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Abstract

The impact of parameterisation on the simulation efficiency of Bayesian Markov
chain Monte Carlo (MCMC) algorithms for two non-Gaussian state space models
is examined. Specifically, focus is given to particular forms of the stochastic con-
ditional duration (SCD) model and the stochastic volatility (SV) model, with four
alternative parameterisations of each model considered. A controlled experiment
using simulated data reveals that relationships exist between the simulation effi-
ciency of the MCMC sampler, the magnitudes of the population parameters and
the particular parameterisation of the state space model. Results of an empirical
analysis of two separate transaction data sets for the SCD model, as well as equity
and exchange rate data sets for the SV model, are also reported. Both the sim-
ulation and empirical results reveal that substantial gains in simulation efficiency
can be obtained from simple reparameterisations of both types of non-Gaussian
state space models.
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1 Introduction

The state space form provides a convenient framework for building time series models

for observed phenomena, whereby relatively simple model components are combined to

explain potentially complex dependencies in observed data. Linear Gaussian state space

models, in particular, have had a long history in both estimation and forecasting ap-

plications, with many traditional time series models, such as autoregressive integrated

moving average (ARIMA) models, having a linear Gaussian state space representation.

This representation is often exploited in computing algorithms, both Bayesian and clas-

sical, designed to infer parameter values and produce forecasts.

More recently, non-Gaussian state space models have enjoyed increasing popularity,

partly due to developments in inferential simulation techniques. In particular, non-

Gaussian state space models have been used to characterise the dynamic features of

various financial time series, such as the time between transactions or the volatility of

asset returns, with a range of Markov chain Monte Carlo (MCMC) methods having

been employed to implement Bayesian analyses of such models. Concurrent with the

increased application of MCMC sampling schemes to non-Gaussian state space models,

has been the revelation that substantial improvements in the simulation efficiency of

MCMC schemes, in a variety of contexts, can sometimes be obtained though simple

model reparameterisation. Relevant work includes Gelfand, Sahu and Carlin (1995),

Roberts and Sahu (1997), Pitt and Shephard (1999), Robert and Mengersen (1999),

Früwirth-Schnatter and Sögner (2003), Papaspiliopoulos, Roberts and Sköld (2003),

Früwirth-Schnatter (2004), Roberts, Papaspiliopoulos and Dellaportas (2004) and Bos

and Shephard (2006).

This paper contributes to the literature by examining the effect of particular types

of reparameterisation in two specific non-Gaussian state space models. Firstly, a form

of the stochastic conditional duration (SCD) model of Bauwens and Veredas (2004),

based on the assumption of conditionally exponential data, is considered. Variants of

such a model, under alternative distributional assumptions, have recently been applied

to financial trade durations in Strickland, Forbes and Martin (SFM hereafter) (2006),

with an MCMC algorithm developed for one particular parameterisation. In the present

paper, in which the focus is on documenting computational performance under a range

of scenarios, the use of the exponential distribution serves to minimise the number of

parameters involved in the reparameterisations, such that the number of results to be
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produced and summarised is manageable. The second model considered is the stochastic

volatility (SV) model for financial returns, based on conditional normality; see for ex-

ample Jacquier, Polson and Rossi (1994), Shephard and Pitt (1997), and Kim, Shephard

and Chib (1998), amongst many others. Again, the assumption of conditional normality

is chosen for expositional convenience.

Comparisons are first conducted using artificially simulated data, based on multi-

ple parameter settings, with the efficiency of the algorithms measured via inefficiency

factors. The parameter settings are chosen to ensure that the simulated data resemble

typical trade durations and financial returns data. Empirical evaluation of the alterna-

tive parameterisations of the SCD model is then conducted using trade durations data

for two Australian listed companies: Broken Hill Proprietary Limited (BHP) and News

Corporation (NCP), for the month of August 2001. These two data sets were analysed

in SFM, using one particular parameterisation of an SCD model. The SV model is esti-

mated using daily returns on the Morgan Stanley Capital Index (MSCI) between 1989

and 2002, and the pound/dollar daily exchange rate returns between 1981 and 1985.

This exchange rate data was previously analysed in Harvey, Ruiz and Shephard (1994),

Kim, Shephard and Chib (1998) and Durbin and Koopman (2001), using specific pa-

rameterisations and various numerical algorithms that are alternatives to those used in

this paper.

Four alternative parameterisations of both non-Gaussian state space models are con-

sidered. Using the nomenclature in the literature, the parameterisations are referred to

as: ‘centred’, ‘non-centred in location’, ‘non-centred in scale’ and ‘non-centred in both

location and scale’, with all parameterisations augmented to incorporate regressors in the

state equation. In the centred parameterisation all of the parameters (persistence, scale

and location) appear in the state equation, while the non-centred parameterisations are

based on either the location or scale parameter, or both, appearing in the measurement

equation. The simulation results reveal clear relationships between the simulation effi-

ciency of the MCMC sampler, the chosen parameterisation and the magnitudes of the

population parameters. Overall, both the experimental and empirical results indicate

that parameterisations that place parameters in the measurement equation, as opposed

to the state equation, tend to perform better. Specifically, substantial improvements in

efficiency are associated with relocation of the scale parameter, either on its own, or in

conjunction with the location parameter.

An outline of the paper is as follows. Section 2 defines the two non-Gaussian state
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space models that are considered, including the four alternative parameterisations of

each model. Section 3 provides details of the algorithms used to estimate the different

parameterisations. All algorithms are modifications of the hybrid Gibbs/Metropolis-

Hastings (MH)MCMC sampling scheme proposed in SFM. Section 4 presents the criteria

used to compare the performance of the algorithms and summarises the results of the

simulation experiment. Section 5 details the four empirical applications, two using the

SCD model and two using the SV model. Section 6 concludes.

2 A Non-Gaussian State Space Framework

2.1 The Centred Parameterisation

Defining y = (y1, y2, . . . , yT )0 as the (T ×1) observation vector and assuming conditional
independence, the measurement equation of a non-Gaussian state space model may be

represented by the following probability relation

p(y|α) =
TY
t=1

p(yt|αt), t = 1, 2, ..., T, (1)

where p(yt|αt) denotes the probability density function (pdf) for yt, conditional on αt.

The (t+ 1)th element of the (T × 1) state vector α = (α1, α2, . . . , αT )
0 is assumed to be

generated by the following state equation,

αt+1 = δ1 +W
0
tδ2 + φαt + σηηt, t = 1, 2, ..., T − 1, (2)

where δ1 is a constant, δ2 = (δ2, δ3, . . . , δk)
0 is a ((k − 1)× 1) vector of coefficients and

W0
t is the t

th row of the (T × (k − 1)) matrix of regressors, W. It is further assumed

that ηt ∼ N (0, 1) is independent of yt|αt and that |φ| < 1 and σ2η > 0. Defining the

parameter µ implicitly via δ1 = µ (1− φ), with µ ∈ R, the full vector of unknown
parameters is denoted by θ = (µ, δ02, φ, ση)

0. The assumed pdf for the initial state is

given by

p (α1|W0,θ) ∼ N

µ
µ+

W0
0δ2

1− φ
,

σ2η

1− φ2

¶
. (3)

The specification of the state space model in (1), (2) and (3) is referred to here as

the ‘centred parameterisation’. Adopting the assumption of a conditional exponential

distribution in the case of the SCD model, it follows that

p(yt|αt) = exp(−αt) exp {−yt exp (−αt)} , (4)
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for all t = 1, 2, ..., T, with conditional mean E [yt|αt] = exp (αt) . The SV model assumes

that the (potentially demeaned) yt, conditional on αt, has a normal distribution, with

p(yt|αt) = (2π exp (αt))
−1/2 exp

µ
− 1

2 exp (αt)
y2t

¶
, (5)

for all t = 1, 2, ..., T, with conditional variance V ar (yt|αt) = exp (αt). Note that in

this so-called ‘centred’ parameterisation none of the elements of θ explicitly enter the

measurement equation. This is in contrast to the reparameterisations presented in the

following section.

