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Abstract- Estimation of distribution algorithms, especially those 

using Bayesian network as their probabilistic model, have been 

able to solve many challenging optimization problems, including 

the class of hierarchical problems, competently. Since model

building constitute an important part of these algorithms, finding 

ways to improve the quality of the models built during 
optimization is very beneficial. This in turn requires mechanisms 

to evaluate the quality of the models, as each problem has a large 

space of possible models. The efforts in this field are mainly 

concentrated on single-level problems, due to complex structure 
of hierarchical problems which makes them hard to treat. In 

order to extend model analysis to hierarchical problems, a model 

evaluation algorithm is proposed in this paper which can be 

applied to different problems. The results of applying the 
algorithm to two common hierarchical problems are also 

mentioned and described. 
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1. INTRODUCTION 

As a successful Evolutionary algorithm, Genetic algorithms 
with their simple mechanism have been able to solve many 
difficult real world problems. But there are certain types of 
problems that pose great challenge to these algorithms. 
Additively separable problems [7 and 11] are one class of these 
problems that deceive the algorithm to the local optima. In 
order to solve these challenging problems the notion of 
competent genetic algorithms have been proposed [9]. These 
algorithms are designed to solve complicated problems 
quickly, accurately and reliably. 

The building-block hypothesis asserts that for successful 
problem solving, the genetic algorithm should be able to 
identify, preserve and combine the building-blocks of optimum 
solutions effectively. It turns out that as the genetic operators, 
especially recombination, employed in the genetic algorithm do 
not regard the building blocks, they will probably disrupt them. 
In order to overcome this problem and as a solution to design a 
competent genetic algorithm, the dependencies or linkages 
between the problem variables can be identified and be taken 
into consideration when dealing with solution strings. 

Linkage learning, as it is known in the genetic algorithm 
community, is itself a challenging task which several methods 
have been proposed for. Estimation of distribution algorithms 
(also known as probabilistic model-building genetic 
algorithms) as a type of genetic algorithms and a solution to 
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linkage learning, exploit a probabilistic model to capture and 
store the interdependencies between problem variables. In a 
typical estimation of distribution algorithm the recombination 
operator of the traditional genetic algorithm, which is 
responsible for generating new solutions to the problem, is 
replaced by learning a probabilistic model from promising 
solutions of the problem and then sampling this model to 
generate new solutions. 

A. Bayesian Optimization Algorithm 

Since the probabilistic model used in estimation of 
distribution algorithms directly affects the behavior and 
efficiency of these algorithms, the choice of the probabilistic 
model should be taken carefully. Bayesian network with 
capability to represent several multivariate dependencies 
among problem variables is one of the probabilistic models that 
have made several complex problems solvable. Bayesian 
Optimization Algorithm (BOA) [10], Estimation of Bayesian 
Network Algorithm (EBNA) [2] and Learning Factorized 
Distribution Algorithm (LFDA) [6] are examples of the 
algorithms that use Bayesian network as their probabilistic 
model. Since the workings of these algorithms are almost 
similar, in this paper we will only consider BOA. 

Although the use of powerful probabilistic models such as 
Bayesian network has helped estimation of distribution 
algorithms to solve complex problems that were considered 
challenging for traditional genetic algorithms, but the great 
computational complexity of model-building in these 
algorithms has created a further challenge for their scalability. 
Thus in recent years many efforts are made to enhance the 
efficiency of these algorithms. The accuracy of the models 
used for guiding the search in the space of all possible solutions 
to the problem is one of the issues that have attracted many 
attentions. Model accuracy is not only important because a 
good model can help generating better solutions, but also 
because a model with good accuracy can reveal the structure of 
the underlying problem, the point that is very important in 
unknown real world problems. 

B. Previous Works 

Hauschild et al. [3] have analyzed the probabilistic models 
built by BOA for two different types of problems. They tried to 
trace the model-building process over different generations and 
investigate how different dependencies are added to the 
network. For evaluating the accuracy of the models the notion 
of perfect model is introduced. Perfect model is a model 



consisting of all necessary dependencies without having any 
spurious or unne c e ssary dep endenci e s. 

