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Abstract— Estimation of distribution algorithms, especially those
using Bayesian network as their probabilistic model, have been
able to solve many challenging optimization problems, including
the class of hierarchical problems, competently. Since model-
building constitute an important part of these algorithms, finding
ways to improve the quality of the models built during
optimization is very beneficial. This in turn requires mechanisms
to evaluate the quality of the models, as each problem has a large
space of possible models. The efforts in this field are mainly
concentrated on single-level problems, due to complex structure
of hierarchical problems which makes them hard to treat. In
order to extend model analysis to hierarchical problems, a model
evaluation algorithm is proposed in this paper which can be
applied to different problems. The results of applying the
algorithm to two common hierarchical problems are also
mentioned and described.
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I. INTRODUCTION

As a successful Evolutionary algorithm, Genetic algorithms
with their simple mechanism have been able to solve many
difficult real world problems. But there are certain types of
problems that pose great challenge to these algorithms.
Additively separable problems [7 and 11] are one class of these
problems that deceive the algorithm to the local optima. In
order to solve these challenging problems the notion of
competent genetic algorithms have been proposed [9]. These
algorithms are designed to solve complicated problems
quickly, accurately and reliably.

The building-block hypothesis asserts that for successful
problem solving, the genetic algorithm should be able to
identify, preserve and combine the building-blocks of optimum
solutions effectively. It turns out that as the genetic operators,
especially recombination, employed in the genetic algorithm do
not regard the building blocks, they will probably disrupt them.
In order to overcome this problem and as a solution to design a
competent genetic algorithm, the dependencies or linkages
between the problem variables can be identified and be taken
into consideration when dealing with solution strings.

Linkage leaming, as it is known in the genetic algorithm
community, 1s itself a challenging task which several methods
have been proposed for. Estimation of distribution algorithms
(also known as probabilistic model-building genetic
algorithms) as a type of genetic algorithms and a solution to
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linkage leaming, exploit a probabilistic model to capture and
store the interdependencies between problem variables. In a
typical estimation of distribution algorithm the recombination
operator of the traditional genetic algorithm, which is
responsible for generating new solutions to the problem, is
replaced by leaming a probabilistic model from promising
solutions of the problem and then sampling this model to
generate new solutions.

A.  Bayesian @ptimization Algorithm

Since the probabilistic model used in estimation of
distribution algorithms directly affects the behavior and
efficiency of these algorithms, the choice of the probabilistic
model should be taken carefully. Bayesian network with
capability to represent several multivariate dependencies
among problem variables is one of the probabilistic models that
have made several complex problems solvable. Bayesian
@ptimization Algorithm (B@®A) [18], Estimation of Bayesian
Network Algorithm (EBNA) [2] and Leaming Factorized
Distribution Algorithm (LFDA) [6] are examples of the
algorithms that use Bayesian network as their probabilistic
model. Since the workings of these algorithms are almost
similar, in this paper we will only consider B@A.

Although the use of powerful probabilistic models such as
Bayesian network has helped estimation of distribution
algorithms to solve complex problems that were considered
challenging for traditional genetic algorithms, but the great
computational complexity of model-building in these
algorithms has created a further challenge for their scalability.
Thus in recent years many efforts are made to enhance the
efficiency of these algorithms. The accuracy of the models
used for guiding the search in the space of all possible solutions
to the problem is one of the issues that have attracted many
attentions. Model accuracy is not only important because a
good model can help generating better solutions, but also
because a model with good accuracy can reveal the structure of
the underlying problem, the point that is very important in
unknown real world problems.

B.  Previous Works

Hauschild et al. [3] have analyzed the probabilistic models
built by B@A for two different types of problems. They wied to
trace the model-building process over different generations and
investigate how different dependencies are added to the
network. For evaluating the accuracy of the models the notion
of perfect model is inwoduced. Perfect model is a model



censisting of all necessary dependencies witheut having any
spurisus et unnecessaty dependencies.

The role of commen selechon and replacement strateges
on1 the guality of the m edels and the petformance of the BO A is
being analyzed by Lima et al [3]. They have censidered
cattect building-bleck partidens (el sewhers called medule [1])
and cemputed the ralio ef these pariitiens with cerrect and
incerrect linkages Their analysis shew that while teurnament
selection in cembinaken with restricted  teurnament
replacemernt can result in better parformance of the algorithm,
but when medel quality is of mere importance ene sheuld use
truncatien selectien

Mouedel structural accuracy (MSA) 15 used as a measure for
evaluating model guality in [4]. This mettic is the ralie of
correct linkages ever total linkages enceded in the medel The
authors have used this metric te measure medel sverfiting in
BOA. They have investigated hew medifying the scering
metric used for medel-building can help te increase medel
accuracy.

