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Abstract

The Kalman filter provides an effective solution to the linear-Gaussian filtering problem. How-
ever, where there is nonlinearity, either in the model specification or theobservation process, other
methods are required. We consider methods known generically asparticle filters, which include the
condensation algorithm and the Bayesian bootstrap or sampling importance resampling (SIR) filter.
These filters represent the posterior distribution of the state variables by a system of particles which
evolves and adapts recursively as new information becomes available. In practice, large numbers of
particles may be required to provide adequate approximations and for certainapplications, after a
sequence of updates, the particle system will often collapse to a single point. We introduce a method
of monitoring the efficiency of these filters, which provides a simplequantitative assessment of sam-
ple impoverishment and show how to construct improved particle filterswhich are both structurally
efficient, in terms of preventing the collapse of the particle system and computationally efficient in
their implementation. We illustrate with the classic bearings-only tracking problem.

Keywords:Kalman filter, Condensation algorithm, Bayesian bootstrap filter, Sampling impor-
tance resampling (SIR) filter, Sequential estimation, Markov Chain MonteCarlo (MCMC), Impor-
tance resampling.

1 Introduction

The Bayesian approach to dynamic state estimation problemsinvolves the construction of the probabil-
ity density function (PDF) of the current state of an evolving system, given the accumulated observation
history. For linear Gaussian models where the PDF can be summarised by means and covariances, the
calculation is carried out in terms of the familiar updatingequations of the Kalman filter. In general, for
nonlinear, non-Gaussian models, there is no simple way to proceed. Two difficulties must be resolved:
how to represent a general PDF using finite computer storage and how to perform the integrations in-
volved in updating the PDF when new data are acquired.

Several approximate methods have been proposed. These include the extended Kalman filter [1, 2], the
Gaussian sum filter [3], approximating the first two moments of the PDF [4,5] and numerical integration
over a grid of points in the state space [6–10] . However, noneof these methods can be applied automati-
cally. Typically, they have to be tuned to take account of features of each specific problem. For example,
in grid-based methods the number and location of the grid points has to be decided upon, usually by a
process of trial and error. Furthermore, updating the distribution of the state of the system as new data
arrive usually entails a formidable computational overhead.
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There is now a substantial literature concerned with simulation based filters in which the required PDF is
represented by a scatter of particles which propagate through the state space [9,11–19]. The propagation
and adaptation rules are chosen so that the combined weight of particles in a particular region will ap-
proximate the integral of the PDF over the region. Such filters have been variously described as Bayesian
bootstrap, condensation, Monte-Carlo and Metropolis-Hastings importance resampling filters. For the
purposes of this paper we adopt the term Monte Carlo particlefilter or particle filter for short. Gordon,
Salmond and Smith [14] demonstrate the effectiveness of a simple algorithm for particle evolution for
various nonlinear filtering applications. Their method hasbecome known as the Sampling Importance
Resampling (SIR) filter or, more commonly in the engineeringliterature, the Bayesian bootstrap filter.

The standard SIR filter is vulnerable tosample impoverishment[17, 20–22], so that the particle distri-
bution gives a poor approximation of the required PDF. In extreme cases, after a sequence of updates
the particle system can collapse to a single point. In less extreme cases, although several particles may
survive, there is so much internal correlation that summarystatistics behave as if they are derived from
a substantially smaller sample. To compensate, large numbers of particles are required in realistic prob-
lems.

In this paper we show how sample impoverishment can be quantified. We introduce modifications
which we demonstrate to have superior performance to the SIRfilter both in terms of combating sample
impoverishment and in computational cost.

In section 2 we give a brief review of Bayesian filtering theory. In Section 3 we reformulate the SIR filter
as an evolving random measure and show that variance reduction techniques from the theory of Monte-
Carlo integration [23] can be applied. Section 4 introducesthe modified particle algorithm, and we note
that the computational complexity of each update calculation can be reduced fromO(N logN) toO(N)
whereN is the number of particles. Section 5 demonstrates how to quantify sample impoverishment and
Section 6 contains an application of the new algorithm to theclassic bearings-only tracking problem.
Finally Section 7 presents some conclusions.

