
Concurrent Programming
S 10 C lkSession 10: Cilk++

Computer Engineering Department
Iran University of Science and Technologyy gy

Tehran, Iran

Lecturer: Nima GhaemianLecturer: Nima Ghaemian
Distributed Systems Lab.Distributed Systems Lab.
Computer Engineering DepartmentComputer Engineering DepartmentComputer Engineering Department,Computer Engineering Department,
Iran University of Science and Technology,Iran University of Science and Technology,
nima@comp.iust.ac.irnima@comp.iust.ac.ir

cilk_forcilk_for LimitationsLimitations
Exactly one loop control variable
◦ The loop initialization clause must assign the value ◦ The loop initialization clause must assign the value.
The loop control variable must not be modified in the loop
body
◦ WRONG: cilk for (unsigned int i = 1; i < 16; ++i) i = f(); WRONG: cilk_for (unsigned int i 1; i 16; i) i f();
The termination and increment values are evaluated once
before starting the loop and
◦ will not be re-evaluated at each iteration.

modifying either value within the loop body will not add or remove iterations

◦ WRONG: cilk_for (unsigned int i = 1; i < x; ++i) x = f();
The control variable must be declared in the loop header,
◦ not outside the loop.
◦ WRONG: int i; cilk_for (i = 0; i < 100; i++)

cilk forcilk for Limitations (Cont’d) Limitations (Cont’d) cilk_forcilk_for Limitations (Cont d) Limitations (Cont d)
A break or return statement will NOT work
within the body of a cilk_for loop
◦ the compiler will generate an error message
A l b d i hi h b d f A goto can only be used within the body of a
cilk_for loop if the target is within the loop
body body
◦ WRONG CASES:
◦ there is a goto transfer into or out of a cilk_forg _

loop body
◦ goto jumps into the body of a cilk_for loop from

outside the loop outside the loop

Cilk++ ConceptsCilk++ ConceptsCilk++ ConceptsCilk++ Concepts
Strand
◦ A concurrent agent consisting of a serial chain of instructions ◦ A concurrent agent consisting of a serial chain of instructions

without any parallel control (such as a spawn, sync, return from a
spawn, etc.).

Concurrent Agent
◦ A processor, process, thread, strand, or other entity that

executes a program instruction sequence in a computing
environment containing other such entities.

KnotKnot
◦ A point at which the end of one strand meets the end of

another. If a knot has one incoming strand and one outgoing
strand, it is a serial knot. If it has one incoming strand and two

i d i i k If i h l i l i i outgoing strands, it is a spawn knot. If it has multiple incoming
strands and one outgoing strand, it is a sync knot. A Cilk++
execution does not produce serial knots or knots with both
multiple incoming and multiple outgoing strands.

Cilk++ Concepts (cont)Cilk++ Concepts (cont)Cilk++ Concepts (cont.)Cilk++ Concepts (cont.)
Serial Consistency
◦ The memory model for concurrency wherein the effect of ◦ The memory model for concurrency wherein the effect of

concurrent agents is as if their operations on shared
memory were interleaved in a global order consistent with
the orders in which each agent executed them.g

Scale Down
◦ The ability of a parallel application to run efficiently on one

or a small number of processors.p
Scale Up
◦ The ability of a parallel application to run efficiently on a

large number of processors. See also linear speedup.g p p p
Scale Out
◦ The ability to run multiple copies of an application

efficiently on a large number of processors.y g p

Cilk++ Concepts (cont)Cilk++ Concepts (cont)Cilk++ Concepts (cont.)Cilk++ Concepts (cont.)

Span
◦ The theoretically fastest execution time for a

parallel program when run on an infinite
number of processors discounting overheads number of processors, discounting overheads
for communication and scheduling. Often
denoted by T∞ in the literature, and y
sometimes called critical-path length.

Worker
◦ A thread that, together with other workers,

implements the Cilk++ runtime system's
work stealing schedulerwork stealing scheduler.

Work and Work and SpanSpan
TP = execution time on P processors

Work and Work and SpanSpan

T1 = work T∞ = span

Speedup on p processors
· T1/Tp

Parallelism
·T1/T∞

*Also called critical-path length
or computational depth.

