [16]–[18] uses a Taylor
series expansion approximation to the nonlinear drift function
and forms a Gaussian process approximation to the SDE.
Another possible approach is to simulate sample paths of SDEs
[33] and use particle filters for estimation [34], [35]. Interacting
and branching particle systems [36] are particle-based solutions
to nonlinear filtering problems also in the continuous-discrete
setting.

Other possible approaches are statistical linearization [17],
grid-based methods [35], [37] and multiple model methods [7],
[35], Gaussian sum approximations [38], [39], and numerical
solving of the Kolmogorov forward equation [40], [41].

III. DISCRETE-TIME UNSCENTED KALMAN FILTERING

A. Unscented Transform

The unscented transform (UT) [1]–[3] can be used for
forming a Gaussian approximation to the joint distribution
of random variables and , when the random variable is
obtained by a nonlinear transformation of the Gaussian random
variable as follows:

(7)

where , , and is a general non-
linear function. The idea of UT is to form a fixed number of
deterministically chosen sigma-points, which capture the mean
and covariance of the original distribution of exactly. These
sigma-points are then propagated through the nonlinearity and
the mean and covariance of the transformed variable are esti-
mated from them. Note that the unscented transform is signifi-
cantly different from Monte Carlo estimation, because the sigma
points are selected deterministically [1], [2].

Algorithm 3.1 (Unscented Transform): The unscented trans-
form can be used for forming the Gaussian approximation

(8)

to the joint probability density of and . The
unscented transform is the following:
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1) Form the set of sigma points from the columns of
the matrix as follows:

(9)

and compute the associated weights

(10)

The parameter is a scaling parameter defined as

(11)

The positive constants , and are used as parameters
of the method.

2) Transform each of the sigma points as

(12)

3) Mean and covariance estimates for can be computed as

(13)

4) The cross-covariance of and can estimated as

(14)

The matrix square root of positive definite matrix means a
matrix such that

(15)

Because the only requirement for is the definition above, we
can, for example, use the lower triangular matrix of the Cholesky
factorization (see, e.g., [42]).

In this paper, the Cholesky factorization is denoted as the
function

(16)

The unscented transform can be seen as a function (or func-
tional) from to

(17)

B. UKF

The UKF [1]–[3] is a discrete-time filtering algorithm, which
utilizes the unscented transform for computing approximate so-
lutions to the filtering problems of the form1

(18)

where is the state, is the measurement,
is a Gaussian process noise ,

and is a Gaussian measurement noise .
The mean and covariance of the initial state are and ,
respectively.

In terms of the unscented transform the UKF predic-
tion and update steps can be written as follows.

• Prediction: Compute the predicted state mean and the
predicted covariance as

(19)

• Update: Compute the predicted mean and covariance of
the measurement , and the cross-covariance of the state
and measurement :

(20)

Then compute the filter gain , the state mean and
the covariance , conditional to the measurement

(21)

The filtering is started from the initial mean and covariance
. A thorough treatment of the unscented Kalman filtering,

sigma-point filtering in general and connections to several other
filtering algorithms can be found in [4]. Efficient square root
versions of the UKF are presented in [4] and [43].

IV. CONTINUOUS-TIME UNSCENTED KALMAN FILTERING

A. Matrix Form of UKF

In this section, the UKF is presented in matrix form, where
the weighted sums of sigma points are written as equivalent ma-
trix expressions. This eases the derivations of continuous-time
forms of the UKF in Section IV-B.

In order to clean up the notation, we shall use the convention
that

(22)

1In this paper, we only consider the case of additive noise, but UKF can also
be applied to more general filtering problems with nonadditive noise.
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where and means that the th column
of the matrix is formed as follows:

(23)

Lemma 4.1 (The Matrix Form of UT): The unscented trans-
form can be written in matrix form as follows:

(24)

where is the matrix of sigma points, , and
vector and matrix are defined as follows:

(25)

Proof: See Appendix I-A.
Algorithm 4.1 (UKF): The UKF prediction and update steps

can be written in matrix form as follows.
• Prediction: Compute the predicted state mean and the

predicted covariance as

(26)

• Update: Compute the predicted mean and covariance of
the measurement , and the cross-covariance of the state
and measurement

(27)

Then compute the filter gain , the state mean and
the covariance

(28)

B. Continuous-Time UKF

By taking the formal limit of the discrete-time UKF equations
in Algorithm 4.1, the following novel continuous-time filter can
be derived.