2 Bayesian Filtering

Following Gordon, Salmond and Smith [14] we represent the state vector at timek by xk 2 Rn , which
satisfies xk+1 = fk(xk; wk)
wherefk : Rn � Rm ! Rn is the system transition function andwk is a noise term whose known
distribution is independent of time. At each discrete time point an observationyk 2 Rp is obtained,
related to the state vector by yk = hk(xk; vk)
wherehk : Rn � Rr ! Rp is the measurement function andvk 2 Rr is another noise term whose
known distribution is independent of both the system noise and time. We writeDk for (y1; :::; yk), the
available information at timek, and assume the PDF ofx1; the initial state of the system, is known so
thatp(x1jD0) = p(x1). We then wish to obtain the PDFs ofp(xkjDk) : k � 2, which are given by the
3 equations: p(xkjDk�1) = Z p(xkjxk�1)p(xk�1jDk�1) dxk�1 (1)
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and p(xkjDk) = p(ykjxk)p(xkjDk�1)p(ykjDk�1) , (2)

where p(ykjDk�1) = Z p(ykjxk)p(xkjDk�1) dxk. (3)

The basic SIR algorithm, which provides approximate solutions to (1–3) is given by Gordon, Salmond
and Smith [14]. See also Section 3.1 below.

3 Random measures

Particle filters work by providing a Monte Carlo approximation to the PDF which can be easily updated
to incorporate new information as it arrives. The Monte Carlo approximation to a PDFp(xk) at timek consists of a set of random nodes in the state space(sik)i=1:::N , termed thesupport, and a set of
associated weights(mik)i=1:::N summing to 1. The support and the weights together form arandom
measure.

The objective is to choose a measure so thatNXi=1 g(sik)mik � Z g(xk)p(xk) dx (4)

for typical functionsg of the state space. This is an approximation in the sense thatthe left-hand side of
(4) converges (in probability) to the right-hand side asN !1 [24].

A simple example of a random measure is obtained by sampling values(sik)i=1:::N independently fromp(xk), and attaching equal weightsmik = N�1; i = 1; : : : ;N to the values. The left-hand side of (4)
is then the sample average

PNi=1 g(sik)=N . Importance sampling [25] generalises this by sampling(sik)i=1:::N from an importance PDFf(xk) and attaching importance weightsmik = Ap(sik)=f(sik),
whereA�1 =PNi=1 p(sik)=f(sik).
More sophisticated Monte Carlo integration techniques [23] are also available. Stratified sampling is of
particular relevance. Suppose that a PDFp(x) is made up of contributions fromN distinct subpopula-
tions or strata, so thatp(x) is a mixture of the formp(x) = NXi=1 �ipi(x);
where eachpi(x) is a PDF and

PNi=1 �i = 1. Sampling theory [26] tells us that a population quantityR g(x)p(x)dx can be estimated efficiently by sampling a fixed numberMi from each of the strata, withM1+ : : :+MN = N . The greatest efficiency is attained with the Neyman allocationMi / �i�i, where�2i is the variance ofg(x) in the ith stratum. In practice, either because the variances are unknown
or because a number of different functions are to be monitored, the proportional allocationNi / �i
is frequently used. Except in certain degenerate cases, this proportional allocation can be shown to be
more efficient than simple random sampling fromp(x) [26].
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A random measure(~si;mi)i=1:::N which approximatesp(x) can be converted, by resampling, into an
equally weighted measure which approximates a simple random sample fromp(x). Resampling con-
sists of sampling(s1; : : : ;sN) with replacement from(~si;mi)i=1:::N , i.e. the discrete distribution with
support points(~si) and probabilities(mi). This leads to a new random measure(si; N�1)i=1:::N where
now the weights are equal but, typically, there are fewer distinct points in the support. Resampling plays
a important role in the SIR filter but we will show that improved approximations are obtained by using
the weighted measure before resampling rather than resampling and then using the unweighted measure.
Intuitively, this is not surprising because we would expecta set of weighted sample points to carry more
information than an equal number of unweighted points.