2.2 Reparameterising the Non-Gaussian State Space Model

The centred parameterisation is the most commonly used parameterisation of the non-

Gaussian state space model, at least within the SCD and SV literature. See, for ex-

ample, Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998), Bauwens

and Veredas (2004) and SFM. However, it is equally valid to modify the model specifi-

cation by moving one or both of µ and ση into the measurement equation. Although,

conditional on θ, the probability distribution of the data remains unchanged, reparame-

terisation may impact upon the simulation efficiency of the MCMC algorithms used to

infer such model parameters from the observed data.

2.2.1 Non-centred in location

The first alternative parameterisation of the non-Gaussian state space model considered

is based upon a location shift for the state variable. Define eαt = αt − µ and transform

the model accordingly. The implied measurement equation is

p(y|α, µ) =
TY
t=1

p(yt|eαt, µ), t = 1, 2, ..., T, (6)

with state equation given by

eαt+1 =W
0
tδ2 + φeαt + σηηt, t = 1, 2, ..., T − 1. (7)

From (3), the implied pdf of the initial state for the model that is non-centred in location

is

p (eα1|W0, φ, ση) ∼ N

µ
W0

0δ2
1− φ

,
σ2η

1− φ2

¶
. (8)
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Under the assumption of a conditional exponential distribution for the SCD model, each

component in (6) is given by

p(yt|eαt, µ) = exp(− (eαt + µ)) exp {−yt exp (− (eαt + µ))} , (9)

with the conditional mean now specified as E [yt|eαt, µ] = exp (µ+ eαt) . For the SV model

it follows that

p(yt|eαt, µ) =

µ
(2π exp (eαt + µ))−1/2 exp

µ
− 1

2 exp (eαt + µ)
y2t

¶¶
, (10)

where the conditional variance is now given as V ar (yt|eαt, µ) = exp (µ+ eαt). Adopting

the terminology of Gelfand, Sahu and Carlin (1995), applied in the context of a random

effects model, the model in (6) to (9) is referred to here as ‘non-centred in location’.

In the case where δ2 = 0, this terminology is used to refer to the fact that the state

variable, eαt+1, no longer has the unconditional expectation µ, but rather has a zero

unconditional mean. From (9) and (10) it is clear that the location parameter, µ, now

appears explicitly in the measurement equation.

2.2.2 Non-centred in scale

Next, a scale adjustment to the state variable from the centred parameterisation is

considered. Defining the new state variable as α∗t =
αt
ση
produces a parameterisation that

is referred to as ‘non-centred in scale’. In this case the measurement equation is

p(y|α, ση) =
TY
t=1

p(yt|α∗t , ση), t = 1, 2, ..., T, (11)

and the state equation,

α∗t+1 = δ∗1 +W
0
tδ
∗
2 + φα∗t + ηt, t = 1, 2, ..., T − 1, (12)

where δ∗1 =
µ(1−φ)
ση

and δ∗2 =
δ2
ση
. The implied pdf of the initial state is

p (α∗1|W0, φ) ∼ N

µ
δ∗1 +W

0
0δ
∗
2

(1− φ)
,

1

1− φ2

¶
. (13)

Under the assumption of a conditional exponential distribution for the SCD model, each

component in (11) is given by

p(yt|α∗t , ση) = exp(− (σηα∗t )) exp {−yt exp (− (σηα∗t ))} , (14)
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with the conditional mean now given by E [yt|α∗t , ση] = exp (σηα∗t ) . For the SV model it
follows that

p(yt|α∗t , ση) =
µ
(2π exp (σηα

∗
t ))

−1/2 exp

µ
− 1

2 exp (σηα∗t )
y2t

¶¶
, (15)

where the conditional variance is now V ar (yt|α∗t , ση) = exp (σηα∗t ) . Under this parame-
terisation the scale parameter, ση, appears explicitly in the measurement equation only.

It enters the state equation indirectly, via δ∗1 and δ∗2.

2.2.3 Non-centred in both location and scale

By defining α∗∗t =
αt−µ
ση

, both scale and location adjustments are made to the original cen-

tred parameterisation state variable. This parameterisation, referred to as ‘non-centred

in both location and scale’, has measurement equation given by

p(y|α, µ, ση) =
TY
t=1

p(yt|α∗∗t , µ, ση), t = 1, 2, ..., T, (16)

and state equation given by

α∗∗t+1 =W
0
tδ
∗
2+φα

∗∗
t + ηt, t = 1, 2, ..., T − 1, (17)

where δ∗2 is as defined earlier. The implied pdf of the initial state is

p (α∗∗1 |W0, φ) ∼
µ
W0

0δ
∗
2

(1− φ)
,

1

1− φ2

¶
. (18)

Under the assumption of a conditional exponential distribution for the SCD model, each

component in (16) is given by

p(yt|α∗∗t , µ, ση) = exp(− (σηα∗∗t + µ)) exp {−yt exp (− (σηα∗∗t + µ))} , (19)

with the conditional mean specified as E [yt|α∗∗t , µ, ση] = exp (µ+ σηα
∗∗
t ). For the SV

model each component in (16) is given by

p(yt|α∗∗t , µ, ση) =
µ
(2π exp (σηα

∗∗
t + µ))−1/2 exp

µ
− 1

2 exp (σηα∗∗t + µ)
y2t

¶¶
, (20)

with conditional variance, V ar (yt|α∗∗t , µ, ση) = exp (µ+ σηα
∗∗
t ) . Note that both the

location and scale parameters enter the measurement equation, and neither explicitly

enters the state equation.
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3 Bayesian Estimation

The MCMC sampling scheme of SFM is used as the algorithm for the centred para-

meterisation, and is then modified to cater for the non-centred parameterisations. As

highlighted in SFM, the algorithm is very flexible, being readily applicable beyond both

the specific model specifications examined in that paper and the specifications examined

in the current paper. In particular, it is more general than the distribution-specific al-

gorithm outlined by Shephard (1994) and Carter and Kohn (1994), and implemented by

Kim, Shephard and Chib (1998) for the SV model, whereby the non-Gaussian density in

the (linearised) measurement equation is approximated by a mixture of normal densities.

Shephard and Pitt (1997) provide a similar algorithm to SFM for non-Gaussian state

space models, with focus given to the SV model. In SFM the focus is given to the SCD

model using three alternative distributional assumptions, as well as being augmented

for regressors in the state equation. The latter authors use the approach of Durbin

and Koopman (2000, 2001) to produce a linear Gaussian approximation to the measure-

ment equation, such that alterations to the algorithm required to accommodate different

distributional assumptions (and, hence, data types) are relatively straightforward and

transparent. In contrast to Durbin and Koopman, who use the approximation as a part

of an importance sampling scheme, SFM use the approximating model to construct a

candidate distribution in an MH step imbedded in an outer Gibbs chain. SFM argue

that the MCMC approach is potentially more efficient than the importance sampling

methodology, as the Gibbs sampler allows the high-dimensional latent vector to be bro-

ken down into blocks of lower dimension. This has particular relevance to non-Gaussian

financial data sets (such as durations and returns) that typically contain a large number

of observations. Pitt (2000) also makes note of this drawback of the Durbin and Koop-

man approach. An alternative MCMC sampler for non-Gaussian state space models is

implemented in Jung, Kukuk and Liesenfeld (2006) in a count data context.