Algorithm 4.2 (UKBF): The stochastic differential equations
corresponding to the UKF in the continuous-time limit of the
state and measurement processes, that is, the UKBF equations,
are given as

(29)

where we have formally defined the differential measurement
. The sigma-point matrix is defined as

(30)
Proof: See Appendix I-B.

To avoid problems related to the finite numerical precision of
computer arithmetic, Kalman filter equations are often imple-
mented such that the matrix square roots of covariance matrices
are used in computations instead of their actual values [18]. Be-
cause UKF already uses matrix square roots in its sigma-points,
the square root version of continuous-time UKF can be obtained
by formulating the filter as a differential equation for the sigma
points.

Algorithm 4.3 (Square Root UKBF): The UKBF can be for-
mulated in terms of sigma points as follows2:

(31)

where the matrix of sigma-points is defined as

(32)

and is a function returning the lower diagonal part of the
argument as follows:

if
if
if .

(33)

2Here () denotes the ith column of the argument matrix.
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The initial should be the lower triangular Cholesky factor
of the initial covariance matrix .

Proof: See Appendix I-D.
Note that in the square root filter, the equations contain the

matrix , which is the lower triangular Cholesky factor of
the covariance at all time instances .
However, the factorization needs to be explicitly computed only
on the initial time step, because can be extracted from
at any time step by very simple means. This also implies that in
the implementation of the algorithm the covariance of the
state never needs to be evaluated.

The UKBF equations presented in this section are actually
Stratonovich type of stochastic differential equations, because
they have been derived by taking the continuous-time limit of
discrete-time equations by using the rules of conventional cal-
culus. In the beginning of the paper it was stated that the con-
tinuous-time dynamic and measurement models can be equiva-
lently interpreted as either Ito or Stratonovich type of stochastic
differential equations, which is indeed true, but with both the
interpretations the filter equations still are of the Stratonovich
type.

C. Unscented Continuous-Time Prediction

In this section the continuous-time prediction equations are
derived as special cases of the continuous-time filters in the pre-
vious section. The motivation is that using the prediction equa-
tions we can construct the continuous-discrete versions of the
UKF.

Algorithm 4.4 (Mean and Covariance Prediction): The pre-
dicted mean and covariance of the state for times

given the mean and covariance at the time instance ,
that is, and can be computed by integrating the dif-
ferential equations

(34)

from initial conditions and to time instance . Here
is defined as in (30),

Proof: Formally set in Algorithm 4.2, which
results in .

Algorithm 4.5 (Square Root Prediction): The UKF prediction
equations can be written in terms of sigma points as

(35)

where , , and are defined as in Algorithm 4.3.
The integration is started from the sigma points , which
are generated from and .

Proof: Formally set in Algorithm 4.3, which
results in .

D. Continuous-Discrete UKF

The mean and covariance form of continuous-discrete UKF
can be now implemented as follows.

Algorithm 4.6 (Continuous-Discrete UKF): The prediction
and update steps of the continuous-discrete UKF are the fol-
lowing.

• Prediction. Integrate the differential equations(34) in Al-
gorithm 4.4 from the initial conditions ,

to time instance . The predicted mean
and covariance are given as and

, respectively.
• Update. The update step is the same as the discrete-time

UKF update step (27) of Algorithm 4.1.
The corresponding square root continuous-discrete UKF has

the same form.
Algorithm 4.7 (Square Root Continuous-Discrete UKF): The

prediction and update steps of the square root continuous-dis-
crete UKF are the following:

• Prediction. Integrate the differential equations(35) in Al-
gorithm 4.5 from the initial conditions , which are
the sigma points generated from and

. The integration is continued up to the
time instance and the predicted sigma points are given
as .