3.1 The standard SIR algorithm as a random measure

The basic SIR algorithm given by Gordon Salmond and Smith [14] is as follows.

Initialisation Begin by simulating a sample(si1)i=1:::N from p(x1). In other words, start from a ran-
dom measure with equal weight on each of theN sample values.

Preliminaries (step k) Assume that we have an equally weighted random measure(sik�1; N�1)i=1:::N ,
approximatingp(xk�1jDk�1).
Prediction Estimate the densityp(xkjDk), up to a normalising constantK, by the mixturep(xkjDk) = K NXi=1 p(xkjsik�1)p(ykjxk): (5)

Take exactly one sample point from each of theN strata, by generating support points~sik = fk�1(sik�1; wik�1)
from the system model, with importance weightsmik = p(ykj~sik)PNj=1 p(ykj~sjk) ; (6)

Update Resample from the random measure(~sik;mik)i=1:::N to obtain an equally weighted random
measure(sik; N�1)i=1:::N . In other words, sampleN times, independently with replacement, from the
set(~sik)i=1:::N , with probabilities(mik)i=1:::N .

A rapid algorithm for the update step, is given in Subsection4.1.

3.2 Variance reduction at the update stage

The analysis in this section provides the motivation for theimproved filter discussed below. Suppose
that we wish to estimate �k = Z p(xkjDk)g(xk)dxk;
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the mean value of some functiong of the state of the system at timek. Using the resampled values from
the SIR filter, this can be estimated by�̂k = N�1 NXi=1 g(sik):
However, an unnecessary element of random noise is introduced by this approach. Suppose(~sik) is a
sample fromp(xkjDk�1) then the quantity�k can be estimated more precisely by~�k = NXi=1 mikg(~sik); (7)

wheremik is given in (6). To see this, we note that�̂k can be written as�̂k = N�1 NXi=1 Zig(~sik)
where(Z1; : : : ; ZN ) is a multinomial distributed vector with probabilities(mik). The quantity~�k is
therefore the expected value of�̂k.

Calculating variances we find that, forN large,

Var �̂k � Var ~�k + 1N Varg(xk), (8)

where the last term is the variance that~�k would have if(sik)i=1:::N was a simple random sample of sizeN from p(xkjDk). Details of the derivation are omitted for brevity. It follows that the variance of~�k is
always smaller than that of̂�k. In fact when the observationyk is not informative, i.e.mik = N�1 then
the variance of̂�k is effectively double that of~�k.

4 Efficient Particle Filters

As a refinement of the SIR filter it has been suggested [20] thata larger number of values, say 10,
should be sampled from each stratum. At the resampling stage, a sample of sizeN is then selected
from the10 � N predicted values, in order to restore the size of the supportset toN . It has also been
suggested [22] that a simple random sample should be drawn from the mixture distribution (5). However
sampling theory indicates that greater accuracy can be achieved by stratified sampling.

We can writep(xkjDk) from (5) in the formp(xk) = NXi=1 �ipi(xk)
where �i = R p(xkjsik�1)p(ykjxk) dxkPNi=1 R p(xkjsik�1)p(ykjxk) dxk
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and pi(xk) = p(xkjsik�1)p(ykjxk)R p(xkjsik�1)p(ykjxk) dxk :
In this paper we will only consider stratification by the proportional allocation. Ideally we should takeMi = N�i but in practice these quantities are unlikely to be exact integers. We can however arrange thatMi are integer variables with small variances and the correct expected value. Our Algorithm 2 in Section
4.1 achieves this while ensuring thatjMi �N�ij is always less than 1. Another simple suggestion [27]
is to takeMi to be the integer part ofN�i, and then to add1 randomly with probability equal to the
fractional part ofN�i. A disadvantage of this method is that the population of particles will fluctuate in
size (although it will never die out completely).