3.1 The Joint Posterior

The joint posterior for the full set of unknowns in the non-Gaussian state space model

is given by

p(α,θ|y,W) ∝ p(y|α,θ)× p(α|W,θ)× p(θ), (21)

where p(α|W,θ) denotes the joint pdf of α conditional on θ and the observedW, and

p(θ) is the prior pdf for θ. The joint pdf p(y|α,θ) is as defined in (1), (6), (11) or (16),
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depending on the chosen parameterisation. The joint density for the state vector is

p(α|W,θ) =

(
T−1Y
t=1

p(αt+1|Wt, αt,θ)

)
× p(α1|W0,θ), (22)

where p(αt+1|Wt, αt,θ) is given by (2), (7), (12) or (17) and p(α1|W0,θ) is given by

(3), (8), (13) or (18), once again according to the specified parameterisation.

The following subsections summarise the algorithm used for each of the parameter-

isations. To simulate values of the parameters in the measurement equation, for all

three non-centred parameterisations, the MCMC algorithms use an MH algorithm with

a normally distributed candidate. The mean and variance of the candidate distribution

are obtained through numerical maximisation of the conditional log likelihood function

implied by the relevant measurement equation. Each of the algorithms outlined below

requires only minor modifications to cater for different distributional assumptions in the

measurement equation. As such, the ease with which the practitioner can modify the

associated code, given alternative distributional assumptions, is maintained from SFM.

3.2 The Centred Parameterisation

Estimation of the model in Section 2.1 is essentially described in SFM (Section 3).

Note that the modifications required for estimation of the SV model are not explicitly

described in SFM. However the necessary modifications can be readily deduced from

details provided in SFM and Durbin and Koopman (2001, Chp. 11). The steps of the

Gibbs-based sampler are briefly summarised as follows:

1. Initialise α and θ. Note that θ needs to be initialised for the MH algorithm used

in Step 2.

2. Sample θ|y,W,α.

3. Sample α|y,W,θ, where α is broken up into blocks of size greater than or equal

to one, along the lines of SFM.

4. Repeat steps 2-3 until convergence has been achieved.

Depending on the form of p(θ), there may be no closed-form representation for

p (θ|y,W,α). However, standard Bayesian linear regression theory provides a good

candidate through which draws from p (θ|y,W,α) can be obtained indirectly using an
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MH algorithm. Sampling from p (α|y,W,θ) is also accomplished indirectly, as the non-

Gaussian measurement equation implies that there is no closed form solution for the

conditional posterior for α. This is the most complex component of the algorithm, with

full details provided in SFM (Section 3.2.3). Crucially, this component of the algorithm

is common to all four parameterisations considered in the current paper.

3.3 Non-Centred in Location

The steps required to implement the Gibbs-based sampler for the model in Section 2.2.1

can be summarised as follows:

1. Initialise eα = (eα1, eα2, . . . , eαT )
0 and θ. Note that δ2, φ, ση and µ need to be

initialised, in addition to eα, for the MH algorithm used in step 2. The initialised

value of µ is used both in step 2 and in the MH algorithm in step 3.

2. Sample δ2, φ, ση|y,W, eα, µ.
3. Sample µ|y,W, eα, δ2, φ, ση.
4. Sample eα|y,W, θ, where eα is broken up into blocks of size greater than or equal

to one. (Sample along the lines of SFM, Section 3.2.3)

5. Repeat steps 2-4 until convergence has been achieved.

The linear Gaussian nature of the state equation once again implies that when sam-

pling from p (δ2, φ, ση|y,W, eα, µ) a good candidate can be obtained using standard
Bayesian linear regression theory, with draws from p (δ2, φ, ση|y,W, eα, µ) then obtained
indirectly using an MH algorithm. Sampling from p (µ|y,W, eα, δ2, φ, ση) is conducted
using anMH algorithm, based on a normal candidate distribution with mean, µ, obtained

via numerical optimisation of the conditional log likelihood given by the measurement

equation in (6). The variance of the candidate distribution is the usual estimator of the

asymptotic variance of the conditional maximum likelihood estimator (MLE), that is,

the inverse of the second derivative of the negative conditional log likelihood function,

evaluated at µ.

3.4 Non-Centred in Scale

Estimation of the non-Gaussian state space model for the non-centred in scale parame-

terisation, defined in (11), (12) and (13), is summarised by the following steps:
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1. Initialise α∗ = (α∗1, α
∗
2, . . . , α

∗
T )
0 and θ. Note that µ, δ2 and φ need to be initialised,

in addition to α∗ and ση, for the MH algorithm used in step 2. The initialised

value of ση is used both in step 2 and in the MH algorithm in step 3.

2. Sample µ, δ2, φ|y,W,α∗, ση.

3. Sample ση|y,W,α∗, µ, δ2, φ.

4. Sample α∗|y,W,θ, where α∗ is broken up into blocks of size greater than or equal

to one. (Sample along the lines of SFM, Section 3.2.3)

5. Repeat steps 2-4 until convergence has been achieved.

As equation (12) remains linear and Gaussian under this reparameterisation, stan-

dard Bayesian linear regression theory again provides an appropriate candidate for sam-

pling from p (µ, δ2, φ|y,W,α∗, ση) using an MH algorithm. For this parameterisation,

sampling from the full conditional distribution p (ση|y,W,α∗, µ, δ2, φ) is conducted us-

ing an MH algorithm, with the candidate distribution specified comparably to that for

µ in Section 3.3. That is, the normal candidate distribution for ση is centred around

ση, the conditional MLE for ση obtained via numerical optimisation of the conditional

log likelihood given by the measurement equation in (11). The variance of the candi-

date distribution is the inverse of the second derivative of the negative conditional log

likelihood function, evaluated at the conditional MLE.

3.5 Non-Centred in Both Location and Scale

Estimation of the non-Gaussian state space model for the non-centred in location and

scale parameterisation, defined in (16), (17) and (18) is summarised by the following

steps:

1. Initialise α∗∗ = (α∗∗1 , α
∗∗
2 , . . . , α

∗∗
T )

0 and θ. Note that δ2 and φ need to be initialised,

in addition to α∗∗, µ and ση, for the MH algorithm used in step 2. The initialised

values of µ and ση are used both in step 2 and in the MH algorithms in steps 3

and 4.

2. Sample δ2, φ|y,W,α∗∗, µ, ση.

3. Sample µ, ση|y,W,α∗∗, φ, δ2.
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4. Sample α∗∗|y,W,θ, where α∗∗ is broken up into blocks of size greater than or

equal to one. (Sample along the lines of SFM, Section 3.2.3)

5. Repeat steps 2-4 until convergence has been achieved.

As equation (17) is still linear and Gaussian, a candidate for p(δ2, φ|y,α∗∗, µ, ση)
can be obtained using Bayesian linear regression theory, and a standard MH algorithm

applied. The parameters µ and ση are jointly sampled using an MH algorithm, with

a bivariate normal candidate distribution. The candidate distribution is centred at

the conditional MLE based on the measurement equation in (16), and the variance-

covariance matrix is given by the inverse of the negative Hessian matrix, evaluated at

the conditional MLE.

4 Simulation Experiment

A simulation experiment is used to explore the efficiency of the MCMC algorithms

under the four different parameterisations of each of the SCD and SV non-Gaussian

state space models. To simplify the experiment, δ2 is set equal to a vector of zeros.

The parameters φ and ση are assigned a range of empirically plausible values for each of

the specified models, which leads to a total of 18 simulated data sets, each of which has

T = 5000 observations. The values of φ that are considered for both the SCD and SV

models are {0.8, 0.9, 0.95} . The values of ση under consideration are {0.1, 0.2, 0.3} and
{0.2, 0.3, 0.4} for the SCD and the SV model, respectively. Specific references for the

range of parameter values considered for the SCDmodel are Bauwens and Veredas (2004)

and SFM, and for the SV model, Jacquier, Polson and Rossi (1994), Kim, Shephard and

Chib (1998), Liesenfeld and Richard (2003) and Bos and Shephard (2006). The values

also accord with certain of the empirical estimates produced in Section 5.