CilkCilk++ Concepts++ ConceptsCilkCilk++ Concepts++ Concepts
Parallelism is defined as the ratio of work
to span, or T1/T∞.
There are several ways to understand it:

Th ll l T /T h f ◦ The parallelism T1/T∞ is the average amount of
work along each step of the critical path.
◦ The parallelism T1/T is the maximum possible The parallelism T1/T∞ is the maximum possible

speedup that can be obtained by any number of
processors.
P f li d b b i d f ◦ Perfect linear speedup cannot be obtained for any
number of processors greater than the
parallelism T1/T∞.p 1

SortingSortingSortingSorting

Sorting is possibly the most frequently g p y q y
executed operation in computing!
QuickSort is the fastest sorting Qu c So t s t e astest so t g
algorithm in practice with an average
running time of O(N log N), (but O(N2) g (g), (()
worst case performance)

Parallelizing Parallelizing QQuicksortuicksortParallelizing Parallelizing QQuicksortuicksort
Serial Quicksort sorts an array S as
f llfollows:
◦ If the number of elements in S is 0 or 1, then

return.
◦ Pick any element v in S. Call this pivot.
◦ Partition the set S-{v} into two disjoint groups:

S1 = {x ε S-{v} | x ≤ v}
S { S { } | ≥ }S2 = {x ε S-{v} | x ≥ v}

◦ Return quicksort(S1) followed by v
followed by quicksort(S)followed by quicksort(S2)

Parallel Quicksort (Basic)Parallel Quicksort (Basic)

template <typename T>template <typename T>template <typename T>

Parallel Quicksort (Basic)Parallel Quicksort (Basic)
• The second

template <typename T>

void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin

template <typename T>

void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin

template <typename T>

void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin

recursive call to qsort
does not depend on
the results of the begin,

end,

bind2nd(less<typename

iterator_traits<T>::value_type>(),

*b i)

begin,

end,

bind2nd(less<typename

iterator_traits<T>::value_type>(),

*b i)

begin,

end,

bind2nd(less<typename

iterator_traits<T>::value_type>(),

*b i)

the results of the
first recursive call

• We have an
*begin)

);

cilk_spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

*begin)

);

cilk_spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

*begin)

);

cilk_spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

opportunity to speed
up the call by making
both calls in parallel cilk_sync;

}

}

cilk_sync;

}

}

cilk_sync;

}

}

both calls in parallel.

PerformancePerformancePerformancePerformance
./qsort 500000 -cilk_set_worker_count 1

>> 0 122 d>> 0.122 seconds
./qsort 500000 -cilk_set_worker_count 4

>> 0.034 seconds 0.034 seconds
Speedup = T1/T4 = 0.122/0.034 = 3.583.58

./qsort 50000000 -cilk_set_worker_count 1

>> 14.54 seconds
./qsort 50000000 -cilk_set_worker_count 4

>> 3.84 seconds
Speedup = T /T = 14 54/3 84 = 3 783 78Speedup = T1/T4 = 14.54/3.84 = 3.783.78

Measure Work/Span EmpiricallyMeasure Work/Span EmpiricallyMeasure Work/Span EmpiricallyMeasure Work/Span Empirically
cilkscreen -w ./qsort 50000000

 S 50000000 >> Sorting 50000000 integers
>> work: 29696503161 instructions
>> span: 5828326145 instructions span: 5828326145 instructions
>> parallelism: 5.15.1

cilkscreen -w ./qsort 500000
>> Sorting 500000 integers

 k 261593480 i i>> work: 261593480 instructions

>> span: 62178133 instructions
>> ll li 4 24 2>> parallelism: 4.24.2

Parallel Performance AnalyzerParallel Performance AnalyzerParallel Performance AnalyzerParallel Performance Analyzer

Performance Performance AnalysingAnalysingPerformance Performance AnalysingAnalysing

Parallel Performance AnalyzerParallel Performance AnalyzerParallel Performance AnalyzerParallel Performance Analyzer

ImprovementImprovementImprovementImprovement

Parallel Performance AnalyzerParallel Performance AnalyzerParallel Performance AnalyzerParallel Performance Analyzer

Race ConditionsRace ConditionsRace ConditionsRace Conditions

Non-Local Variables
◦ “Untold confusion can result when the

consequences of executing a procedure cannot be
determined at the site of the procedure call” -
Wulf and Shaw

passing the variable as an argument to
function calls
◦ Parameter Proliferation

Race Conditions (Cont’d)Race Conditions (Cont’d)Race Conditions (Cont d)Race Conditions (Cont d)

A Particular Matter…
◦ If I have a code operating on a large data

structure, why should I have to pass the data
structure to each and every function that
operates on the data structure?

Race Conditions (Cont’d)Race Conditions (Cont’d)Race Conditions (Contd)Race Conditions (Contd)

Different types of race conditionsyp
◦ Depending on the synchronization

methodology
◦ Locking, condition variables etc.

Determinacy Racey
◦ Deterministic
◦ NondeterministicNondeterministic

Race Conditions (Cont’d)Race Conditions (Cont’d)Race Conditions (Contd)Race Conditions (Contd)
void incr (int *counter)
{{

*counter++;
}

void main() {
int x=0;int x=0;
cilk_spawn incr (&x);
incr (&x);
cilk_sync;
assert (x == 2);

}}

DAG ViewDAG ViewDAG ViewDAG View

DAG View: nonDAG View: non--atomicityatomicityDAG View: nonDAG View: non atomicityatomicity