The role of corum on selection and replacem ent strategies 
on the quality of the models and the perform ance of the BO A is 
being analyze d b y  Lim a et al. [5]. They have c onsi der e d 
correct building-block partitions (elsewhere called module [1]) 
and compute d the r ati 0 of the se p arti tions with cone ct and 
inconect linkages. Their analysis show that while tournament 
selection in comb ination with restricted tournament 
replacement can result in b etter performance of the algorithm, 
but when model quality is of more importance one should use 
trunc a tion se1e ction. 

Model structural accuracy (MSA) is used as a measure for 
evaluating model quality in [4]. This metric is the ratio of 
c orre ct linkage s over total link age s enc ode d in the model. The 
authors have used this metric to measure model overfitting in 
BOA. They have investigated how modifying the scoring 
metric used for model-building can help to increase model 
accuracy. 

A1thou@l all of these and other r elated works have given 
valuable knowledge about model-building accuracy in EDAs 
using B aye si an N etwor k, the cl ass of problem s investi gate d are 
restricted to sing).e level decomposable problems. In this paper 
we try to extend the experiments to the class of hierarchical 
problems, where prob lem structure is organized in more than 
one 1 evel. I n order to evaluate model ac curacy for hierar chi c al 
pro bl em s a new evaluation al gorithm is pr op os ed and is te ste d 
on b oth sing). e level and multi 1 eve1 problem s. 

II. PRONS ED IvIETIlOD 

A Template Matrices 

Evaluating model accuracy, especially structural accuracy 
should b e  done with respect to a r eference . Vii'hen we are 
building a pro babili sti c m ode� e. g. B aye si an network , our 

reference to evaluate the network is the population of 
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prOmlSl!lg solutions. If the model-b uilding process of the 
algorithm is accurate enough, then the result will be an ex act 
model according to the population of promising solutions used 
during m ode1-building. H ow ever thi s ex act model may not 
conectly represent the problem structure. Therefore another 
reference achieved from the problem structure should b e  used 
to evaluate the model. Perfect models are such references that 
can b e  used to determine how dose the built model is to the 
n a ture of the problem at hand. 

A typic al perfe ct model for a pr ob1em is r epr es ente d b y  
addressing possible conect dependencies available to b e  added 
to the model, and incorrect dependencies that should be 
avoi de d. But when c onsi dering hi erarchic al model S, thi s way of 
representa tion will not help . I n  a hierarchical problem, 
e sp e ci ally fully hi erar chi c al pr ob l em s, a1m 0 st all problem 
variables can have dependencies with e ach other. Thus the 
num ber of incorrect dependencies cannot b e  used to detect 
model ac curacy. 0 n the other hand, certainly not all models for 
a hi erarchical problem are perfect or even exact. Therefore 
another m etho d for repre senting p erfe ct model s of hier archi c al 
problems should be used. One clue for achieving this model is 
the multi -level structure of hier archical prob lems. In other 
words the dependencies in a hierarchical problem can b e  
clustered in to different groups according to their level of 
occurrence. Hence a perfect model for a hierarchical problem 
should b e  able to distinguish b etween linkages in different 
levels of hierarchy. 

I n the m etho d propo se d in thi s p aper, the dep endenci e s are 
ranked according to their level, and each level's dependencies 
are traversed separately. The reference model used here is 
calle d template matrix since it is use d as a template gui. de for 
the po ssi bl e linkage s that c an be adde d to netw ork in different 
levels. In this matrix forb idden links are shown with zero, level 
one links with 1 ,  level two links wi th 2, etc. Fig. 1 shows 
typi cal tern plate m atri c es for tw 0 hi erarchic al problem s. 

