Technical Note

Effect of rounded corners on the secondary flow of viscoelastic fluids through non-circular ducts

S.H. Hashemabadi a,1, S.Gh. Etemad b,*

a Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
b Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran

Received 14 March 2005; received in revised form 14 November 2005

Abstract

The Reiner–Rivlin viscoelastic model was used to investigate numerically on the pattern and strength of the secondary flows in rounded corners square ducts. The influence of rheological properties on flow domain was studied. The governing equations for steady state, laminar fully developed flow were solved by finite difference method. It is shown the secondary flow of a Reiner–Rivlin fluid has a negligible effect on the axial flow and $f/Re$. Viscous and elastic behaviors as well as the rounding of the corners have important effects on the secondary flows created by viscoelastic fluid.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Secondary flow; Viscoelastic; Non-circular ducts; Numerical solution; Reiner–Rivlin

1. Introduction

Investigation about the viscoelastic fluid flow becomes increasingly important due to wide range of application of such fluids in many industries such as polymer processing. Viscoelastic fluid flow through noncircular channels under laminar condition causes the presence of secondary flows, which is due to the fact that the stresses acting on orthogonal faces of a fluid element are not equal [1]. The existence of such secondary flows was also obtained by numerical simulation using the Criminale–Ericksen–Fibley (CEF) model [2–5], Reiner–Rivlin model [6] and Phan–Thien–Tanner (PTT) model [7]. Dodsen et al. [8] used CEF fluid model and solved governing equations by perturbation method where the solution expanded in powers of second normal stress coefficient $\psi_2$. Based on their results the effect of the secondary flows on pressure drop is small at low flow rates which increases at higher flow rates. Generally, for different aspect ratios, there are two vortices in each quadrant of the rectangular duct. The vortices are very sensitive to the viscous and elastic effects of viscoelastic fluid.

The effect of rectangular duct aspect ratio on secondary flow of viscoelastic fluid has been reported by several researchers. But the effect of sharp corners of rectangular channel on pattern and strength of secondary flow of viscoelastic fluid has not been reported. The aim of present study is to investigate numerically on the laminar flow of Reiner–Rivlin viscoelastic fluid through square duct with different rounding of corners.

2. Mathematical formulation

Fig. 1 shows a schematic diagram of the system under consideration. Constant property, fully developed and laminar flow of Reiner–Rivlin viscoelastic fluid model are considered. The governing equation can be expressed as follows [9]:

Continuity equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$  (1)
Momentum equations:

\[\rho \left( \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} - \left[ \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{yx}}{\partial x} \right], \tag{2}\]

\[\rho \left( \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} - \left[ \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} \right], \tag{3}\]

\[\rho \left( \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} \right) = -\frac{\partial p}{\partial z} - \left[ \frac{\partial \tau_{xz}}{\partial y} + \frac{\partial \tau_{zx}}{\partial x} \right]. \tag{4}\]

The Eqs. (1)-(4) with no slip boundary condition at walls are solved to predict the secondary flow of Reiner–Rivlin viscoelastic fluid model in the square channel. The Reiner–Rivlin viscoelastic fluid model can be defined as follows [9]:

\[\boldsymbol{\tau} = -\eta \dot{\gamma} - \psi_2 \dot{\gamma} \cdot \dot{\gamma}, \tag{5}\]

where \(\psi_2\) is second normal stress difference coefficient and \(\dot{\gamma}\) is given as

\[\dot{\gamma} = \begin{pmatrix} \frac{2 \partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} \frac{\partial w}{\partial y} + 2 \frac{\partial v}{\partial y} \frac{\partial w}{\partial x} \end{pmatrix}. \tag{6}\]

