
Concurrent Programming
S 10 I l Th d B ld Bl k (TBB)Session 10: Intel Threading Building Blocks (TBB)

Computer Engineering Department
Iran University of Science and Technologyy gy

Tehran, Iran

Lecturer: Lecturer: NavidNavid AbbaszadehAbbaszadeh
Distributed Systems Lab.Distributed Systems Lab.
Computer Engineering DepartmentComputer Engineering DepartmentComputer Engineering Department,Computer Engineering Department,
Iran University of Science and Technology,Iran University of Science and Technology,
nabbaszadeh@comp.iust.ac.irnabbaszadeh@comp.iust.ac.ir

What is TBB?What is TBB?What is TBB?What is TBB?
Intel® Threading Building Blocks is a C++ runtime
library that abstracts the low level threading library that abstracts the low-level threading
details necessary addressing multicore
performance
I C++ l d di l f It uses C++ templates and coding style for
implementation
It requires fewer lines of code to achieve q
parallelism compared to using threads explicitly
The applications are portable across platforms.
The library is scalable That is as more processor The library is scalable. That is, as more processor
cores become available code need not be
rewritten.

OS’s SupportedOS’s SupportedOSs SupportedOSs Supported
Microsoft Windows XP Professional
Microsoft Windows Server 2003Microsoft Windows Server 2003
Microsoft Windows Vista
Red Hat Enterprise Linux 3, 4 and 5
R d H t F d C 4 5 d 6Red Hat Fedora Core 4, 5 and 6
Asianux 2.0
Red Flag DC Server 5.0
H f L S 2006Haansoft Linux Server 2006
Miracle Linux v4.0
SuSE Linux Enterprise Server (SLES) 9 and 10
SGI Propack 4.0 & SGI Propack 5.0
Mandriva/Mandrake Linux 10.1.06
Turbolinux GreatTurbo Enterprise Server 10 SP1p

Compilers SupportedCompilers SupportedCompilers SupportedCompilers Supported
Microsoft Visual C++ 7.1 (Microsoft Visual Studio .NET 2003,
Windows systems only)Windows systems only)
Microsoft Visual C++ 8.0 (Microsoft Visual Studio 2005,
Windows systems only)
Intel® C++ Compiler 9.0 or higher (Windows and Linux p g (
systems)
Intel® C++ Compiler 9.1 or higher (Mac OS X systems)
For each supported Linux operating system, the standard gcc pp p g y g
version provided with that operating system is supported,
including: 3.2, 3.3, 3.4, 4.0, 4.1
For each supported Mac OS X operating system, the
t d d i id d ith th t ti t i standard gcc version provided with that operating system is

supported, including: 4.0.1 (Xcode tool suite 2.2.1 or higher)

Why do we need this?Why do we need this?Why do we need this?Why do we need this?
Gaining performance (in a single application)
f lti l i from multiple cores requires
concurrent/parallel programming.
Concurrent programming introduces the Concurrent programming introduces the
issues of race conditions and deadlocks.
Concurrent programming for scalability is a
diffi lt t kdifficult task.
Not all threading interfaces work on all
platforms (POSIX threads).platforms (POSIX threads).
Programming with threads introduces
another dimension of complexity.

LimitationsLimitationsLimitationsLimitations

TBB is not recommended for:
◦ I/O bound processing
◦ Hard real time processingp g

TBB is not a silver bullet for all multi-
threaded applications. It’s a tool that threaded applications. It s a tool that
heads us in the correct direction, but is
not optimum.not optimum.

ComponentsComponentsComponentsComponents

Runtime library initialization and Runtime library initialization and
terminationtermination

The scheduler is initialized by y
task_scheduler_init object’s constructor
and it is destroyed by its destructory y

" "#include "tbb/task_scheduler_init.h"
using namespace tbb;

int main() { int main() {
task_scheduler_init init;
...

return 0;
} }

Runtime library initialization and Runtime library initialization and
termination(cont’)termination(cont’)

The constructor of task_scheduler_init _ _
can be given a parameter :
◦ Task_scheduler::automatic, which is the same _

as not specifying
◦ Task_scheduler::deffered, which defers the

initialization until
◦ method task_scheduler_init::initialize(n) is

called.
◦ A positive integer specifying the number of

h d threads to use

TBB TBB Task Scheduler Task Scheduler TBB TBB Task Scheduler Task Scheduler

Automatically balance the load across y
processors
Schedule tasks to exploit the natural Sc e u e tas s to e p o t t e atu a
cache locality of applications
Avoid the over-subscription of resources Avoid the over-subscription of resources
that often comes when composing
applications from threaded components applications from threaded components.