In practice, the quantities�i andpi(xk) may be difficult to deal with and importance sampling is neces-
sary. Combining the preceding steps the proposed particle filter is as follows:

Initialisation Start from a random measure withN support points, possibly obtained by stratified
sampling, which approximates the PDFp(x1).
Preliminaries (step k) Assume that we have a random measure(sik�1;mik�1)i=1:::N , approximatingp(xk�1jDk�1).
Prediction Estimate the densityp(xkjDk), up to a normalising constantK, byp(xkjDk) = K NXi=1 mik�1p(xkjsik�1)p(ykjxk): (9)

Construct an importance PDF p̂(xk) = NXi=1 �̂ip̂i(xk)
Take a stratified sample from this density using Algorithm 2,with Mi sample points in theith category,
whereMi has expected valueN�̂i.
Update For eachi, sampleMi support points(sjk) from pi(xk), with importance weights given bymjk / mik�1p(sjkjsik�1)p(ykjsjk)�̂ip̂i(sjk) for

i�1X̀=1M` < j � iX̀=1 M`:
The updated random measure is then given by(sjk;mjk)j=1:::N , where the weights are scaled to sum to
1.

Properties of the updated state distribution can be estimated using the random measure as in (7). If
an approximate sample from the state distribution is required it can be obtained by simple random
sampling from the random measure as described in Section 3. Note that once the stratification numbers
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have been calculated, there is only one sampling operation at each update. Carrying forward the weights(mk�1) at the update step, eliminates the resampling phase of the standard SIR filter. Construction of
the importance PDF is necessarily problem specific. We work through an example in Section 6.

4.1 Reducing the computational complexity of particle filters

Sampling ofN values from a discrete distribution(si;mi)i=1:::N , can be carried out by simulating
standard uniform variables(ui)i=1:::N and then using binary search to find the valuej, and hencexj ,
corresponding to Qj�1 < ui � Qj;
whereQj =Pj̀=0m` andQ0 = 0.

Binary search is commonly used to implement the updating stage of the SIR algorithm. However it is not
efficient. To obtain a sample of sizeN , by this means, takesO(N logN) calculations; thelog(N) term
arises from the binary search. A more efficient method is to simulateN + 1 exponentially distributed
variablest0; : : : ;tN , usingti = � log(ui), calculate the running totalsTj = Pj̀=0 t`, and then merge(Tj) and(Qj). The algorithm is based on the well known method of simulating order statistics [28].

Algorithm 1 O(N) algorithm for the SIR filteri = 0; j = 1
do whilei < N

if QjTN > Ti theni = i+ 1; outputsj
elsej = j + 1
end if

end do

For precise proportional stratification, the objective is to ensure that the number of points in theith
category is as close as possible toN�i. Label the categoriessi = i. The output will consist ofN
category labels, with the property that the expected numberof labels of categoryi will be equal toN�i
and the actual number will differ from the expected number byno more than 1.

Algorithm 2 O(N) algorithm for stratificationT = unif(0; 1)=N ; j = 1;Q = 0; i = 0
do whileT < 1

if Q > T thenT = T + 1=N ; outputsi
else

pick k in fj; : : : ; Ngi = skQ = Q+ �i
switch(sk; �k) with (sj; �j)j = j + 1
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end if
end do

5 A diagnostic for sample impoverishment

All the particle filters we compare in Section 6 are capable ofapproximating the posterior distributions
of the state variables in a statistical sense. They differ interms of the accuracy with which properties of
the state distribution can be estimated. For the purposes ofcomparison, the effective sample size is an
obvious quantity to compute. This is the sample size that would be required for a simple random sample
from the target PDF to achieve the same estimating precisionas the particle filter. Since some properties
of the state distribution may be estimated well, and some poorly, the effective sample size will depend
on what is being estimated.

