Concurrent Programming

Session 10: Cilk++

Computer Engineering Department
Iran University of Science and Technology
Tehran, Iran

Lecturer: Nima Ghaemian

Distributed Systems Lab.

Computer Engineering Department,

Iran University of Science and Technology,
nima@comp.iust.ac.ir

cilk_for Limitations

» Exactly one loop control variable
> The loop initialization clause must assign the value.

* The loop control variable must not be modified in the loop
body

> WRONG: cilk_for (unsigned inti= I;i < 16;++i) i = f();
¢ The termination and increment values are evaluated once
before starting the loop and

> will not be re-evaluated at each iteration.
* modifying either value within the loop body will not add or remove iterations

> WRONG: cilk_for (unsigned int i = I;i < x; ++i) x = f();

e The control variable must be declared in the loop header,
° not outside the loop.
> WRONG: int i;cilk_for (i = 0;i < 100;i++)

cilk_for Limitations (Cont'd)

e A break or return statement will NOT work
within the body of a cilk_for loop

o the compiler will generate an error message

A goto can only be used within the body of a

cilk_for loop if the target is within the loop
body

> WRONG CASES:

° there is a goto transfer into or out of a cilk_for
loop body

° goto jumps into the body of a cilk_for loop from
outside the loop

Cilk++ Concepts

e Strand

> A concurrent agent consisting of a serial chain of instructions
without any parallel control (such as a spawn, sync, return from a
spawn, etc.).
e Concurrent Agent

> A processor, process, thread, strand, or other entity that
executes a program instruction sequence in a computing
environment containing other such entities.

e Knot

> A point at which the end of one strand meets the end of
another. If a knot has one incoming strand and one outgoing
strand, it is a serial knot. If it has one incoming strand and two
outgoing strands, it is a spawn knot. If it has multiple incoming
strands and one outgoing strand, it is a sync knot.A Cilk++
execution does not produce serial knots or knots with both
multiple incoming and multiple outgoing strands.

Cilk++ Concepts (cont.)

 Serial Consistency

> The memory model for concurrency wherein the effect of
concurrent agents is as if their operations on shared
memory were interleaved in a global order consistent with
the orders in which each agent executed them.

e Scale Down
> The ability of a parallel application to run efficiently on one
or a small number of processors.
e Scale Up
> The ability of a parallel application to run efficiently on a
large number of processors. See also linear speedup.
e Scale Out

° The ability to run multiple copies of an application
efficiently on a large number of processors.

Cilk++ Concepts (cont.)
e Span

> The theoretically fastest execution time for a
parallel program when run on an infinite
number of processors, discounting overheads
for communication and scheduling. Often
denoted by T, in the literature, and
sometimes called critical-path length.

e Worker
o A thread that, together with other workers,

implements the Cilk++ runtime system'’s
work stealing scheduler.

Work and Span

Tr = execution time on P processors
TI = Too =

Speedup on p processors
/T,

Parallelism
-T,/T.

* Also called
or

Cilk++ Concepts

e Parallelism is defined as the ratio of work
to span,or T,/T...

* There are several ways to understand it:

> The parallelism T,/T,, is the average amount of
work along each step of the critical path.

> The parallelism T /T, is the maximum possible
speedup that can be obtained by any number of
processors.

° Perfect linear speedup cannot be obtained for any
number of processors greater than the
parallelism T,/T...

Sorting

e Sorting is possibly the most frequently
executed operation in computing!

* QuickSort is the fastest sorting
algorithm in practice with an average
running time of O(N log N), (but O(N?)
worst case performance)

Parallelizing Quicksort

 Serial Quicksort sorts an array S as
follows:

o If the number of elements in Sis 0 or |, then
return.
> Pick any element v in S. Call this pivot.
o Partition the set S-{v} into two disjoint groups:
S, ={xeS-{v}|x<v}
S, ={xeS-{v}|x=>v}
> Return quicksort(S,) followed by v
followed by quicksort(S,)

Parallel Quicksort (Basic)

* The second
. template <typename T>
recursive call to gsort |void gsort(T begin, T end) {

does not depend on IECLea Tt e NI
T middle = partition(
the results of the Bagih,
first recursive call end,
bind2nd(Tess<typename
* We have an iterator_traits<T>::value_type>(),
. *begin)
opportunity to speed »
up the call by making gsort(begin, middle);
bOth caIIs in paraIIeI. gsort(max(begin + 1, middle), end);
}
} Z
Performance