For the SCD model, the value of δ1 is specified as

δ1 = −
σ2η(1− φ)

2(1− φ2)
, (23)

for given values of φ and ση. Defining δ1 in this way ensures that the unconditional

mean of the durations is always equal to 1. This assumption is consistent with empirical

applications of the SCDmodel, as it is typically applied to a transaction data set that has

been de-seasonalised assuming a multiplicative intraday pattern (producing observations

that average to about 1); see, for example, Bauwens and Veredas (2004) and SFM. The

expression in (23) implies a range of values for µ between -0.14 and -1.53.

12



For the SV model, δ1 is also set conditionally on the specified values for ση and φ,

with

δ1 = (1− φ)

∙
ln (0.4)−

σ2η

2(1− φ2)

¸
. (24)

Equation (24) implies an unconditional variance in the SV model of 0.4, a value com-

parable to that implied by typical empirical estimates of the SV parameters for daily

exchange rate returns data and some stock index returns data, including the two data

sets analysed in Section 5.2. Specifically, it corresponds to an expected annualised

volatility of approximately 10% for continuously compounded returns.

Given the nature of the experiments it is natural to assume diffuse priors. Specifically,

for δ1 we assume a uniform prior over R and for φ we assume a uniform distribution

over the (−1, 1) interval. An inverted-gamma distribution is assumed for ση, such that
p (ση) ∼ IG

¡
σr
2
, Sσ
2

¢
(see Zellner, 1996), with the hyper-parameters σr and Sσ set to

1.0001 and 0.01 respectively, implying very diffuse prior information on ση. As noted

in the algorithmic details outlined above, the state vector for each parameterisation

is sampled in blocks of size greater than or equal to one. For each iteration of the

algorithm, the strictly positive random block size with expected length 36 is generated

using one plus a Poisson variate with a mean of 35.

4.1 Simulation Efficiency Comparison

Under each parameterisation the so called inefficiency factor (IF) is used to benchmark

simulation efficiency. The IF features prominently in the literature as a measure for

comparing the performance of various alternative algorithms; see for example Chib and

Greenberg (1996), Shephard and Pitt (1997) and Kim, Shephard and Chib (1998). The

IF is calculated using the following formula

IF = 1 + 2
B

B − 1

BX
i=1

KQS

µ
i

B

¶bρi, (25)

where bρi is the estimate of the correlation at lag i of the MCMC iterates, KQS is the

Quadratic Spectral (QS) kernel and B is the bandwidth. The QS kernel is defined as

KQS(x) =
25

12π2x2

µ
sin(6πx/5)

6πx/5
− cos(6πx/5)

¶
. (26)

The bandwidth B is selected automatically following Andrews (1991). Implementation

of this procedure is summarised in SFM (Appendix B).
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Further understanding of the IF comes through its relationship with the (estimated)

Monte Carlo standard error (MCSE) for the posterior mean of any given parameter.

That is,

MCSE2 =
σ2MCMC

M
IF, (27)

where σ2MCMC is the sample variance of the MCMC iterates andM denotes the number

of iterations. From (27) it is apparent that the IF represents the ratio of the simulation

variance (square of the estimated MCSE) to the variance that would arise from a hy-

pothetical sample of M independent draws. For example, a value of 100 for IF implies

that, for a given number of iterationsM , correlation in the MCMC iterates produces an

estimated MCSE for the posterior mean that is ten times greater than that which would

be associated with an independent sample. The aim of reparameterisation is to reduce

the dependence in the MCMC draws and, hence, the IF, to the greatest extent possible.

In the simulation experiment, the MCMC sampler is run for 25000 iterations with a

burn-in period of 10000 iterations. The length of the burn-in period is assessed using the

diagnostic of Raftery and Lewis (1992) and is concluded as being acceptable in all cases.

IFs are calculated for each sequence of simulated draws of φ, ση, and δ1, for each of the

four parameterisations and for data simulated under each of the nine different parameter

settings (for the SCD and SV models respectively). We say that parameterisation A is

preferred to parameterisation B, for a particular parameter set θ = (φ, ση, δ1) , if the

largest IF for the elements of θ under parameterisation A is less than the largest IF for

the elements of θ under parameterisation B. The rational in only comparing the largest

IF for each relevant parameter setting is that the largest IF measures the minimum

level of accuracy across the parameter set. Parameterisation A is then deemed to be

superior to parameterisation B across all parameter settings if A is preferred to B in

the majority of parameter settings considered for the model. Further, parameterisations

will be ranked from 1 to 4, corresponding to most efficient to least efficient, if there is a

clear ordering of pairwise comparisons between the four parameterisations.

4.1.1 The centred parameterisation

Table 1 reports the IFs for the MCMC sampler for the centred (C) parameterisation

of both the SCD and SV models. It is apparent that there are large differences in the

magnitude of the IFs for different parameter settings. Further, there are systematic

patterns in the IFs that are dependent upon the magnitudes of the parameters ση and

φ. For both models, as the true value of ση increases there is a corresponding increase
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Inefficiency Factors (IF) for the Centred (C) Parameterisation

Panel A : SCD Model Panel B: SV Model

True ση : 0.1 0.2 0.3 True ση : 0.2 0.3 0.4

True φ IF True φ IF

0.95 φ 33 11 6 0.95 φ 23 12 8
ση 249 77 49 ση 167 93 73
δ1 6 3 3 δ1 19 10 7

0.9 φ 85 26 14 0.9 φ 77 34 21
ση 474 138 71 ση 445 160 109
δ1 12 6 4 δ1 71 29 17

0.8 φ 292 79 40 0.8 φ 562 106 50
ση 895 281 120 ση 937 306 146
δ1 40 14 10 δ1 547 99 46

Time 7 Time 8
(seconds) (seconds)

Table 1: C parameterisation simulation results for the SCD model (Panel A) and the
SV model (Panel B). The top row of each panel contains the true values (in italics) of
the scale parameter, while the first column contains the true values (in italics) of the
persistence parameter. The second column in each panel contains the parameters to
which IFs (reported in the subsequent columns) refer, with the maximum IF for each
parameter setting indicated in bold. The average time (across parameter settings) to
obtain 1000 iterations is reported in the bottom row of each panel.

in the simulation efficiency (i.e. a reduction in the IFs) of the marginal posterior mean

estimates of all three parameters, φ, ση and δ1, irrespective of the true value of φ. An

increase in efficiency associated with all parameters is also apparent as the degree of

persistence in the state variable, measured by φ, increases, for any given true value of

ση. For all nine parameter settings, for both models, the maximum IF is associated with

the parameter ση, indicating that dependence in the MCMC draws is the most marked

for this particular parameter; see also Kim, Shephard and Chib (1998).
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4.1.2 Non-centred in location

Table 2 reports the IFs for the MCMC sampler for the non-centred in location (NCL)

parameterisation for both the SCD and SVmodels. Based on the benchmarking criterion

defined in Section 4.1, the NCL parameterisation is not superior to the C parameter-

isation for either the SCD or SV models. Improvements in efficiency are seen in only

four of the nine parameter sets considered for both models. Moreover, when reductions

in the IFs do occur (as reported in Table 2 corresponding to the symbol ∆%) they are

often fairly small.

As is the case with the C parameterisation, the simulation efficiency of the estimates

of both φ and ση increases as the true values of φ and ση increase. Interestingly, however,

the positive relationship between the efficiency of the estimates of δ1 and the true values

of φ and ση is no longer uniform for the SCD model. Also in common with the C

parameterisation, the highest IF values for the NCL parameterisation are associated

with ση.

