
CUDACUDA
Session 2

CUDA Programming CUDA Programming
Model

Hadi Salimi and Nima Ghaemian
Distributed Systems Lab.

School of Computer EngineeringSchool of Computer Engineering,
Iran University of Science and Technology,
hsalimi@iust.ac.ir and nima@comp.iust.ac.ir

Data parallelism in matrix multiplication

N

• Matrix multiplication of large
dimensions can have very large

W
ID

T
H

amount of data parallelism

W

M P

• Note that the dot product
operations for computing

W
ID

T
H

operations for computing
different P elements can be
simultaneously performed.

2
WIDTH WIDTH

CUDA program structure

CUDA Programs in general is divided into two parts:

• The host part (CPU)
– This part have a little or no data parallelism

– This part is compiled with the host's standard C
compilers and executed on CPU

• The device part (GPU)
– This part has rich amounts of data parallelism

– This part is compiled by the NVCC (NVIDIA C Compiler)
and executed on a GPU device.

CUDA program execution

Serial Code (host)

Parallel Kernel (device)
. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

4

. . .
()

KernelB<<< nBlk, nTid >>>(args);

Kernel functions

Th d i t f th d i itt i ANSI• The device part of the code is written using ANSI
C extended with keywords for labeling data-
parallel functions (kernel functions)parallel functions (kernel functions).

• The kernel functions generate too many threads• The kernel functions generate too many threads
to utilize data parallelism.

• From now on, we call “kernel functions” as
“kernels” for simplificationkernels for simplification.

CUDA host code example

Int main(void) {

1 // All t d i iti li th (h h)1. // Allocate and initialize the arrays (on the host)

// I/O to read the input arrays (on the host)

….

2. // Call a kernel function on the device

ComputeOnDevice(arrays);

3. // I/O to write the output (on the host)

// Free arrays (on the host)

…

return 0;

}

CUDA device memory model

Host

CUDA device memory model (Cont.)

• The host code can:
– Read/Write per grid global, constant and texture

memories (stored in DRAM)

• Each thread (Device code) can:
– Read/Write per-thread registers

/– Read/Write per-thread local memory

– Read/Write per-block shared memory

Read/Write per grid global memory– Read/Write per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memoryRead only per grid texture memory

CUDA API functions

Grid

• cudaMalloc()

• cudaFree()

Block (0, 0) Block (1, 0)

• cudaFree() Shared Memory

Registers Registers

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Global
Memory

Host

cudaMalloc()&cudaFree()

• cudaMalloc(void* p , int size): can be called from
the host to allocate a piece of Global Memory forthe host to allocate a piece of Global Memory for
an object.

• The first parameter: the address of a pointer that• The first parameter: the address of a pointer that
needs to point to the allocated object.

• The second parameter: the size of the object to beThe second parameter: the size of the object to be
allocated.

d F (id*) i ll d ith th i t t th• cudaFree(void*): is called with the pointer to the
allocated object as parameter to free the storage
space from the Global Memoryspace from the Global Memory.

Example

C t i t Di 100Const int Dim=100; //Dimension of the 2D array

float *Od //d means that the pointer is on the device

int size = Dim * Dim * sizeof(long);

cudaMalloc((void**)&Od, size);

… //do something on the devic

cudaFree(Od);

CUDA Host-Device Data Transfer

Host

cudaMemcpy()

d M (id* id* i t)cudaMemcpy(void* , void* , size , type)
– memory data transfer

parameters:– parameters:
• First parameter: Pointer to destination

• Second parameter: Pointer to source

• Third parameter: Number of bytes copied

• Fourth parameter: Type of transfer:

– Host to HostHost to Host

– Host to Device

– Device to Host

D i t D i– Device to Device

Example 1

• cudaMemcpy(Od O size cudaMemcpyHostToDevice);• cudaMemcpy(Od, O, size, cudaMemcpyHostToDevice);

• // Copy the size bytes of the O object on the host to the Od
object on the device.j

• cudaMemcpy(O, Od, size, cudaMemcpyDeviceToHost);

• //Copy the size bytes of the Od object on the device to the
O object on the host.

Example 2

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

1. // Load M and N to device memory

cudaMalloc(Md, size);

cudaMemcpy(Md M size cudaMemcpyHostToDevice);cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(Pd, size);

2. // Kernel code

…

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

SPMD

• SPMD:

All th d f ll l h t thAll threads of a parallel phase execute the same
code, thus CUDA programming can be
categorized as SPMD (Single-Program Multiple-categorized as SPMD (Single-Program Multiple-
Data).

