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e Traditional CPUs:
— Performance increases
— Cost reductions
— Brought GFLOPS to the desktop
— Brought hundreds of GFLOPS to clusters

* This increase has slowed since 2003 due to power
consumption issues that limited the increase of
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the clock frequency. e

» Thus processor vendors have swﬂched to mult|-

core and many-core models. L\ \WINV
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Traditionally Programs

» Traditionally, the vast majority of software
applications are written as sequential programs.

* A sequential program will only run on one of the
processor cores.

 To use the whole power of the cores of the new
multi-core processors, parallel programs are
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GPUs and CPUs Performance Gap
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GT200 = GeForce GTX 280
G92 = GeForce 9800 GTX

GA0 = GeForce 8500 GTX

G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

M35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800
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1 teraflop on your desktop

In June 2008, NVIDIA introduced the GT200 chip,
which delivers almost 1 teraflop (1,000 gigaflops)
of single precision and almost 100 gigaflops of
double precision performance.

e What is GPGPU?

— General-Purpose computing on a Graphics
Processing Unit

— Using graphic hardware for non-graphic
computations

« What is CUDA?
— Compute Unified Device Architecture

— Software architecture for managing data-parallel
programming




CPU vs. GPU

CPU

— Fast caches

— Branching adaptability
— High performance
GPU

— Multiple ALUs

— Fast onboard memory

— High throughput on parallel tasks
» Executes program on each fragment/vertex

T
« CPUs are great for task parallelism e 4% A\
» GPUs are great for data parallelism [ 1 \\ \ S

CPU vs. GPU (Cont.)

« The design of a CPU is optimized for sequential
code performance.

« The general philosophy for GPU design is to
optimize for the execution of massive number of
threads.

e Graphics chips have been operating at
approximately 10x the bandwidth of =%
contemporaneously available CPU cr((ps AR
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CPU vs. GPU (Cont.)
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CPU- GPU DeS|gn phllosophy

CPU vs. GPU (Cont.)

« GPU is designed as a numeric computing engine
and it will not perform well on some tasks that
CPUs are designed to perform well.

e

 Therefore, most applications will use both CPUs
and GPUs, executing the sequential parts on the
CPU and numeric intensive parts on the GPUs.
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« CUDA programming model is design dftOxSLJppO-Kt
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Major problem

The major problem with traditional
parallel processing applications:

Applications that can be run on a processor with
a small market place will not have a large
customer base! @

The G80 family of CUDA-capable processorsaﬁd
its successors have shipped almost O(f’)\mlﬂlcm o)
units to date. B\ \f

» |IEEE Floating-Point Standard makes it possible to
have predictable results across processors from
different vendors.

e Support for it was not widespread in early GPUs,
but this has changed for the GeForce 8 series.

» The GPUs floating-point arithmetic units are
primarily single precision today but we have
already seen many applications where singlez=*,
precision floating is sufficient. /"',Z-*’“‘f{_' RO




» Until 2006, graphics chips were very difficult to
use because programmers had to use the
equivalent of graphic API to access the processor
cores, (by OpenGL or direct3D techniques)

* This technique was called GPGPU, for General

Purpose Programming using a Graphics = 5
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Processing Unit. [/ I_;’ AR
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« But everything changed in 2007 with the release
of CUDA.

 NVIDIA actually devoted silicon area to facilitate
the ease of parallel programming, so this does not
represent software changes alone; additional
hardware was added to the chip.
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Architecture of a CUDA-capable GPU
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It is organized into

« SP: Streaming Processor

« Each SP has a multiply-add (MAD) unit, and an
additional multiply (MUL) unit, all running at 1.35

GHz.

« SMs: highly threaded Streaming Multiprocessors
— Each SM has 8 streaming processors (SPs)

e Building block: A pair of SMs




Threads per core

* Intel supports 2 or 4 threads per core that is 16
threads on a quad-core!

« The G80 chip supports up to 768 threads per core
that is 12,000 threads on 128 core!

e It's very important to use it efficiently!
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GeForce 8800 Hardware

» The GeForce 8800 of the G8 series contains 16 GPU
chips, or streaming multiprocessors (SMs).

« Each SM chip has eight cores, which currently run at
1.35 GHz.

 The off-chip video memory is currently limited to
1.5 GB.

A single core has a 32-bit single-precision floating
point unit that can also handle integers. (The G9
series will allow 64-bit operations.)

« Each SM chip also has two special functional unites
(SFUs) that are presumab|y shared among the eight




GeForce 8800 Hardware

« The SFUs perform reciprocal, square root, since
and cosine.

e The 16 SMs and 2*nbsp;SFUs per chip imply a
peak theoretical performance of (16 SM * 18
functional units * 1.35 GHYz) FLOPs, or 388.8
gigaflops (388.8 billion floating point operations
per second).

« The aggregate bandwidth to off-chip global
memory is 86.4 GB/s. (In comparison, bandwidth
of CPU to RAM is typically between 5 GB/s and

10 GB/s.) ——

A good implementation on a GPU can achieve
more than 100 times (100x) of speedup over a
CPU.

e If the application includes “data parallelism,” it's a
simple task to achieve a 10x speedup with just a
few hours of work.
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Why more speed up?

 The exciting applications of the future will be what
we currently consider “supercomputing
applications”.

 Microscopes with a supercomputing application
for simulation can help biology!

 Massively parallel processors will continue to e
enhance the size and fidelity of the plctures of‘--

.
HDTVs in the coming years -.ﬁ o\ A -:

Why more speed up?

e Much better user interfaces with three-
dimensional perspectives.

* Physics simulation in the games that can be
based on dynamic simulation rather than pre-
arranged scenes.

e And so on! S
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It depends on the portion of the application
that can be parallelized.

Example 1

» if 40% of the execution time is in the parallel
portion, and we have a 50X speedup, how much
speed-up can be expected from this application?

e Answer:

It will reduce the application execution to 60.8%
that means 1.6X speedup.
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Example 2

* if 99.9% of the execution time is in the parallel
portion, and we have a 50X speedup, how much
speed-up can be expected from this application?

e Answer:

It will reduce the application execution to 2.098%
that means 47.5X speedup.

[l Traditional applications

D Current architecture
coverage

D New applications

Domain-specific
architecture coverage
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Web Resources

« CUDA ZONE:
http://www.nvidia.com/object/cuda_education.html

e David Kirk and Wen-mei W. Hwu, Lecture Notes of
Programming Massively Parallel Processors,
University of lllinois, Urbana-Champaign, 2009

 Rob Farber, “CUDA, Supercomputing for the
Masses”, Dr. Dobb’s Journal, can be found at:

http://www.ddj.com/hpc-high-performance-
computing/
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