4.1.3 Non-centred in scale

Table 3 reports the IFs for the MCMC sampler for the non-centred in scale (NCS) para-

meterisation of the SCD and SV models. In all nine cases for the SCD model, the NCS

parameterisation is superior to both the C and NCL parameterisations. Furthermore,

in many cases, the gains in efficiency are substantial, with the maximum IF being up

to 88% lower than the corresponding figure for the C parameterisation, and 90% lower

than the corresponding figure for the NCL parameterisation. Thus, for the SCD model,

there is a clear ranking of the three alternative parameterisations: 1) NCS; 2) C; 3) NCL,

but with the substantial efficiency gains corresponding to the move from NCL (or C) to

NCS.

For the SV model the results are qualitatively similar, in that the NCS parameteri-

sation is preferred to both the C and NCL parameterisations, according to the bench-

marking criterion being applied. From the results reported in Tables 2 and 3 the IFs for

the NCS parameterisation are seen to be smaller than those for the C parameterisation

in seven of the nine SV settings, and smaller than the IFs for the NCL parameterisation

in five cases. Hence, the NCS parameterisation clearly outranks the other two. It is

evident, however, that the gains in efficiency associated with the NCS parameterisation

for the SV model are substantially less than for the SCD model, with the largest per-

centage improvement over the C parameterisation (∆% in Table 3) being only 45%, and
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the corresponding improvement over the NCL parameterisation, 51%.

As with the C parameterisation, for both models there remains a positive relationship

between the simulation efficiency of the estimates of φ and δ1 and the magnitudes of the

true values of φ and ση. For the relocated scale parameter ση, however, this relationship

no longer holds uniformly. Also in contrast with both the C and NCL parameterisations,

the IF values for ση are not uniformly the largest for all parameter settings. For the SCD

model in particular, the IFs for ση are markedly reduced as a result of the relocation of

the scale parameter to the measurement equation.

4.1.4 Non-centred in both location and scale

Table 4 records the IFs of the MCMC sampler for both the SCD and SV models, for

the parameterisation that is non-centred in both location and scale (NCLS). For the

SCD model the NCLS parameterisation outperforms the NCS parameterisation in six

of the nine parameter settings and outperforms the NCL and C parameterisations in all

nine parameter settings. In summary then, for the SCD model, the ranking of the four

alternative parameterisations is: 1) NCSL; 2) NCS; 3) C; 4) NCL.

For the SV model the NCLS parameterisation produces substantial gains in all of the

nine cases over all three other parameterisations. For example, the percentage reductions

in IFs produced by the NCLS parametersation, relative to the C parameterisation (∆%

in Table 4) range from 55% to 89%. Overall then, the appropriate ranking for the SV

model is: 1) NCSL; 2) NCS; 3) C; 4) NCL; the same ranking as for the SCD model, but

with much more substantial gains being produced in the SV case by the dual relocation

of the location and scale parameters.

For both models, only the positive relationship between the simulation efficiency of

the estimator of φ and the magnitude of the true values of φ and ση remains. In the case

of the parameters δ1 and ση, the positive relationship between simulation efficiency and

the true values of φ and ση no longer holds uniformly. Interestingly, the IFs for ση are,

in general, much more in line with those of the other two parameters, for both models.

4.1.5 Summary of simulation efficiency results

The experiments clearly illustrate that substantial gains in simulation efficiency can be

achieved through simple reparameterisation of the state space models. For the empiri-

cally important regions of the parameter space for the SCD model the main efficiency

gains are to be had by re-locating the scale parameter from the state equation into
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the measurement equation, with there being substantial reductions in the IF values in

virtually all cases. For this model further gains can be obtained by also relocating the

location parameter, although the magnitude of the gain overall is not as great as that

yielded by the relocation of the scale.

For the SV model there is a clear advantage in relocating both the location and scale

parameters. Large gains in simulation efficiency, relative to all other parameterisations,

are produced via dual relocation for this model. Finally, relocation of either the loca-

tion or scale parameters or both into the measurement equation tends to diminish (or

eliminate) the systematic relationships that hold between the IFs and the magnitudes

of the population parameters in the centred formulation.

Importantly, for both models and for all parameterisations, the acceptance rates for

the MH algorithms for the state parameters (whether re-located or not) are similar and

consistently high, typically above 95%. That is, the efficiency differences documented

above can be attributed to the re-parameterisations themselves and not to differential

acceptance rates for the MH algorithms used under the various parameterisations.

An interesting feature of the results for both models is the overall tendency of the IFs

to decrease, for fixed signal noise σ2η, as the true underlying value of φ increases. This re-

sult hold uniformly for the draws of all three parameters in the centred parameterisation,

and for the draws of φ across all parameterisations. This result may seem somewhat

surprising, as it contrasts with the theoretical findings of Pitt and Shephard (1999) and

with the simulation-based findings of Frühwirth-Schnatter (2004), both of these studies

finding the opposite result in the linear Gaussian state space context. Pitt and Shephard

(1999) show theoretically that the speed of convergence of a Gibbs sampling algorithm

for the state in the centred parameterisation is a function of the level of persistence in

the state, φ, and the signal to noise ratio only, with the speed of convergence being lower

the higher the true value of |φ| , for a fixed signal to noise ratio. It is not transparent,
however, how these results carry over to the non-Gaussian state space model. Not only

is it not clear that the same formulae would apply, but even if they did, in this context

it is evident that the variation in the measurement equation (used to define the signal

to noise ratio) is itself a non-linear function of both φ and ση. That is, the role played

by φ in the non-Gaussian case is different from the role played in the Gaussian case and,

hence, the relationship between efficiency and φ is not expected to be the same in the

two cases. Further investigation of this type of issue is left for future research.
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5 Empirical Evaluation

In this section four empirical data sets are examined, with a view to ascertaining the

extent to which the results in the previous section hold when the data are not artificially

generated. Regressors are also reintroduced into the analysis in the case of the SCD

model.

For the empirical analysis, priors reflecting those used in the literature are specified.

Uniform priors over R and Rk are assumed for δ1 and δ2, respectively. However, in

contrast to the uniform prior specified for φ in the simulation exercise, the prior for φ is

now derived from a beta distribution that has been stretched over the (−1, 1) interval,
with density,

p (φ) ∝
½
1 + φ

2

¾(φ1−1)½1− φ

2

¾(φ2−1)
,

and with hyper-parameters φ1, φ2 > 0.5. The hyperparameters φ1 and φ2 are set to

15 and 1.5, respectively, implying a prior mean of 0.82 and variance of 0.02 for φ. As

before, an a priori inverted-gamma distribution is assumed for ση, such that p (ση) ∼
IG
¡
σr
2
, Sσ
2

¢
, but here with σr = 3 and Sσ = 0.03, implying a prior mean of 0.14 and

prior variance of 0.01 for ση. The overall prior specification is similar to that used in

several papers in the high frequency financial data literature, including Kim, Shephard

and Chib (1998) and SFM.

For the initial set of empirical results for the SCD and SV models, reported in Section

5.1 and 5.2 respectively, the average block size for the state vector is 36. Results reported

in Section 5.3 show that the empirical results are reasonably robust to changes in this

value.

5.1 SCD Model

5.1.1 Data

The alternative parameterisations of the SCD model are estimated using trade durations

data for two Australian listed companies: Broken Hill Proprietary Limited (BHP) and

News Corporation (NCP), for the month of August 2001. Following Engle and Russell

(1998) and SFM, only distinct trades between 10:20 a.m. and 4:00 p.m. are used, leaving

T = 27746 observations for BHP and T = 13832 observations for NCP. The intraday

pattern is modelled using a cubic smoothing spline, g (yt), estimated using the ‘fields’
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package in ‘R’. The adjusted durations are calculated as

byt = yt
g (yt)

. (28)

Following SFM, trading volume is included as a regressor, with coefficient denoted

by δ2, included in the state equation. In addition, and similar to Zhang, Russell and

Tsay (2001), an additional regressor is defined, with coefficient denoted by δ3, and value

equal to the number of distinct trades occurring simultaneously. For both regressors, the

intraday pattern is removed assuming the same type of relationship as used to adjust

the duration series in (28).