Substitution of rate of deformation tensor, after performing an order of magnitude analysis on Eq. (5), stress tensor component can be obtained as following equations:

\[\tau_{xx} = -2\eta \left( \frac{\partial u}{\partial x} \right) - \psi_2 \left( \frac{\partial w}{\partial y} \right)^2, \tag{7}\]

\[\tau_{xy} = -\eta \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) - \psi_2 \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}, \tag{8}\]

\[\tau_{yx} = -2\eta \left( \frac{\partial v}{\partial y} \right) - \psi_2 \left( \frac{\partial w}{\partial x} \right)^2, \tag{9}\]

\[\tau_{xz} = -\eta \left( \frac{\partial w}{\partial x} \right) - \psi_2 \left[ \frac{\partial w}{\partial y} \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \right) + 2 \frac{\partial u}{\partial x} \frac{\partial w}{\partial x} \right], \tag{10}\]

\[\tau_{zx} = -\eta \left( \frac{\partial w}{\partial y} \right) - \psi_2 \left[ \frac{\partial w}{\partial x} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) + 2 \frac{\partial v}{\partial y} \frac{\partial w}{\partial y} \right], \tag{11}\]

where \(\eta\) is the apparent viscosity for generalized non-Newtonian model which can be calculated from power law viscosity model

\[\eta = K \dot{\gamma}^{n-1}. \tag{12}\]

The stream function approach is one of the popular methods for solving the 2-D incompressible motion equations. In this approach, the stream function \(\phi\) is defined by the following equations:

\[u = -\frac{\partial \phi}{\partial y}, \quad v = \frac{\partial \phi}{\partial x}. \tag{13}\]
Using the new dependent variable and Eqs. (7)–(9), the two momentum Eqs. (2) and (3) can be combined (thereby eliminating pressure) to give
\[
\frac{\partial^4 \phi^*}{\partial x^4} + \frac{2 \partial^4 \phi^*}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi^*}{\partial y^4} = F1,
\]
where
\[
F1 = \eta^{-1} \left[ \psi_2 F1 + R \psi F1 + F13 \right],
\]
\[
F1 = \frac{\partial w^*}{\partial x^*} - \frac{\partial w^*}{\partial x^* + \partial^2 w^*}{\partial y^2} - \frac{\partial^2 w^*}{\partial x^2 \partial y^2} - \frac{\partial^2 w^*}{\partial x^2 \partial y^2} + \frac{\partial^2 w^*}{\partial x^2 \partial y^2} + \frac{\partial^2 w^*}{\partial x^2 \partial y^2},
\]
\[
F1 = \frac{\partial w^*}{\partial x^*} + \frac{\partial w^*}{\partial x^*} - \frac{\partial w^*}{\partial x^*} + \frac{\partial w^*}{\partial x^*} - \frac{\partial w^*}{\partial x^*},
\]
\[
F1 = \frac{\partial^2 w^*}{\partial x^2 \partial y^2} + \frac{\partial^2 w^*}{\partial x^2 \partial y^2}.
\]

The dimensionless z-momentum equation is
\[
\frac{\partial}{\partial x^*} \left( \eta^* \frac{\partial w^*}{\partial x^*} \right) + \frac{\partial}{\partial y^*} \left( \eta^* \frac{\partial w^*}{\partial y^*} \right) = F2,
\]
where right hand side of Eq. (14) is as follows:
\[
F2 = -2 \psi \psi_2 (F2 - F2),
\]
\[
F2 = \frac{\partial^2 w^*}{\partial x^2 \partial y^2} + \frac{\partial^2 w^*}{\partial x^2 \partial y^2}.
\]

The dimensionless apparent viscosity \( \eta^* \) can be written
\[
\eta^* = \gamma^{* -1},
\]
where dimensionless magnitude of \( \gamma^{*} \) can be calculated as follows:
\[
\gamma^{*} = \frac{1}{2} \sum_{i} \sum_{j} \frac{\gamma^{*}_{ij} \gamma^{*}}{\beta}
\]
Therefore,
\[
\eta^* = \left[ \left( \frac{\partial w^*}{\partial x^*} \right)^2 + \left( \frac{\partial w^*}{\partial y^*} \right)^2 + 4 \left( \frac{\partial^2 \phi^*}{\partial x^2 \partial y^2} \right)^2 + \frac{\partial^2 \phi^*}{\partial x^2 \partial y^2} \frac{\partial^2 \phi^*}{\partial x^2 \partial y^2} + c_0 \right]^{\frac{1}{2}}.
\]