Generic Parallel algorithmsGeneric Parallel algorithmsGeneric Parallel algorithmsGeneric Parallel algorithms

Parallel_for_
Parallel_reduce
Parallel sortParallel_sort
pipeline

Parallel forParallel forParallel_forParallel_for

Serial code
Assumption : iterations of loop are
independantepe a t

void SerialApplyFoo(float a[], size_t n) {
for(size_t i=0; i!=n; ++i)

Foo(a[i]); Foo(a[i]);
}

Parallel forParallel for (cont’)(cont’)Parallel_forParallel_for (cont)(cont)
#include "tbb/blocked_range.h"

class ApplyFoo {
float *const my_a;

public: public:
void operator()(const blocked_range<size_t>& r) const {

float *a = my_a;
for(size t i=rbegin(); i!=rend(); ++i) for(size_t i r.begin(); i! r.end(); ++i)

Foo(a[i]);
}
ApplyFoo(float a[]) : pp y ([])

my_a(a)
{}

};

Parallel for (cont’)Parallel for (cont’)Parallel_for (cont)Parallel_for (cont)

Parallelized version of code
Automatic grain-size

#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[] size t n) { void ParallelApplyFoo(float a[], size_t n) {
parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a),

auto_partitioner());
}}

Parallel for (cont’)Parallel for (cont’)Parallel_for (cont)Parallel_for (cont)

Parallelized version of code
Explicit grain-size

#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[] size t n) { void ParallelApplyFoo(float a[], size_t n) {
parallel_for(blocked_range<size_t>(0,n,G), ApplyFoo(a));

}

Grain SizeGrain SizeGrain SizeGrain Size

Part of parallel_for, not the task p _
scheduler.
Specifies the number of iterations for a Spec es t e u be o te at o s o a
reasonable size chunk of data to deal out
to the processor.p
Optimum value depends on the problem.
That is do some benchmarkingThat is, do some benchmarking.

Tuning Grain SizeTuning Grain SizeTuning Grain SizeTuning Grain Size

When in doubt, err on the side of making it a little When in doubt, err on the side of making it a little
too large, so that performance is not hurt when
only one core is available.

Tuning Grain SizeTuning Grain SizeTuning Grain SizeTuning Grain Size

A rule of thumb is that grainsize iterations of
operator() should take at least 10,000-100,000
instructions to execute
You do not have to set the grainsize too
precisely.

i i i i b d h execution time versus grainsize, based on the
floating point a[i]=b[i]*c computation

Parallel reduceParallel reduceParallel_reduceParallel_reduce

Serial code

float SerialSumFoo(float a[], size_t n) {
float sum = 0;
for(size_t i=0; i!=n; ++i)

sum += Foo(a[i]);
return sum;

}

Parallel reduceParallel reduce (cont’)(cont’)Parallel_reduceParallel_reduce (cont)(cont)

Parallelized code

float ParallelSumFoo(const float a[], size_t n
) {

SumFoo sf(a); SumFoo sf(a);

parallel reduce(blocked range<size t>(0,n), parallel_reduce(blocked_range size_t (0,n),
sf, auto_partitioner());

return sf.my_sum;
}

Parallel reduceParallel reduce (cont’)(cont’)Parallel_reduceParallel_reduce (cont)(cont)
class SumFoo {

fl * float* my_a;
public:

float my_sum; y_
void operator()(const blocked_range<size_t>& r

) {
float *a = my a; float a = my_a;
float sum = my_sum;
size_t end = r.end();
f (i i b i () i! d i) for(size_t i=r.begin(); i!=end; ++i)

sum += Foo(a[i]);
my_sum = sum; } y

Parallel reduceParallel reduce (cont’)(cont’)Parallel_reduceParallel_reduce (cont)(cont)