5.1.2 Empirical results

Table 5 reports estimates of the marginal posterior mean of each parameter of the SCD

model, and associated IF, for each data set: BHP (Panel A) and NCP (Panel B). The

algorithm for each parameterisation of the SCD model is run for 100000 iterations with

a burn-in period of 20000 iterations. The (average) time taken (in seconds) for 1000

iterations is reported at the bottom of each panel. For each data set, IFs are reported

for the C, NCL, NCS and NCLS parameterisations.

For both data sets, the algorithms for the NCS and NCLS parameterisations perform

substantially better than the C and NCL parameterisations. For the NCP data set

relocation of the scale parameter produces maximum IFs (across parameters) that are

approximately half the size of those associated with the alternative parameterisations

in which the scale parameter remains in the state equation. For the BHP data set the

maximum IFs are approximately one fifth the size of those that prevail for the C/NCL

parameterisations. The superior performance of the NCS/NCLS parameterisations, as

well as their overall similarity one to the other, mimics the simulation results. This is

despite the fact that the empirical results are based on an SCD model with regressors

in the state equation, as well as being based on much larger sample sizes.

Figure 1 contains plots of the autocorrelation function (ACF) associated with the

MCMC iterates of ση, for both the BHP and NCP data sets. The ACFs are calculated

from the MCMC output for ση and visually confirm the results captured by the IFs.
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This figure contains plots of the autocorrelation function (ACF) for the BHP (left) and NCP (right)

data sets. The ACF estimates are calculated using the MCMC output for the scale parameter in both

cases.
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5.2 SV model

5.2.1 Data

Estimation of the SV model is illustrated using two sets of returns data. The first data

set comprises observations on the pound/dollar daily exchange rates from 1 October

1981 to 28 June 1985. This data has been used by Harvey, Ruiz and Shephard (1994),

Kim, Shephard and Chib (1998) and Durbin and Koopman (2001) to illustrate their

alternative estimation methodologies for the SV model. The second data set comprises

observations on the Morgan Stanley Capital Index (MSCI) from 29 December 1989 to

31 May 2002. For the exchange rate series T = 945, while T = 3240 for the MSCI series.

5.2.2 Empirical results

Table 6 reports estimates of the marginal posterior mean of each parameter of the SV

model, and associated IF, for each set of data. Panel A refers to the pound/dollar

exchange rate data whilst Panel B contains the output for the MSCI data set. As with

the SCD model, the algorithm for each parameterisation of the SV model is run for

100000 iterations with a burn-in period of 20000 iterations. The (average) time taken

(in seconds) for 1000 iterations is reported at the bottom of each panel. Results are

reported for all four parameterisations for each data set.

As in the simulation study, the NCLS parameterisation clearly produces the most

efficient algorithms for estimating the SV model, in both empirical settings. Also consis-

tent with the simulation results, the NCS parameterisation outperforms both the NCL

and C parameterisations, whilst the latter produce rather similar results.

Figure 2 contains plots of the ACF for both the Pound and NCP data sets. The

ACFs are calculated from the MCMC output for ση and, as with the corresponding

graphs for the durations data, visually confirm the results captured by the IFs.

An interesting comparison is with the results of Kim, Shephard and Chib (1998),

where the latter authors use a model-specific algorithm to estimate the SV model, using

the same Pound/Dollar data set as used here. Given the flexible nature of our algorithm,

it being deliberately designed to cater for the general state space form specified in (1)

to (3), we would anticipate a reduction in simulation efficiency, relative to an algorithm

custom-made for a particular model. Comparing our results with the IFs from Table

7 in Kim, Shephard and Chib, it can be seen that the algorithm used in the latter

paper is less than four times more efficient than our NCLS parameterisation, compared

with being about 16 times more efficient than the C parameterisation. This is a very
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This figure contains plots of the sample autocorrelation function (ACF) associated with the MCMC

iterates of ση, for the SCD model estimated with the Pound\Dollar (left) and MSCI (right) data sets.
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promising result as the cost, in terms of simulation efficiency, of using a general algorithm

in preference to a model specific algorithm, through simple reparameterisation, has been

substantially reduced.

5.3 Robustness to Block Size

Table 7 reports summary statistics related to IFs for the SCD model, estimated using

the BHP data set. The SCDmodel is estimated with nine different values assigned to the

average block size of the state vector, namely: 26, 36, . . . 96, 106. The summary statistics

reported are, the minimum, mean, maximum and coefficient of variation (CV) of the IFs,

calculated from the simulation output based on all nine (average) block sizes. The NCS

and NCLS results, for all parameters, are very robust to the choice of block size, with

little deviation between the highest and lowest values, and CV values that range from

only 0.03 to 0.05. This is in contrast with the C and NCL parameterisations, for which

both the range and CV values are often larger, most notably for the scale parameter

ση. This is an important result, as it is indicates that little effort need be made by

the practitioner when setting the average block size (the only tuning parameter in the

algorithm) as long as the scale parameter is relocated to the measurement equation prior

to implementation of the algorithm. Comparable results for the SV estimates, based on

the Pound/Dollar data set, are reported in Table 8. As is consistent with both the

simulation results and the empirical results reported earlier, the NCLS parameterisation

outperforms the others, in terms of robustness of the largest IFs (associated with ση) to

the block size.

Importantly, for both models and all four data sets, the basic ranking of the para-

meterisations appears to be invariant to the block size. For the SCD model the IFs for

the NCS and NCLS parameterisations are always substantially lower than those for the

C and NCL parameterisations; whilst for the SV model it is the NCLS parameterisation

that dominates. It is worth remembering, when using the range of IF values reported

in Tables 7 and 8 to rank the parameterisations, that it is only the largest IF for any

parameterisation that is relevant. For example, for the C and NCL results in Table 7, it

is only the range of IFs for ση that are relevant, whilst for the NCS and NCSL results

in that table, the range of IF’s for both φ and ση could produce the largest value and

need to be considered when establishing the ranking.
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6 Conclusion

Previous studies have documented the fact that substantial gains in the simulation ef-

ficiency of MCMC algorithms may be obtained through the use of simple reparameter-

isations. This paper has contributed to this literature by focussing on the impact of

reparameterisation in the context of two non-Gaussian state space models that feature

in empirical finance, namely the SCD and SV models. A further contribution of the

paper is the presentation of the modifications to the general algorithm of SFM required

to accommodate the alternative parameterisations of the non-Gaussian state space spec-

ification.

Simulated and empirical data are used to explore the impact of parameterisation on

simulation efficiency. The parameter settings used in the simulation experiment are rep-

resentative of parameter estimates appearing in both the existing empirical literature

and in the empirical analysis conducted herein. Four different parameterisations are

examined in relation to each of the SCD and SV models, with the impact of reparame-

terisation measured using inefficiency factors.

For all parameterisations, the simulation results indicate that systematic patterns

exist between the efficiency of simulation estimators and the true value of certain of the

parameters, with these patterns being most marked for the centred parameterisation.

Most importantly, the experimental results reveal that for the two models considered,

and for the empirically relevant parameter ranges explored, the most substantial gains

in simulation efficiency are produced by moving either the scale parameter or both the

location and scale parameters from the state equation to the measurement equation.

For the SCD model in particular, relocation of the scale parameter produces a marked

increase in efficiency, with small extra gains being produced, in several cases, by the

additional relocation of the location parameter. For the SV model, dual relocation of

the location and scale parameters produces substantial gains for all parameter settings.

The empirical results mimic the simulation results, with the ranking of the parameter-

isations for the empirical data being robust to the average block size used to draw the

state values. Certainly, the main conclusion to be drawn from both the simulation and

empirical results is that the dual relocation parameterisation (NCLS) is the safest choice

for practitioners applying these particular non-Gaussian models to typical data sets.