Altheugh all of these and ether related wotks have @iven
valuable knewledge abeut medel-building accuracy in EBAs
using Bayesian N stwork, the class of preblems invesi gated are
testricted te singe level decempesable preblems In this paper
we try te extend the experiments te the class of hisrarchical
preblem s, whete preblem structure is organized in mere than
stie level In order te evaluate medel accuracy for hisrarchical
preblems a new evaluatien al gerithm is prepesed andis tested
snibeth single level and mulii level preblems.

II. PrePe:ED METHOD

A Template Matrices

Evalualing medel accuracy, especially structural accuracy
sheuld he dene with tespect te a reference. When we are
building a prebabilisic medel, eg Bayesian netwerk, eur
teferenice te evaluate the nebwork is the pepulabien ef

premising selutiens. If the medsl-building precess of the
algerithm is accurate sneugh, then the result will be an sxact
medel according te the pepulatien of premising selukens used
during medel-building However this exact medel may net
cerrectly represent the preblem structure. Therefere anether
referenice achieved frem the preblem structure shewud be used
te evaluate the medel. Petfect medels are such references that
can be used te determine hew clese the built medel is te the
nature of the preblem at hand.

A tywpical perfect medel for a preblem is represented by
aderessing pessible cerrect dependencies available te be adeded
te the medsl, and incortrect dependencies that sheuld he
aveided. But when censidering hierarchical medels, this way ef
representation will net help. In a hierarchical preblem,
especially fully hierarchical preblems, almest all preblem
variables can have dependencies with each sther. Thus the
fium ber of incorrect dependencies cannet bie used te detect
medel accuracy. @nthe sther hand, certainly net all m edels for
a hierarchical preblem are petfect or even exact. Therefors
another method fer representing perfact medsels of hierarchical
preblem s sheuld te used. ®ne clue for achieving this medsl is
the multi-level structure of hierarchical preblems In ether
words the dependencies in a hierarchical preblem can he
clustered in te different greups according te their level of
scowrrenice. Hence a perfect medsl for a hisrarchical preblem
sheuld be able te disingnish bebwreen linkages in different
level s of hierarchy.

In the methed prepesed in this paper, the dependencies are
ranked accerding te their level, and each level’s dependencies
are traversed separately. The refersnce medel used here is
called template matrix sifice it is used as a template guide for
the pessitle linkages that can be added te nebwerk in different
levels Inthis matrix ferbidden links are shewn with zere, lavel
one links with 1, level twe links with 2, etc. Fig 1 shews
tywical template matrices for two bhierarchical preblems.

B Erxfracted mafrics

a) hTrap with 5 leve] stractum

3 ) HIFF with & leve] stmactam

Figum 1. Typcal ienplate matnces far twe luewmichical poblens
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Given the template matix for a hierarchical problem, the
conswructed model for this problem can be evaluated. The
model evaluator algorithm starts from the first level of the
hierarchy and matches each link in the model with its
corresponding entry in the template mawix and through a series
of phases it decides about the link. In order to have a quantity
about the quality of the model several indicators or metrics are
computed during model evaluation. The terms used for
describing these metrics are widely employed in the machine
leaming terminology. False positive rate 1s the ratio of false
positive links to total number of links added to model. False
negative rate 1s the ratio of false negative links to total number
of possible links which were not added to the model. The way
that false positive or false negative links are computed will be
described in the next sub-section.

As mentioned earlier in a typical hierarchical problem all
variables can be connected to each other. As a result false
positive links can barely be identified. However a good model
is required to show the actual swucture of a problem with as
less number of links as possible. Thus another metric is used to
show how perfect a given model is. Excess links rate 1s the
ratio of excess links (which is different from spurious links) to
total number of links added to the model. Actually this metric
15 in direct correspondence with false positive rate metric. False
positive rate is computed for the links in the first level of the
hierarchy while excess links rate is computed for the links in
the higher levels of the hierarchy.

C. Template based Model Structure Evaluator algorithm

In order to evaluate a hierarchical model the links in the
model should be wraversed hierarchically. The Template based
Model Stwructure Evaluator (TMSE) algorithm proposed in this
paper, works exactly in this way. Fig. 2 shows the pseudo code
of this algorithm.

TMSE Algorithm (Template Model: tm, Input_Model: im)
Begin
For each combination of variablesi and j repeat
If tm[i][j]=0
Ifim[{][j]=0
Increase number of true negative links
Else //im[i][j] =1
Increase number of false positive links
Mark i, j as connected
Else if tm[i][j] = @
Ifim[{][j]=0
If i, j are already connected in this level
Increase number of true negative links
Else // i, j are not connected in this level
Increase number of false negative links
Else /im[i][j] =1
If i, j are already connected in this level
Increase number of false positive links
Or
Increase number of excess links
Else // i, j are not connected in this level
Increase number of true positive links
Mark i, j as connected
End

Figure 2. Template based Model Structure Evaluator (TMSE) algorithm
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The algorithm is divided into two main phases to allow its
compatibility for model evaluation of single-level problems as
well as hierarchical problems. In the first phase, lower level
links are processed, their validity i1s determined and any
forbidden link added to the model is regarded as a false
positive link. A module [1] formation procedure maintains the
way variables are connected while processing the links. This
step is especially essential since it will help to have a temporal
ordering of how different blocks of the problem are conswucted
along the hierarchy.