• Update. The update step is the same as the discrete-time
UKF update step (27) of Algorithm 4.1, but now the
predicted sigma points do not have to be generated from
mean and covariance, because they are already available.
To enhance the numerical stability of the update equations,
square root versions [4], [43] of the UKF update step can
also be used.

V. REMARKS AND DISCUSSION

A. Computational Complexity

Although, the new matrix form of the unscented transform is
very useful in derivation of the filtering equations, in numerical
computations, the classical form can be computationally more
efficient. The matrix expressions appearing in the filtering equa-
tions can be equivalently written as summations as follows:

(36)
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where

(37)

By using the summation forms of the covariance terms the full
matrix product is replaced by the weighted sum of outer prod-
ucts, which is lighter to compute.

The relationship between the UKBF and EKBF approxima-
tions can be seen to be

(38)

where the elements of the Jacobian matrices and
are given as

(39)

The computational complexity of the UKBF (or continuous-dis-
crete UKF) can be seen to be two–three times the computational
complexity of the EKBF, when compared in terms of number of
multiplications and additions. When the state dimension is ,
the UKBF needs evaluations of and , when EKBF
needs only one. However, in addition to that, EKBF needs eval-
uations of the Jacobian matrices (and possibly Hessian matrices)
of both the functions.

VI. ILLUSTRATIVE EXAMPLES

A. Continuous-Time Nonlinear Filtering

In this section, we shall test the performance of the UKBF
in continuous-time version of the nonlinear filtering problem,
which was used in [17] for demonstrating the performance of the
statistical linearization-based filter. Both the state and the
measurements are one-dimensional continuous-time pro-
cesses and the filtering model is

(40)

where and are continuous-time white noise processes
with spectral densities and , respectively.
Note that in [17] the dynamic model was in continuous time and
the measurement model was in discrete time, but here both the

TABLE I
RMSE VALUES OF THE PARAMETER AND SIGNAL AVERAGED OVER 1000

MONTE CARLO RUNS IN THE CONTINUOUS-TIME NONLINEAR

FILTERING PROBLEM

Fig. 1. Illustration of transient period error behavior in continuous-time non-
linear filtering problem.

models are in continuous time. The simulation was performed
over time period of 5 s using the Euler-Maruyama scheme [33]
and with time steps of .

The root mean squared error (RMSE) results of 1000 Monte
Carlo runs with EKBF, second-order extended Kalman-Bucy
filter (EKBF2), UKBF, and statistically linearized filter (SLF)
are shown in Table I. It can be seen that SLF is the best of the
filters in RMSE sense, because it uses the closed form formulas
for expectations and covariances of the nonlinearities (see [17]),
when the other filters can only approximate them. The UKBF
gives a significantly better result than EKBF and EKBF2, and
the UKBF result is also quite close to the base line result of SLF.
The performances of EKBF and EKBF2 are most likely that bad
because the Taylor series expansion-based approximations do
not work well when the estimation error is large.

Even thought the SLF is better than UKBF in RMSE sense,
SLF has the serious disadvantage that in order to implement it,
one has to be able to compute closed form formulas for cer-
tain expected values of nonlinear transformations of Gaussian
random variables [17]. These expected values can be computed
in closed form only in simple special cases and, thus, UKBF is a
very good choice for models with significant nonlinearities and
uncertainties.

A typical transient behavior of the filters is illustrated in
Fig. 1. It can be seen that SLF is best because it converges very
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quickly near the correct state. The convergence of UKBF is
slower, but significantly faster than of EKBF and EKBF2.