B. Extracted metric:; 

b IDFFwith8le"",l stmctlHe 

Figu 112 1. Typical template mab:i.ces fur two hie=hi.cal plOblem; 
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Given the template matrix for a hierarchical problem, the 
constructed model for this problem can be evaluated. The 
model evaluator algorithm starts from the first level of the 
hierarchy and matches each link in the model with its 
corresponding entry in the template matrix and through a series 
of phases it decides about the link. In order to have a quantity 
about the quality of the model several indicators or metrics are 
computed during model evaluation. The terms used for 
describing these metrics are widely employed in the machine 
learning terminology. False positive rate is the ratio of false 
positive links to total number of links added to model. False 
negative rate is the ratio of false negative links to total number 
of possible links which were not added to the model. The way 
that false positive or false negative links are computed will be 
described in the next sub-section. 

As mentioned earlier in a typical hierarchical problem all 
variables can be connected to each other. As a result false 
positive links can barely be identified. However a good model 
is required to show the actual structure of a problem with as 
less number of links as possible. Thus another metric is used to 
show how perfect a given model is. Excess links rate is the 
ratio of excess links (which is different from spurious links) to 
total number of links added to the model. Actually this metric 
is in direct correspondence with false positive rate metric. False 
positive rate is computed for the links in the first level of the 
hierarchy while excess links rate is computed for the links in 
the higher levels of the hierarchy. 

C. Template based Model Structure Evaluator algorithm 

In order to evaluate a hierarchical model the links in the 
model should be traversed hierarchically. The Template based 
Model Structure Evaluator (TMSE) algorithm proposed in this 
paper, works exactly in this way. Fig. 2 shows the pseudo code 
of this algorithm. 

TMSE Algorithm (Template_Model: tm. Input_Model: im) 
Begin 
F or each combination of variables i and) repeat 

If tm [flU] = 0 

End 

Ifim[iJU] = 0 
Increase number of true negative links 

Else llim[ilU] = 1 
Increase number of false positive links 
Mark f,) as connected 

Else iftm[i]U] > 0 
Ifim[iJU] = 0 

If f,) are already connected in this level 
Increase number oftrue negative links 

Else II t,) are not connected in this level 
Increase number offalse negative links 

Else llim[ilU] = 1 
If i,) are already connected in this level 

Increase number of false positive links 
Or 
Increase number of excess links 

Else II i,) are not connected in this level 
Increase number oftrue positive links 
Mark i,) as connected 

Figure 2. Template based Model Structure Evaluator (TMSE) algorithm 
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The algorithm is divided into two main phases to allow its 
compatibility for model evaluation of single-level problems as 
well as hierarchical problems. In the first phase, lower level 
links are processed, their validity is determined and any 
forbidden link added to the model is regarded as a false 
positive link. A module [1] formation procedure maintains the 
way variables are connected while processing the links. This 
step is especially essential since it will help to have a temporal 
ordering of how different blocks of the problem are constructed 
along the hierarchy. 

In the second phase a similar mechanism is applied to all 
higher level links in a level by level order. If the link between 
two variables is allowed according to the reference template 
matrix, it is checked whether or not they are connected in this 
level. If already connected, this link is marked as an excess link 
otherwise a true positive link. In this way of link processing the 
order in which the links are processed will be important. But 
since we are only interested in the number of excess or false 
positive links and not on their place of occurrence, this order of 
visiting the links will not affect the algorithm. 

This link processing is performed level by level until all 
links added to the model are processed. In addition to different 
metrics computed, the algorithm can depict different modules 
formed in each level of the hierarchy according to the links 
present in the model. 

III. EXPERIMENTS 

In order to examine the capabilities of the algorithm in 
model evaluation, we have used two popular hierarchical 
problems introduced in this field [8 and 11]: RIFF and hTrap. 
HIFF is one of the first hierarchical problems that challenge 
ordinary genetic algorithms by deceiving any attempts that try 
to solve the problem as a single level problem [11]. Claimed to 
be the ultimate challenge by its introducers, hTrap is based on 
the m-k trap functions [8]. 