In the second phase a similar mechanism is applied to all
higher level links in a level by level order. If the link between
two variables is allowed according to the reference template
manrix, it is checked whether or not they are connected in this
level. If already connected, this link is marked as an excess link
otherwise a true positive link. In this way of link processing the
order in which the links are processed will be important. But
since we are only interested in the number of excess or false
positive links and not on their place of occurrence, this order of
visiting the links will not affect the algorithm.

This link processing is performed level by level until all
links added to the model are processed. In addition to different
metrics computed, the algorithm can depict different modules
formed in each level of the hierarchy according to the links
present in the model.

III. EXPERIMENTS

In order to examine the capabilities of the algorithm in
model evaluation, we have used two popular hierarchical
problems inwroduced 1n this field [8 and 11]: HIFF and hTrap.
HIFF is one of the first hierarchical problems that challenge
ordinary genetic algorithms by deceiving any attempts that try
to solve the problem as a single level problem [11]. Claimed to
be the ultimate challenge by its inwoducers, hTrap is based on
the m-k wrap functions [8].

The B@®A used in the experiments is the one equipped with
diversity preserving mechanism, namely RTR, and decision
tree representation for the Bayesian network. This combination
for B@A is also referred to as hierarchical B@A (hB@®A) [8].
The algorithm is required to find the solution string for the
problem or reach 200 generations to terminate. For each
instance of each problem, B@A is run 3@ times to determine
the appropriate population with the bisection algorithm. This
also permits statistical analysis to be more accurate.

Fig. 3-a and 5-a show two real models derived by B@®A for
two instances of aforementioned hierarchical problems. The
TMSE algorithm gets such models as input and according to a
template mawix, evaluates the model. It can be seen that the
algorithm actually clusters the linkages in the model into
different groups depending on their level and therefore it can
decide which edges are excess in each group. The false positive
and false negative rates are negligible for these models so they
are not included here.

Fig. 3-b and 5-b depict the module formation during model
evaluation by TMSE algorithm. When more than on edge
connects to modules, some kind of excess information is
supplied.
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Figure 3. Model evaluanen by TMSE algorithm fer HIFF preblem of size
32: a) Edge clustering inte different levels, b) Medule fermation process.

The direction of edges can also be taken into account which
allows linkages in different directions to exist between two
different modules. However since in this context directions of
the linkages are important, links in different directions are not
treated separately. When an edge connects two modules that
are already connected indirectly in the level under
consideration, this edge is not considered as an excess link. For
example all three edges in Fig. 4 are permitted.

Figure 4. A pessible edge cenneck en between three medules of a problem.

Fig. 6 shows the accuracy of models built for the
hierarchical problems with different sizes (and different
number of levels). Here two versions of hTrap problem are
used [7]. The computed accuracy is averaged over all runs (i.e.
30 runs) performed for solving the problem. It can be seen that
these models have an accuracy of about 60 to 75 percent with
regard to excess link rate. This level of accuracy is not very bad

since the model leaming process is completely blind to the
problem siucture and also it is only working with a subset of
possible solutions of the problem.

IV. CeNCLUsIeN

Bayesian optimization algorithm which uses Bayesian
network as its probabilistic model is one of the most successful
estimation of diswribution algorithms. A special version of this
algorithm which is equipped with diversity preserving
mechanism and a proper network representation type, has
shown to be able to solve a complex class of problems known
as hierarchical problems.

An important issue in this type of algorithms is how perfect
they can build the model representing the problem swucture.
This is important not only because many enhancement
techniques for this algorithms assume their dependability but
also because if acquired correctly, these models can represent
the underlying swucture of previously unknown problems.
While some success in evaluating model accuracy for single-
level problems have been achieved, but no work is done to
evaluate the quality of the models built for hierarchical
problems due to their complicated, multi-level stcucture.

Figure 5. Medel evaluanen by TMSE algerithm for hTrap problem of size
27. a) Edge clustering inte different levels, ») Module formatien process
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Figure 6. Model accuracy with respect to excess link rate for different sizes of HIFF and two versions of hTrap problem. The results are averaged over 30
different runs of BOA.

To evaluate models built for hierarchical problems a model
evaluation algorithm is introduced in this paper, called TMSE
algorithm. This algorithm uses a special kind of perfect models
represented by a template matrix and evaluates the given model
level by level. At least three metrics can be exwacted by this
algorithm which can depict different aspects of model
accuracy. The metwic that is of most relevance to hierarchical
problems is the rate of excess links added to the model during
model construction. This mechanism of model evaluation is
visually depicted for two real models derived for common
hierarchical problems. The computed model accuracy for
different sizes of these problems is also shown.
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