B. Reentry Vehicle Tracking

Here we consider the reentry tracking problem, where a radar
is used for tracking a space vehicle, which enters the atmosphere
at a very high speed. The reentry problem was used for demon-
strating the performance of UKF in [2] and slight corrections to
the equations and simulation parameters were later published in
[44]. The stochastic equations of motion for the space vehicle
are given as [2], [44]

(41)

where , , are white Gaussian process noises
with known joint spectral density. The constants are [2]

(42)

In [2], the radar measured 10 times per second and the simulated
discrete process noise covariance was

(43)

If we interpret the dynamic model (41) as originally contin-
uous time model, we may assume that the discretized covari-
ance is actually an approximation to a nonlinear continuous-
time process driven by continuous-time process noise with spec-
tral density . In this interpretation, it is reasonable to assume
that the relationship between the discrete covariance and the
continuous-time spectral density is originally the approximation

where is the sampling time used in
[2]. Thus the true spectral density matrix is the matrix in (43)
multiplied by 10.

In the actual filter implementation, the lower right corner term
in the modeled process noise covariance was set to the value

. This additional small noise term was used for the constant
parameter to enhance the filter stability as was done in [44]. This

modified discrete process noise covariance is denoted as
and the corresponding spectral density is denoted as .

The radar is located at and the measure-
ment model is

(44)

where the and . In the simula-
tion, the assumed means and covariances of the state, simulated
means and covariances of the state and the standard deviations
of measurements were selected to be the same as in [2], [44].
The simulated data were generated by simulating the stochastic
differential (41) with 100 steps of Euler-Maruyama scheme [33]
between each measurement.

The discrete UKF (DUKF) and continuous-discrete
UKF (CDUKF) were both implemented using 10 steps of
Runge-Kutta integration between measurements, but the differ-
ence was in handling of process noise.

• In DUKF, each measurement is processed as follows.
1) Integrate each of the sigma point through the noise free

dynamic model using 10 steps of the Runge-Kutta in-
tegration.

2) Compute the predicted mean and covariance, and
model process noise effect by approximating the dis-
crete covariance by .

3) Perform standard UKF update step for the measure-
ment.

• In CDUKF, each measurement is processed as follows.
1) Integrate the mean and covariance differential equa-

tions using 10 steps of the Runge-Kutta integration,
and using as the diffusion matrix (or spectral den-
sity) of the process noise.

2) Perform standard UKF update step for the measure-
ment.

The amount of computations required by the CDUKF is slightly
higher than of DUKF, but the number of evaluations of the dy-
namic model function is the same for both the models and thus
the practical total difference is small. The algorithm parameters
in the unscented transforms were selected to be , ,

.
Simulations were performed using different time steps of

seconds and the results from 100 Monte
Carlo simulations per step size are shown in Fig. 2. The DUKF
and CDUKF have very much the same performance when the
time step size is short. However, when the time step grows,
DUKF encounters numerical problems and its error grows
rapidly. The problem is that when the sigma-points are inte-
grated one at a time, nothing prevents the covariance estimate
from becoming nonpositive definite. With larger time steps
this causes severe numerical difficulties. At the same time, no
numerical problems can be seen in the CDUKF and its error
grows much slower.

In this simulation scenario, the advantage of the continuous-
time formulation over the discrete-time formulation is the nu-
merical stability. This stability is due to that when the noise
process is modeled as a continuous-time process the nonlinear
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Fig. 2. RMSE versus time step size in the reentry filtering problem. Results
are from 100 Monte Carlo runs per time step with the CDUKF and DUKF.
The higher errors of DUKF with longer time step sizes are caused by numerical
problems on the prediction step.

dynamic model cannot force the covariance to become nonposi-
tive definite. In the discrete-time formulation the covariance can
become nonpositive definite.

In this particular problem, it is not essential whether uncer-
tainties are modeled as discrete-time or continuous-time sto-
chastic processes. Since the performance of CDUKF seems to
be at least that of DUKF, in cases where the continuous-time sto-
chastic process formulation is more accurate in modeling point
of view, the CDUKF is likely to perform better than the discrete
UKF.

VII. CONCLUSION

In this paper, novel continuous-time and continuous-discrete
versions of the originally discrete-time UKF have been derived
and applied to nonlinear continuous-time filtering and reentry
vehicle tracking problems. Numerically more stable square-root
versions of the new filters have also been derived.