25



Acknowledgements

This research has been supported by Australian Research Council Discovery Grant

No. DP0664121. The authors would like to thank a co-editor and two referees for

very constructive comments on an earlier draft of the paper. Note that most of the

numerical results in the paper are produced using C++ run on a Pentium core 2 duo,

2.4GHz computer. The C++ code also makes use of the Template Numerical Toolkit

which can be found at http://math.nist.gov/tnt/index.html. Software for the random

number generator used can be found at http://www.agner.org /random/randomc.htm.

The ACF plots and the Raftery and Lewis (1992) diagnostic test were computed using

the ‘R’ software package.

References

[1] Andrews, D. (1991), “Heteroscedasticity and Autocorrelation Consistent Covariance

Matrix Estimation,” Econometrica, 59, 817-858.

[2] Bauwens, L. and Veredas, D. (2004), “The Stochastic Conditional Duration Model:

A Latent Variable Model for the Analysis of Financial Durations,” Journal of

Econometrics, 199, 381-412.

[3] Bos, C. and Shephard, N. (2006), “Inference for Adaptive Time Series Models:

Stochastic Volatility and Conditionally Gaussian State Space Form,” Econometric

Reviews, 25, 279-244.

[4] Carter, C. and Kohn, R. (1994), “On Gibbs Sampling for State Space Models,”

Biometrika, 81, 541-553.

[5] Chib, S. and Greenberg, E. (1996), “Markov Chain Monte Carlo Simulation Meth-

ods in Econometrics,” Econometric Theory, 12, 407-431.

[6] Durbin, J. and Koopman, S. (2000), “Time Series Analysis of Non-Gaussian Ob-

servations Based on State Space Models from both Classical and Bayesian Perspec-

tives,” Journal of the Royal Statistical Society Ser. B, 62, 3-56.

[7] Durbin, J. and Koopman, S. (2001), Time Series Analysis by State Space Methods,

Oxford University Press.

26



[8] Engle, R. and Russell, J. (1998), “Autoregressive Conditional Duration: A New

Approach for Irregularly Spaced Transaction Data,” Econometrica, 66, 987-1007.

[9] Frühwirth-Schnatter, S. (2004), “Efficient Bayesian Parameter Estimation for State

Space Models Based on Reparameterisations,” State Space and Unobserved Com-

ponent Models: Theory and Applications, Cambridge University Press.

[10] Frühwirth-Schnatter, S. and Sögner, L. (2003), “Bayesian Estimation of the Heston

Stochastic Volatility Model,” Working paper, Johannes Kepler University Linz.

[11] Gelfland, A., Sahu, S. and Carlin, B. (1995), “Efficient Parameterisations for Normal

Linear Mixed Models,” Biometrika, 479-488.

[12] Harvey, A., Ruiz, E. and Shephard, N. (1994), “Multivariate Stochastic Variance

Models,” Review of Economic Studies, 61, 247-264.

[13] Jacquier, E., Polson, N. and Rossi, P. (1994), “Bayesian Analysis of Stochastic

Volatility Models,” Journal of Business and Economic Statistics, 12, 69-87.

[14] Jung, R., Kukuk, M. and Liesenfeld, R. (2006), “Time Series of Count Data: Mod-

eling, Estimation and Diagnostics,” Computational Statistics and Data Analysis,

51, 2350-2364.

[15] Kim, S., Shephard, N. and Chib, S. (1998), “Stochastic Volatility: Likelihood In-

ference and Comparison with ARCH Models,” Review of Economic Studies, 65,

361-393.

[16] Liesenfeld, R. and Richard, J-F. (2003), “Univariate and Multivariate Stochastic

Volatility Models: Estimation and Diagnostics,” Journal of Empirical Finance, 10,

505-531.

[17] Papaspiliopoulos, O., Roberts, G. and Sköld, M. (2003), “Non-centred Parameter-

isations for Hierarchical Models and Data Augmentation,” Bayesian Statistics, 7,

307-326. Oxford University Press.

[18] Pitt, M. (2000), “Discussion of Durbin and Koopman (2000),” Journal of the Royal

Statistical Society Ser. B, 62, 30-32.

27



[19] Pitt, M. and Shephard, N. (1999), “Analytic Convergence Rates and Parameterisa-

tion Issues for the Gibbs Sampler Applied to State Space Models,” Journal of Time

Series Analysis, 20, 63-85.

[20] Raftery, A., L. and Lewis, S. (1992), “How Many Iterations in the Gibbs Sampler?”

In Bayesian Statistics 4, (ed. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A.

F. M. Smith), Oxford University Press, Oxford.

[21] Robert, C. and Mengersen, K. (1999), “Reparameterisation Issues in Mixture Mod-

elling and Their Bearing on MCMC Algorithms,” Computational Statistics and

Data Analysis, 29, 325-343.

[22] Roberts, G., Papaspiliopoulos, O. and Dellaportas, P. (2004), “Bayesian Inference

for Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Processes,” Journal of

the Royal Statistical Society Ser. B, 66, 369-393.

[23] Roberts, G. and Sahu, S. (1997), “Updating Schemes, Correlation Structure, Block-

ing and Parameterisation for the Gibbs Sampler,” Journal of the Royal Statistical

Society Ser. B, 59, 291-317.

[24] Shephard, N. (1994), “Partial Non-Gaussian State Space,” Biometrika, 81, 115-131.

[25] Shephard, N. and Pitt, M. (1997), “Likelihood Analysis of Non-Gaussian Measure-

ment Time Series,” Biometrika, 84, 653-667.

[26] Strickland, C., Forbes, C. and Martin, G. (2006), “Bayesian Analysis of the Sto-

chastic Conditional Duration Model,” Computational Statistics and Data Analysis,

Special Issue on Statistical Signal Extraction and Filtering, 50, 2247-2267.

[27] Zellner, A. (1996), “An Introduction to Bayesian Inference in Econometrics,” John

Wiley and Sons Inc., New York.

[28] Zhang, M., Russell, J. and Tsay, R. (2001), “A Nonlinear Autoregressive Condi-

tional Duration Model with Applications to Financial Transaction Data,” Journal

of Econometrics, 104, 179-207.

28



Inefficiency Factors (IF) for the Non-Centred in Location (NCL) Parameterisation

Panel A: SCD Model Panel B: SV Model

True ση : 0.1 0.2 0.3 True ση : 0.2 0.3 0.4

True φ IF True φ IF

0.95 φ 39 13 7 0.95 φ 27 15 9
ση 273 76 47 ση 175 93 60
δ1 25 31 29 δ1 29 19 16

(∆%)(a) 10 -1 -4 (∆%) 5 0 -18

0.9 φ 104 30 16 0.9 φ 107 36 21
ση 572 120 65 ση 502 152 89
δ1 19 23 29 δ1 105 37 25

(∆%) 21 -13 -8 (∆%) 13 -5 -18

0.8 φ 467 86 45 0.8 φ 407 129 60
ση 893 321 127 ση 583 390 183
δ1 21 20 25 δ1 330 120 59

(∆%) 0 14 6 (∆%) -38 27 25

Time 8 Time 9
(seconds) (seconds)

(a) ∆% denotes the percentage change in the maximum IF for a particular parameter setting in the

NCL parameterisation, relative to the C parameterisation.