The BOA used in the experiments is the one equipped with 
diversity preserving mechanism, namely RTR, and decision 
tree representation for the Bayesian network. This combination 
for BOA is also referred to as hierarchical BOA (hBOA) [8]. 
The algorithm is required to find the solution string for the 
problem or reach 200 generations to terminate. For each 
instance of each problem, BOA is run 30 times to determine 
the appropriate population with the bisection algorithm. This 
also permits statistical analysis to be more accurate. 

Fig. 3-a and 5-a show two real models derived by BOA for 
two instances of aforementioned hierarchical problems. The 
TMSE algorithm gets such models as input and according to a 
template matrix, evaluates the model. It can be seen that the 
algorithm actually clusters the linkages in the model into 
different groups depending on their level and therefore it can 
decide which edges are excess in each group. The false positive 
and false negative rates are negligible for these models so they 
are not included here. 

Fig. 3-b and 5-b depict the module formation during model 
evaluation by TMSE algorithm. When more than on edge 
connects to modules, some kind of excess information is 
supplied. 



a 

b 

- 1st Level 
- 2nd Level 
- 3rdLevei 

4th Level 
- 5th Level 

Figure 3. Model eval uati on by TMSE algori thm for RIFF problem of size 

32: a) Edge clustering into different levels, b) Module formation process. 

The direction of edges can also be taken into account ..wich 
allo\VS linkages in different directions to exist between two 
different modules. However since in this context directions of 
the linkages are important, links in different directions are not 
treated separately. When an edge connects two modules that 
are already connected indirectly in the level under 
consideration, this edge is not considered as an excess link. For 
example all three edges in Fig. 4 are permitted. 

Figure 4. A possibl e edge connecti on between three modul es of a problem. 

Fig. 6 sho\VS the accuracy of models built for the 
hierarchical problems with different sizes (and different 
number of levels). Here two versions of hTrap problem are 
used [7]. The computed accuracy is averaged over all runs (i.e. 
30 runs) performed for solving the problem. It can be seen that 
these models have an accuracy of about 60 to 75 percent with 
regard to excess link rate. This level of accuracy is not very bad 

since the model learning process is completely blind to the 
problem structure and also it is only working with a subset of 
possible solutions of the problem. 

IV. CONCLUSION 

Bayesian optlIllization algorithm ..wich uses Bayesian 
netwOIx as its probabilistic model is one of the most successful 
estimation of distribution algorithms. A special version of this 
algorithm ..wich is equipped with diversity preserving 
mechanism and a proper network representation type, has 
shown to be able to solve a complex class of problems known 
as hierarchical problems. 

An important issue in this type of algorithms is how perfect 
they can build the model representing the problem structure. 
This is important not only because many enhancement 
techniques for this algorithms assume their dependability but 
also because if acquired correctly, these models can represent 
the underlying structure of previously unknown problems. 
While some success in evaluating model accuracy for single
level problems have been achieved, but no wotk is done to 
evaluate the quality of the models built for hierarchical 
problems due to their complicated, multi-level structure. 

Figure 5. Model evaluation by TMSE algorithm for hTrap problem of size 

27. a) Edge clustering into different levels, b) Module formation process. 
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Figure 6. Model accuracy with respect to excess link rate for different sizes ofHIFF and two versions of hTrap problem. The results are averaged over 30 
different runs of BOA. 

To evaluate models built for hierarchical problems a model 
evaluation algorithm is introduced in this paper, called TMSE 
algorithm. This algorithm uses a special kind of perfect models 
represented by a template matrix and evaluates the given model 
level by level. At least three metrics can be extracted by this 
algorithm which can depict different aspects of model 
accuracy. The metric that is of most relevance to hierarchical 
problems is the rate of excess links added to the model during 
model construction. This mechanism of model evaluation is 
visually depicted for two real models derived for common 
hierarchical problems. The computed model accuracy for 
different sizes of these problems is also shown. 
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