The continuous-time and continuous-discrete unscented fil-
ters are good alternatives to the EKFs in models, where the Ja-
cobian and Hessian matrices of the drift terms are not available
or when the Taylor series expansion approximations do not work
well. According to the simulations, the approximations gener-
ated by the new filters are better in the cases where the model
nonlinearities and estimation uncertainties are significant.

APPENDIX

DERIVATIONS

Derivation of Matrix Form of UT: If we define the matrix
of sigma points as

(45)

then the sigma point computation in (9) can be written in form
of the first equation in (24). The second equation is simply the
vector form of (12).

If we define the weight vector and matrix as in (25)
and denote the matrix of sigma points of as the transformed
mean and covariance equations can be written as

(46)

(47)

(48)

which leads to last three equations in (24).
Derivation of UKBF: The continuous-time UKF equations

can be derived from the discrete-time UKF by the same limiting
procedure as is commonly used in derivation of the Kalman-
Bucy filter from the discrete-time Kalman filter (see, e.g., [14],
[18]). The continuous-time filtering model

(49)

where and are independent Brownian motions with
diagonal diffusion matrices and can be interpreted
such that when is sufficiently close to zero, we have

(50)

where , , and
is a function such that when .

Assuming that , the UKF prediction
from to can be written as

(51)
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Substituting into the equations of and
, and using the identities ,

gives

(52)

Assuming that we measure the difference
the UKF update step can be written as

(53)

Substituting , , , ,
and retaining only first-order terms results in

(54)

Substituting and gives

(55)

Dividing by and taking the limit results in the
differential equations in the Algorithm 4.2.

Alternative Derivation: In Appendix I-B, the equations
of the UKBF were derived by taking the formal limit of the
discrete-time equations. However, it is also possible to derive
the same equations purely in continuous-time framework. The
mean and covariance of the optimal continuous-time filter are,
in theory, given by the stochastic differential equations [16]

(56)

The expectations are with respect to the posterior distribution
of the state and thus cannot be in practice computed, be-
cause the computation would require the knowledge of all (in-
finite number of) moments of the distribution. However, an un-
scented transform-based approximation to these equations can
be formed as follows. If we assume that the third-order term in
the covariance equation above is approximately zero, the equa-
tions above can be approximately written as

(57)

where denotes the cross-co-
variance of and , and is the differentiated
measurement process. If we assume that the posterior mean and
covariance of are and , respectively, unscented
transform-based approximations to the expectations and covari-
ances can be formed as follows:

(58)
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where are the sigma-points generated from and .
Substituting these approximations into the (57) results in the
UKBF equations in Algorithm 4.2.

Note that the above derivation is not strictly complete as such,
because the UKBF equations presented in Section IV-B are ac-
tually Stratonovich equations, but the (57) are Ito type of equa-
tions. However, we may argue that the extra terms arising from
the conversion of (57) from Ito from to Stratonovich form would
only introduce terms involving odd moments, which anyway
disappear due to the Gaussian approximation.

Derivation of SR-UKBF: Assume that the matrix square
root used is the Cholesky factorization

(59)

which also assures that the square root is lower triangular. If we
define (symmetric matrix)

(60)

then the differential equation of the covariance is of the form

(61)

It is now possible to derive differential equations for the
Cholesky factor using the procedure presented in [45] and
later in [14]. We first expand the derivative of the covariance
matrix as follows:

(62)

Multiplying both sides from left by and from right by
gives

(63)

Now the left-hand side (LHS) is sum of lower triangular
matrix and upper triangular matrix

, and the right-hand side (RHS) is sym-
metric matrix. Thus it can be concluded that the derivative of

can be written as

(64)

where the function , which is defined in (33) gives the lower
diagonal part and half of the diagonal part of its argument. The
expression of the sigma points is

(65)

Taking derivatives from both sides of the equation gives

(66)
Substituting the equations for and leads to
equations in Algorithm 4.3.
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