The dimensionless variables are defined as
\[
x^* = \frac{x}{D_h}, \quad y^* = \frac{y}{D_h}, \quad z^* = \frac{z}{D_h}, \quad w^* = \frac{w}{w}, \quad \psi_2^* = \frac{\psi_2}{\eta D_h^{2n}}, \quad \phi^* = \frac{\phi}{\eta D_h^{2n}}, \quad \eta^* = \frac{\eta}{\eta D_h^{2n}}.
\]

The Fanning friction factor and generalized Reynolds number are defined as follows:
\[
f = \frac{\tau_w}{\frac{1}{2} \rho u^2 \sqrt{\tau}},
\]
\[
Re_g = \frac{\rho D_h \tilde{W}^{2n}}{K}.
\]

The dimensionless boundary conditions are
\[
w^*(x^*, 0.5) = w^*(x^*, -0.5) = w^*(0.5, y^*) = w^*(-0.5, y^*) = 0,
\]
\[
\phi^*(x^*, 0.5) = \phi^*(x^*, -0.5) = \phi^*(0.5, y^*) = \phi^*(-0.5, y^*) = 0.
\]

3. Solution and results

Eqs. (14) and (16), with the appropriate boundary conditions (23) and (24), are solved numerically employing the finite difference technique. In this study very fine meshes are used to cover all edges of duct and circular arc in corners. Table 1 illustrates the calculated product of friction factor and Reynolds number \( fRe_g \) error obtained with different meshes for Newtonian fluid by this study and exact solution available in the literature. The exact solution result of \( fRe_g \) for Newtonian fluid flow through square duct is 14.2 [10] and the relative difference of the results of this investigation and exact solution for 200 \( \times \) 200 mesh number is 0.8%. Therefore, the number of meshes based on mesh independency of variables (200 \( \times \) 200) is used for all simulations. Further refining of meshes does not change the value of the results.

The calculated \( fRe_g \) in this work for power law model \( (\psi_2 = 0) \) shows good agreement with other available results in the literature Table 2. Based on the results the influence of the secondary flows on the axial velocity profile \( w^* \) is negligible even in corners that the vortices are expected.

\( \psi_2 \) and power law index \( n \) have considerable effects on the production of friction factor and Reynolds number Fig. 2 but for \( n = 1 \) the effect of \( \psi_2 \) is negligible.

In order of evaluate of secondary flows strength, the mean and maximum transverse velocities, are defined as follows:
\[
S_{\text{mean}} = \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \sqrt{u^2 + v^2} \, dx \, dy,
\]
\[
S_{\text{max}} = \text{Max} \left( \sqrt{u^2 + v^2} \right).
\]
Based on the results for each channel two same size and same strength vortices are appeared at each quadrant. Increasing the roundness of the corners causes the weaker vortices which in limiting case for round tube these vortices are negligible Table 3.

Figs. 3 and 4 show the effects of roundness of corners on secondary flow for $\psi^*_2 = 0.005$ and $\psi^*_2 = 0.01$, respectively.

From the results of these figures a greater second normal stress coefficient has strong effect on dimensionless transverse velocity. The influences of the roundness of corners on transverse velocity vector and stream function contour are demonstrated in Figs. 5 and 6. Based on the results decreasing of roundness enhances the strength of secondary flow in channel, for example for rounded square duct with $r = 0.3$ the maximum of stream function, $\psi^*_2 = 1.388 \times 10^{-4}$, will be about 3.4 times less than that for square duct ($r = 0$), $\psi^*_2 = 4.723 \times 10^{-4}$.

4. Conclusion

The secondary flows of Reiner–Rivlin viscoelastic fluid model in laminar fully developed flow through rounded corners square duct were studied numerically.
Four different roundness (0.1–0.4) were considered with a wide range of second normal stress coefficients. Based on the numerical results the effect of elasticity on axial velocity and production of friction factor and Reynolds number is negligible. The general pattern of secondary flows in the square duct with rounded corners are similar to that of the channel with sharp corners. Rounding corners causes weaker vortices and in the limiting case for circular ducts, it approaches to zero.

References