Concurrent Programming
Session 4: Parallel Programming Styles

Computer Engineering Department
Iran University of Science and Technology
Tehran, Iran

Instructor: Hadi Salimi

Distributed Systems Lab.

Computer Engineering Department,

Iran University of Science and Technology,
hsalimi@iust.ac.ir

Concurrent Programming Paradigms

e |terative Parallelism

» Recursive Parallelism

* Producers and Consumers (Pipeline)
e Client and Servers

e Interacting Peers

Iterative Parallelism

 An iterative parallel program contains
two or more iterative processes.

» Each process computes results for a
subset of the data, then the results are
combined.

Matrix Multiplication

double a[n,n], b[n,n], cln,n];

for [1 = 0 to n-1] {
for [j = 0 to n-1] {
compute inner product of a[i,*] and b[*,]]
cl[i,j] = 0.0;
for [k = 0 to n-1]
cli,j] = cli,j] + ali, k]*blk,3];

An embarrassingly parallel application.

Parallelism Condition

» Two operations can be executed in
parallel if they are independent.

» Two operations are independent if their
write sets are disjoint.

Parallel Version

co [i =0 to n-1] { # compute rows in parallel
for [=0 to n-1] {
= 0.0;
for [k =0 to n-1]
1] = e[i,3] + ali,k]*b[k,j];

co [§ =0 to n-1] { # compute columns in parallel
for [1 =0 to n-1] {
el[i,j] = 0.0;
for [k =
]

0 to n-1]
= c[i,j] + ali,k]l*blk,3]:

Another Version

co [1 =0 ton-1, =0 to n-1] { # all rows and
celi,j] = 0.0; # all columns
for [k =0 to n-1]
e[i,j] = e[i,]j] + a[i k]*bl[k,]3];

Recursive Parallelism

e Some recursive calls can be done
recursively if:

> The procedure does not reference global
variables or only reads them

> Reference and result variables, if any, are
distinct

Iterative Version

double fleft f(a), fright, area = 0.0;
double width (b-a) / INTERVALS:;
for [= (a + width) to b by width] {
fright = £ (x);
area = area + (fleft + fright) * width / 2;
fleft = fright;

Is this program parallelizable?

Recursive Version

double quad(double left,right,fleft,fright,lrarea) {
double mid = (left + right) / 2;
double fmid = f£(mid) ;
double larea (fleft+fmid) * (mid-left) / 2;
double rarea (fmid+fright) * (right-mid) / 2;
if (abs((lareat+rarea) - lrarea) > EPSILON) {
recurse to integrate both halves
larea = quad(left, mid, fleft, fmid, larea):;
rarea = quad(mid, right, fmid, £fright, rarea);
}

return (larea + rarea);

Producers and Consumers

e Consumer processes
* Producer processes
* Unix pipes

Sed —f script $* tbl | eng | groff Maros -

Client and Servers

* Web Servers
* File Servers
e Database Management Servers

Interacting Peers

* Being client or server is just a rule

* In a peer-to-peer system each node may
be client or server.

» There may be a data flow among peers.