Table 2: NCL parameterisation simulation results for the SCD model (Panel A) and the
SV model (Panel B). The top row of each panel contains the true values (in italics) of
the scale parameter, while the first column contains the true values (in italics) of the
persistence parameter. The second column in each panel contains the parameters to
which IFs (reported in the subsequent columns) refer, with the maximum IF for each
parameter setting indicated in bold. In addition, the percentage change in maximum IF
for each parameter setting, relative to the C parameterisation, is given (in italics) in the
row immediately below. The average time (across parameter settings) to obtain 1000
iterations is reported in the bottom row of each panel.
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Inefficiency Factors (IF) for the Non-Centred in Scale (NCS) Parameterisation

Panel A: SCD Model Panel B: SV Model

True ση : 0.1 0.2 0.3 True ση : 0.2 0.3 0.4

True φ IF True φ IF

0.95 φ 30 14 8 0.95 φ 27 15 10
ση 37 37 45 ση 129 97 116
δ1 7 4 3 δ1 22 11 8

(∆%)(a) -85 -52 -8 (∆%) -23 4 58

0.9 φ 59 26 17 0.9 φ 90 36 23
ση 50 34 32 ση 245 112 96
δ1 14 7 5 δ1 78 29 18

(∆%) -88 -75 -55 (∆%) -45 -30 -12

0.8 φ 368 57 35 0.8 φ 633 131 59
ση 96 50 36 ση 600 230 119
δ1 55 17 11 δ1 511 111 49

(∆%) -59 -80 -70 (∆%) -32 -25 -18

Time 8 Time 9
(seconds) (seconds)

(a) ∆% denotes the percentage change in the maximum IF for a particular parameter setting in the

NCS parameterisation, relative to the C parameterisation.

Table 3: NCS parameterisation simulation results for the SCD model (Panel A) and the
SV model (Panel B). The top row of each panel contains the true values (in italics) of
the scale parameter, while the first column contains the true values (in italics) of the
persistence parameter. The second column in each panel contains the parameters to
which IFs (reported in the subsequent columns) refer, with the maximum IF for each
parameter setting indicated in bold. In addition, the percentage change in maximum IF
for each parameter setting, relative to the C parameterisation, is given (in italics) in the
row immediately below. The average time (across parameter settings) to obtain 1000
iterations is reported in the bottom row of each panel.
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Inefficiency Factors (IF) of the Non-Centred in Both Location and Scale (NCLS)
Parameterisation

Panel A: SCD Model Panel B: SV Model

True ση : 0.1 0.2 0.3 True ση : 0.2 0.3 0.4

True φ IF True φ IF

0.95 φ 56 12 8 0.95 φ 19 12 8
ση 31 28 35 ση 29 31 33
δ1 18 27 26 δ1 19 15 13

(∆%)(a) -78 -64 -29 (∆%) -83 -67 -55

0.9 φ 62 23 15 0.9 φ 48 26 18
ση 48 29 28 ση 40 32 30
δ1 17 18 24 δ1 47 26 19

(∆%) -87 -79 -61 (∆%) -89 -80 -72

0.8 φ 213 59 32 0.8 φ 249 69 37
ση 86 47 33 ση 54 39 31
δ1 18 19 19 δ1 247 65 35

(∆%) -76 -79 -73 (∆%) -73 -77 -75

Time 8 Time 9
(seconds) (seconds)

(a) ∆% denotes the percentage change in the maximum IF for a particular parameter setting in the

NCLS parameterisation, relative to the C parameterisation.

Table 4: NCLS parameterisation simulation results for the SCD model (Panel A) and
the SV model (Panel B). The top row of each panel contains the true values (in italics)
of the scale parameter, while the first column contains the true values (in italics) of the
persistence parameter. The second column in each panel contains the parameters to
which IFs (reported in the subsequent columns) refer, with the maximum IF for each
parameter setting indicated in bold. In addition, the percentage change in maximum IF
for each parameter setting, relative to the C parameterisation, is given (in italics) in the
row immediately below. The average time (across parameter settings) to obtain 1000
iterations is reported in the bottom row of each panel.
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Empirical Application of the SCD Model

Panel A: BHP

IF
Parameter Mean C NCL NCS NCLS

φ 0.88 105 104 48 74
ση 0.18 375 321 52 72
δ1 0.02 11 26 10 19
δ2 0.00 26 25 26 27
δ3 -0.03 69 67 27 30

Time (secs) 42 46 45 45

Panel B: NCP

IF
Parameter Mean C NCL NCS NCLS

φ 0.66 88 84 72 70
ση 0.57 157 150 70 65
δ1 -0.05 19 63 18 59
δ2 -0.01 11 18 11 18
δ3 -0.04 13 18 13 17

Time (secs) 21 24 24 24

Table 5: Panel A contains the SCD results for BHP, whilst Panel B contains the results
for NCP. For each panel, column 1 reports the relevant parameters, column 2 reports
estimated marginal posterior means, and columns 3 - 6 report IFs for the four alternative
parameterisations. The maximum IF under each parameterisation is indicated in bold.
The average time to obtain 1000 iterations, for each parameterisation, is reported in the
bottom row of each panel.
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Empirical Application of the SV Model

Panel A: Pound/Dollar

IF
Parameter Mean C NCL NCS NCLS

φ 0.98 31 33 27 28
ση 0.16 223 216 114 55
δ1 -0.02 23 45 20 36

Time 1.5 1.5 1.5 1.5
(seconds)

Panel B: MSCI

IF
Parameter Mean C NCL NCS NCLS

φ 0.97 32 33 28 28
ση 0.21 195 210 101 64
δ1 -0.03 19 40 17 36

Time 5 6 6 6
(seconds)

Table 6: Panel A contains the results for the Pound/Dollar exchange rate data, whilst
Panel B corresponds to the MSCI data. For each panel, column 1 reports the relevant
parameters, column 2 reports estimated marginal posterior means, and columns 3 - 6
report IFs for the four alternative parameterisations. The maximum IF under each pa-
rameterisation is indicated in bold. The average time to obtain 1000 iterations, for each
parameterisation, is reported in the bottom row of each panel. For the Pound/Dollar
data set the result is reported to the nearest half a second rather than to the nearest
second, as it was for all other datasets.
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Robustness Check Based on Average Block Size

SCD: BHP trade duration data set

IF
Parameter C NCL NCS NCLS

Min 81 104 48 63
φ Mean 95 112 50 70

Max 105 123 54 75
CV 0.09 0.05 0.04 0.05

Min 273 293 50 63
ση Mean 332 366 53 70

Max 397 538 58 74
CV 0.13 0.23 0.04 0.05

Min 10 26 10 18
δ1 Mean 11 28 10 19

Max 11 29 11 20
CV 0.05 0.03 0.03 0.04

Min 25 23 24 24
δ2 Mean 27 26 27 27

Max 29 28 29 29
CV 0.05 0.06 0.05 0.05

Min 55 67 27 26
δ3 Mean 65 74 29 28

Max 72 82 30 30
CV 0.09 0.07 0.03 0.05

Table 7: Summary statistics related to IFs for the SCD model estimated using the BHP
data set. The estimation algorithm is repeated under nine different average block size
values (26, 36, 46, 56, 66, 76, 86, 96, 106) for the generated state vector. Reported
statistics are the minimum (Min), mean (Mean), maximum (Max) and coefficient of
variation (CV) of the IFs, calculated from the simulation output based on all nine
(average) block size settings.
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Robustness Check Based on Average Block Size

SV: Pound/dollar exchange rate data set

IF
Parameter C NCL NCS NCLS

Min 29 28 26 27
φ Mean 31 33 28 29

Max 34 37 33 32
CV 0.05 0.09 0.08 0.07

Min 207 176 94 50
ση Mean 228 218 114 54

Max 270 263 140 58
CV 0.09 0.11 0.12 0.04

Min 21 39 19 35
δ Mean 23 44 21 38

Max 26 51 24 42
CV 0.07 0.08 0.08 0.06

Table 8: Summary statistics related to IFs for the SV model estimated using the
Pound/Dollar data set. The estimation algorithm is repeated under nine different aver-
age block size values (26, 36, 46, 56, 66, 76, 86, 96, 106) for the generated state vector.
Reported statistics are the minimum (Min), mean (Mean), maximum (Max) and coef-
ficient of variation (CV) of the IFs, calculated from the simulation output based on all
nine (average) block size settings.
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