• “__global__” keyword :

• This keyword indicates that the function executed• This keyword indicates that the function executed
on the device as a kernel function and is Callable
from the host only to create a grid of threads that y g
all execute the kernel function.

Built-in Variables

• gridDim

This variable is of type dim3 and contains the dimensionsThis variable is of type dim3 and contains the dimensions
of the grid.

• blockIdx

This variable is of type uint3 and contains the block index
within the grid.

bl kDi• blockDim

This variable is of type dim3 and contains the dimensions
of the block.of the block.

• threadIdx

This variable is of type uint3 and contains the thread
indexwithin the block.

Grid and block dimension

• Each grid has one or more thread blocks.g

• All blocks in a grid have the same number of
threads that organized in the same manner.g

• Each grid has a unique two dimensional
coordinate given by the CUDA specific keywords
blockIdx.x and blockIdx.y.

• The coordinates of threads in a block are uniquely
defined by three thread indices: threadIdx.x,
threadIdx.y, and threadIdx.z.

Calling a kernel

// Setup the execution configurationp g

dim3 dimBlock(Dim1, Dim2, Dim3);

dim3 dimGrid(gridDim.x, gridDim.y);dim3 dimGrid(gridDim.x, gridDim.y);

/*The values of gridDim.x and gridDim.y can be
anywhere between 1 and 65,536.*/y ,

// Launch the device computation threads!

M t i M lK l<<<di G id di Bl k>>>(MdMatrixMulKernel<<<dimGrid, dimBlock>>>(Md,
Nd, Pd);

Programming Model (SPMD + SIMD)

Programming Model (SPMD + SIMD)

• A kernel is executed as a grid of thread blocks

A th d bl k i b t h f th d th t• A thread block is a batch of threads that can
cooperate with each other by:

Synchronizing their execution– Synchronizing their execution
• For hazard-free shared memory accesses

– Efficiently sharing data through a low latency shared y g g y
memory

• Two threads from two different blocks cannot
cooperate

Thread Assignment

SM 1SM 0
t0 t1 t2 … tm

SP

MT IU

SP

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

Blocks

Shared
Memory

Shared
Memory

Each block is assigned to a SM (Streaming Multiprocessor)

Hardware Constraints

GeForce 8800 hardware constraints:

• 512 threads per thread block

• 8 thread blocks per SM• 8 thread blocks per SM

• 768 threads per SM > 768x16=12,288 threads totally!

16 384 b t f h d h SM• 16,384 bytes of shared cache per SM

• 8,192 total registers per SM (shared among all
thread blocks assigned to that SM)thread blocks assigned to that SM)

Example 1

Which is false?

1. dim3 dimBlock(32, 8, 2);

2. dim3 dimBlock(16, 3, 8);(, ,);

3. dim3 dimBlock(8, 13, 4);

4. dim3 dimBlock(8, 9, 8);4. dim3 dimBlock(8, 9, 8);

The answer is: 4The answer is: 4

because the number of threads per block is greater
than 512, it defines 576(8x9x8) threads per block!than 512, it defines 576(8x9x8) threads per block!

Example 2

Which is false?
Th th d b i d t h SM ld b i th f fThe threads can be assigned to each SM could be in the form of:

1. 4 blocks of 156 threads each

2 3 blocks of 256 threads each2. 3 blocks of 256 threads each

3. 8 blocks of 228 threads each

4 12 bl k f 64 th d h4. 12 blocks of 64 threads each

The answer is: 4

because the number of blocks per SM is greater
th 8!than 8!

Web Resources

• CUDA ZONE:
htt // idi / bj t/ d d ti ht lhttp://www.nvidia.com/object/cuda_education.html

• David Kirk and Wen-mei W. Hwu, Lecture Notes of
Programming Massively Parallel ProcessorsProgramming Massively Parallel Processors,
University of Illinois, Urbana-Champaign, 2009

• Rob Farber “CUDA Supercomputing for the• Rob Farber, CUDA, Supercomputing for the
Masses”, Dr. Dobb’s Journal, can be found at:

http://www ddj com/hpc-high-performance-http://www.ddj.com/hpc-high-performance-
computing/

Acknowledgment

• Special Thanks to Mr. Ebrahim Khademi for his
technical commentstechnical comments.

Any Questions?

Any Question?Any Question?

