Name:	Operating Systems Course – Quiz 2
Student ID:	Computer Engineering Department
	Iran University of Science and Technology

- 1. Is it possible to have a deadlock involving only one process? Explain your answer.
- 2. Consider the following snapshot of a system:

	Allocation					Max					Available			
	А	В	С	D	А	В	С	D		А	В	С	D	
P0	0	0	1	2	0	0	1	2		1	5	2	0	
P1	1	0	0	0	1	7	5	0						
P2	1	3	5	4	2	3	5	6						
P3	0	6	3	2	0	6	5	2						
P4	0	0	1	4	0	6	5	6						

Answer the following questions using the banker's algorithm.

- Is the system in a safe state? If yes, mention the sequence in which the processes can finish their job.
- If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately?
- 3. Consider a system consisting of 4 resources of the same type that are shared by 3 processes, each of which needs at most 2 resources. Show that the system is deadlock-free.