SumFoo(SumFoo& x, split) : my a(x.my a), SumFoo(SumFoo& x, split) : my_a(x.my_a),
my_sum(0) {}

void join(const SumFoo& y)
{my_sum+=y.my_sum;}

SumFoo(float a[]) :
my a(a) my sum(0) my_a(a), my_sum(0)

{}
}; // end of class sumFoo}

Parallel sortParallel sortParallel_sortParallel_sort
Performs an unstable sort of sequence
[begin1, end1).
The sort is deterministic
parallel_sort is comparison sort with an
average time complexity of O(N log (N))
R i t V l T T f Requirements on Value Type T of
RandomAccessIterator for parallel_sort :
◦ void swap(T& x T& y)void swap(T& x, T& y)
◦ bool Compare::operator()(const T& x, const T&

y)

Parallel sort (cont’)Parallel sort (cont’)Parallel_sort (cont)Parallel_sort (cont)
#include "tbb/parallel_sort.h"
#include <math h> #include <math.h>
using namespace tbb;

const int N = 100000; const int N 100000;
float a[N];
float b[N];

void SortExample() {
for(int i = 0; i < N; i++) {

a[i] = sin((double)i);
b[i] = cos((double)i);

}
parallel_sort(a, a + N);

ll l t(b b + N td t <fl t>()) parallel_sort(b, b + N, std::greater<float>());
}

Getting ParallelGetting ParallelGetting ParallelGetting Parallel

There are two main methods for
decomposing a sequential program into a
parallel program:
◦ Functional decomposition - independent tasks

that are doing different types of work are
identified. These functionally distinct tasks are identified. These functionally distinct tasks are
then executed concurrently.
◦ Data decomposition - a single task performed

on a large amount of data is split into
independent tasks, each task processing a
subset of the data subset of the data.

Functional(task) DecompositionFunctional(task) DecompositionFunctional(task) DecompositionFunctional(task) Decomposition

Data DecompositionData DecompositionData DecompositionData Decomposition

Another instanceAnother instanceAnother instanceAnother instance

Pipeline Pipeline Pipeline Pipeline

Pipelining is a common parallel pattern p g p p
that mimics a traditional manufacturing
assembly liney
An example : video processing
The Intel® Threading Building Blocks The Intel® Threading Building Blocks
classes pipeline and filter implement the
pipeline patternpipeline pattern

Pipeline (cont’) Pipeline (cont’) Pipeline (cont) Pipeline (cont)
// Create the pipeline

tbb i li i li tbb::pipeline pipeline;

// Create file-reading writing stage and add it to the pipeline
MyInputFilter input_filter(input_file); y p p (p)
pipeline.add_filter(input_filter);

// Create capitalization stage and add it to the pipeline
MyTransformFilter transform filter; MyTransformFilter transform_filter;
pipeline.add_filter(transform_filter);

// Create file-writing stage and add it to the pipeline
MyOutputFilter output_filter(output_file);
pipeline.add_filter(output_filter);

// Run the pipeline // Run the pipeline
pipeline.run(MyInputFilter::n_buffer);

Pipeline (cont’) Pipeline (cont’) Pipeline (cont) Pipeline (cont)
// Filter that writes each buffer to a file.
l M O t tFilt bli tbb filt { class MyOutputFilter: public tbb::filter {

FILE* my_output_file;
public:

MyOutputFilter(FILE* output_file); y p (p)
/*override*/void* operator()(void* item);

};

MyOutputFilter::MyOutputFilter(FILE* output file) : MyOutputFilter::MyOutputFilter(FILE* output_file) :
tbb::filter(serial_in_order),
my_output_file(output_file)

{ }

void* MyOutputFilter::operator()(void* item) {
MyBuffer& b = *static_cast<MyBuffer*>(item);
fwrite(b begin(), 1, b size(), my output file); fwrite(b.begin(), 1, b.size(), my_output_file);
return NULL;

}

Parallel containers Parallel containers Parallel containers Parallel containers
Containers provided by Intel® Threading
Building Blocks offer a much higher level of
concurrency, via one or both of the following
methods: methods:
◦ Fine-grained locking. With fine-grain locking,

multiple threads operate on the container by p p y
locking only those portions they really need to
lock. As long as different threads access different
portions, they can proceed concurrently. portions, they can proceed concurrently.
◦ Lock-free algorithms. With lock-free algorithms,

different threads account and correct for the
ff f h i f i h d effects of other interfering threads.