Suppose that the property to be estimated is�k = Z g(xk)p(xkjDk)dxk;
and let zk = NXi=1 mikg(~sik), vk = NXi=1 mikg2(~sik)� z2k
be the filter estimates of� and�2, the variance ofg(xk) givenDk as in Equation (8). Note that, if� is
estimated by using the average value ofg(xk) in a simple random sample of sizeN� from p(xkjDk),
the estimate will have a variance of�2=N�.
To evaluate the effective sample size, we use a technique borrowed from classical ‘analysis of variance’
in statistics.

1. Run the filter independentlyM times, obtainingM independent replicates, each based onN
particles.

2. For each replicate, at stepk, calculatezjk andvjk; j = 1; : : : ;M .

3. Calculate�zk and�vk, the average values over theM replicates.

4. Theeffective sample sizeis thenM�vk=PMj=1(zjk � �zk)2.
To see this, we equate two estimates of the variance ofzk: one based on the variance between replicates
and the other based on the notional variance that an estimatewould have if it was a sample average of a
simple random sample of sizeN�, i.e.M�1 MXj=1(zjk � �zk)2 = �2N� � �vkN� :
The effective sample size is then obtained by solving forN�.
We advocate the use of this diagnostic generally, in assessing the performance of Monte Carlo filters.
The smaller the effective sample size is, the less reliable the filter is. In principle, a Bayesian filter
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should be assessed by looking at its performance averaged over the population of trajectories generated
by the system model. However, for non-linear problems it mayhappen that most of the trajectories are
simple to filter and only a few are ‘difficult cases’. It is therefore helpful to see how the filter performs
for typical examples of these difficult cases. An example of such a problem is given in Section 6.

The integrated correlation time in Markov chain Monte Carlo(MCMC) calculations in non-dynamic
problems [29] and the effective sample size play similar roles. Neither of these diagnostics checks to see
whether there is convergence to the right distribution. A noisy biased filter may have a large effective
sample size but the sample will not have come from the correctdistribution. To check for bias, the
proposed particle filter will need to be compared with filterswhich are known to perform correctly.

6 Bearings-only tracking

In this example an object moves in the(�; �) plane according to a second order modelxk = �xk�1 + �wk, (10)

wherexk = (�; _�; �; _�)Tk ; wk = (w� ; w�)Tk ,� = 0B@ 1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

1CA and � = 0B@ 1 0
1 0
0 1
0 1

1CA : (11)

The system fluctuationswk = (w� ; w�)Tk are independent zero-mean Gaussian white noise. The model
essentially assumes that the velocity evolves like Brownian motion. The ‘leap-frog’ discretisation is
slightly non-standard. The state variables_�k and _�k are the velocities at timek � 1=2. Positions are
updated by using a midpoint approximation to the integratedvelocities. Velocities at stepk would be
approximated by( _�k + _�k+1)=2 and( _�k + _�k+1)=2. There is an equivalent formulation of the leap-frog
algorithm in which( _�k; _�k) are the velocities at timek + 1=2 [22,30]. The matrix� is then modified in
the obvious way. We will use parameters which are compatiblewith an example considered by Gordon,
Salmond and Smith [14] who use a different integration scheme.

The observations are a sequence of bearings:yk = tan�1(�k=�k) + vk
The initial state of the object isx1 = (�0:05; 0:001; 0:7;�0:055)T . The system noise variablesw� ; w�
have variance�2 = 0:0012 and the observation errorvk has variance�2 = 0:0052. We consider an
observed trajectory which passes close by the observer who is fixed at the origin. See Figure 1. We
adopt the same prior distribution of the starting configuration as Gordon, Salmond and Smith [14].