 ./gsort 500000 -cilk_set_worker_count |

>> 0.122 seconds
* ./gsort 500000 -cilk_set_worker_count 4
>> (0.034 seconds

e Speedup =T,/T, =0.122/0.034 = 3.58

 ./gsort 50000000 -cilk_set_worker_count |

>> |4.54 seconds
» ./gsort 50000000 -cilk_set_worker_count 4

>> 3.84 seconds

Speedup =T,/T, = 14.54/3.84 = 3.78

Measure Work/Span Empirically

¢ cilkscreen -w ./gsort 50000000
>> Sorting 50000000 integers
>> work: 29696503161 instructions
>> span: 5828326145 instructions
>> parallelism: 5.1

e cilkscreen -w ./qsort 500000
>> Sorting 500000 integers

>> work: 261593480 instructions

>> span: 62178133 instructions
>> parallelism: 4.2

Parallel Performance Analyzer

Predicted Performance B
Bxit code: O (GDODDD0000)

Estimated Performance on Multicore System

|deal Speedup
0 | AT Application Parallelism =10.53
2 T =5= Upper Performance Bound

et L E. B +| Ipr:&rFl'erflornl'lﬂrlcelﬂolunlcl .
5 10 15 20 25 30

Cores

Performance Analysing

#define OUTEER 1000

#define INNEER 10000

#define ASIZE (INNEER * OUTER)

double results[ASIZE]; S/ array of 10,000, 000 elements
S/ Initielize an array to values that depends on the array index.

S/ RAssume Work(x) is an inexpensive function.

wolid SetArray (int x)

{

results[x] = Work(x):

S/ Initielize an array to values that depends on the array index.
JSf RAssume Work(x) is an inexpensive function.
woid InmnerLoop (int i)
{
for (int j=0; J<INNER; ++3)
SethArravy{{i * INNER) + Jj):

woid CuterLoop ()

{
for (int i=0; i<OUTER; ++i)

cilk spawn InnerLoop (i) r S ¢ spawn the inner loop 1000 times

Parallel Performance Analyzer

Predicted Performance)
Exit code: O ((x00000000)
Estimated Performance on Multicore System
40 N T T T T T T
35 +]
30 +
o 25T
£ r
o r
a 20 +
-9 r
o [
15
10+
L — ldeal Speedup
5 - I - Application Parallelism = 382.75
r =%= Upper Perfformance Bound
| | | —*— |Lower Performance Bound
T T T T T T
5 10 15 20 25 30
Cores

Improvement

vold Innerloop{int i)

[
1

for (int j=0; J<INNMER:; ++3)

cilk_spawn SetArray((i * INNER) + J):

vold OuterLoop()

for (int i=0; i<OUIER; ++i)

eit——sapawvn InnerLoop(i);

Parallel Performance Analyzer

Predicted Performance

Ext code: 0 ((x00000000)
Estimated Performance on Multicore System
25 T T T T T T
2[] F w o w o o w w L w w o 3
e 15 + :
3
=
&
@
o
@ 10 + -
S T — ldeal Speedup
------- Application Parallelism = 12.51
=%= Upper Performance Bound
- % - —2&— Lower Pefformance Bound
T I I T T T
5 10 15 20 25 30
Cores

Race Conditions

e Non-Local Variables

o “Untold confusion can result when the
consequences of executing a procedure cannot be
determined at the site of the procedure call” -
Wulf and Shaw

e passing the variable as an argument to
function calls

o Parameter Proliferation

Race Conditions (Contd)

e A Particular Matter...

o If | have a code operating on a large data
structure, why should | have to pass the data
structure to each and every function that
operates on the data structure?!

Race Conditions (Cont’d)

* Different types of race conditions

> Depending on the synchronization
methodology

> Locking, condition variables etc.
e Determinacy Race
> Deterministic

> Nondeterministic

Race Conditions (Cont’d)

void incr (int *counter)

{

*counter++;

}

void main() {
int x=0;
cilk_spawn incr (&x);
incr (&x);
cilk_sync;
assert (x == 2);

DAG View

¥

X++;

w: |@

¥

| assert(x == 2); |

Q

DAG View: non-atomicity

© 0 0O

r2 = Xx:

’

!

B x = r2;

|
(5
rl++; a r2+4+:
(7
¥

assert(x == 2); |