Parallel containers (cont’) Parallel containers (cont’) Parallel containers (cont) Parallel containers (cont)

Containers:
◦ concurrent_hash_map
◦ concurrent vector_
◦ concurrent_queue

Each container has its own constraints Each container has its own constraints
and defined functionality. For instance
concurrent queue does not guarantee a concurrent_queue does not guarantee a
FIFO behaviour.

Mutual Exclusion (example)Mutual Exclusion (example)Mutual Exclusion (example)Mutual Exclusion (example)
Node* FreeList;
typedef spin mutex FreeListMutexType; typedef spin_mutex FreeListMutexType;
FreeListMutexType FreeListMutex;

Node* AllocateNode() {
N d * Node* n;
{

FreeListMutexType::scoped_lock lock(FreeListMutex);
n = FreeList; ;
if(n)

FreeList = n->next;
}
if(!) if(!n)

n = new Node();
return n;

} }

Mutual Exclusion (terminology)Mutual Exclusion (terminology)Mutual Exclusion (terminology)Mutual Exclusion (terminology)
Scalabililty

if th iti th d i ◦ if the waiting threads consume excessive processor
cycles and memory bandwidth, they reduce the speed
of thread trying to execute code in critical section.
◦ Non scalable mutexes are faster under light ◦ Non-scalable mutexes are faster under light

contention
Fairness
◦ Fair mutexes avoid starving threads
◦ Unfair mutexes are faster
RecursiveRecursive
◦ A recursive mutex allows a thread that is already

holding a lock on the mutex to acquire another lock
on the mutex

Mutual Exclusion (kinds of mutexes)Mutual Exclusion (kinds of mutexes)Mutual Exclusion (kinds of mutexes)Mutual Exclusion (kinds of mutexes)

Mutex Scalable Fair Recursive

M OS d d OS d d NMutex OS-dependant OS-dependant No

Recursive_mutex OS-dependant OS-dependant Yes

spin_mutex No No No

queuing_mutex Yes Yes Noq g_

Atomic OperationsAtomic OperationsAtomic OperationsAtomic Operations

Fundamental Operations on a Variable x p
of Type atomic<T> are shown in the
following table :g
Code Snippet meaning

= X read the value of x

X i h l f d i X = write the value of x, and return it

x.fetch_and_store(y) do y=x and return the old value
of x

x.fetch_and_add(y) do x+=y and return the old value
of x

x.compare and swap(y,z) if x equals z, then do x=y. In p _ _ p(y,) q , y
either case, return old value of x.

TimingTimingTimingTiming

Unlike some timing interfaces, tick_countg _
is guaranteed to be safe to use across
threads

tick_count t0 = tick_count::now();
... do some work ...
tick count t1 = tick count::now(); _ _ ();
printf(“work took %g seconds\n”,(t1-
t0).seconds());

TBB VS openMPTBB VS openMPTBB VS openMPTBB VS openMP
Advantages of TBB over openMP

TBB i lib it d ’t d i l ◦ TBB is a library, so it doesn’t need any special
compiler support.
◦ TBB does not require programmer to worry about

loop scheduling policies(static dynamic and guided)loop scheduling policies(static, dynamic and guided)
◦ Thanks to generic programming, Parallel_reduce

works on any type, unlike openMP that reduction is
only applicable on built in typesonly applicable on built-in types
◦ TBB provides thread-safe containers
◦ TBB implements nested parallelism, the feature that is

t t d b ll MP i l t tinot supported by all openMP implementations.
◦ openMP is mainly designed to parallelize loops and

does not perform well on task-base parallelism.

TBB VS openMP(cont’)TBB VS openMP(cont’)TBB VS openMP(cont)TBB VS openMP(cont)

Advantages of openMP over TBB
◦ openMP is much simpler and has a easier

learning curve.
Mi i l h i l b ◦ Minimal changes to serial program can be
made incrementally until obtaining desired
performance, unlike TBB that needs major performance, unlike TBB that needs major
changes
◦ openMP is an open standard
◦ TBB has higher overhead in loops -for

example, requiring grain size of ~100,000 for a
looploop

The BookThe BookThe BookThe Book

Thanks for you attentionThanks for you attentionThanks for you attentionThanks for you attention

Any questions?