To construct the importance PDF we consider theith component of (9)Kmik�1p(xjs)p(yjx) (12)

where we have replacedsik�1 by s, yk by y andxk by x for notational convenience. Conditional ons
the density ofx depends only on(�; �). Converting(�; �) and(E(�js);E(�js)) to polar coordinates as
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(r; �) and(�; �), respectively, it follows that (12) is proportional tomik�1re�(r2+�2�2r� cos(���))=(2�2)�(y��)2=(2�2)= mik�1re�(r�� cos(���))2=(2�2)��2 sin2(���)=(2�2)�(y��)2=(2�2):
Our importance PDF is obtained by replacingsin(� � �) by � � �, giving the PDF�̂if(�)f(rj�)
where f(rj�) / re�(r�� cos(���))2=(2�2)
andf(�) is the Gaussian PDF with mean(�2��2 + y�2)=(�2�2 + �2) and variance�2�2=(�2�2 + �2)
and the normalising constants have been absorbed into�̂i with

PNi=1 �̂i = 1. Bothf(�) andf(rj�) can
be sampled directly using standard methods.

All the filters were initialised by taking samples of sizeN = 5000 from p(x2jD2), obtained using the
Metropolis Hastings Algorithm as described in [30]. The distribution of these samples was checked
against a numerical evaluation ofp(x2jD2) and found to agree closely. The samples were also checked
for independence by computing auto-correlations during the Metropolis Hastings simulations. The ef-
fective sample sizes were calculated usingM = 1000 replicates. Each of the different filtering methods
were successively initialised from each of theM starting configurations

The results, for various methods, are presented in Table 1. We calculate effective sample sizes for the
filter estimates of the mean range and the mean bearing at eachstep. In all cases, there is greater sample
impoverishment for the range calculations than for the bearings. The ‘Improved Reweighted’ filter is
an implementation of the particle filter described in the paper, with precisely stratified sampling as in
Algorithm 2. The ‘Multinomial Reweighted’ filter carries weights forward as in the improved filter, but
samples the strata multinomially using Algorithm 1 (withmi = �i). The ‘Two Stage’ algorithm [22]
samples strata multinomially, but resamples after each step, to obtain equally weighted particles. The
‘Standard SIR’ [14] is included for comparison.

Note that our implementation of the basic SIR algorithm (Subsection 3.1 ) does not incorporate thead
hocmodifications of added jitter and prior editing suggested byGordon, Salmond and Smith [14].

7 Conclusions

We have shown how to reduce the computational cost of implementing particle filters. We have proposed
an improved particle filter and demonstrated its superior performance. While the filter is more compli-
cated to implement and, unlike the standard SIR filter, needsto be tailored to the problem in hand, the
computational gains are substantial. Further, we have introduced a diagnostic for sampling inefficiency
which allows us to compare the performance of various Monte Carlo filters. We advocate the use of this
diagnostic as a general tool in the analysis of sequential Monte Carlo algorithms.

All of the filters we have discussed suffer from substantial sample impoverishment. In principle this
could be monitored using our diagnostic and compensated fordynamically, by adjusting the number of
particles at critical stages. We believe that there is scopefor even greater variance reduction by the use
of more efficient Monte Carlo integration techniques.
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FIGURE 1

Caption for Figure 1:

Trajectory used to compare particle filters in the Section 6.The object passes from left to right. There
are 24 time steps. It is when it passes close to the origin, at step 10, that the problem is most non-linear
and the particle filters start to degenerate.
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Step Improved Reweighted Multinomial Reweighted Two-stage sampling Standard SIR
Radius Angle Radius Angle Radius Angle Radius Angle

2 4545 4869 4545 4869 4545 4869 4545 4869
4 1190 2614 794 1648 588 1317 714 1192
6 236 866 147 602 90 348 132 355
8 106 815 85 563 48 339 47 263

10 81 521 62 399 31 212 31 179
12 25 684 20 538 11 249 9 162
14 14 2757 11 2387 6 1540 5 479
16 18 1377 14 1051 7 668 5 267
18 17 4538 14 3701 7 2871 5 1803
20 17 775 14 640 7 350 5 243
22 19 436 15 360 7 204 4 109
24 19 2394 15 1560 7 967 5 621

TABLE 1

Caption for Table 1

Effective sample sizes (rounded to the nearest integer) obtained using various particle filters (see text).
The mean angle or bearing is well estimated but in all cases there is severe loss of information about the
range from step 10 onwards.
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