Concurrent Programming
Session 5: Shared Variable Programming

Computer Engineering Department
Iran University of Science and Technology
Tehran, Iran

Instructor: Hadi Salimi

Distributed Systems Lab.

Computer Engineering Department,

Iran University of Science and Technology,
hsalimi@iust.ac.ir

Definitions

* State of a Program

> The state consists of the values of the program
variables at a point of time.

> Both implicit and explicit variables
 History (trace)
o A particular execution of a program can be
viewed as a history: SO = S| - S2 5 ... 2 SN
e Question!?

o Starting from an initial state, is it possible to make
two different histories?
For both parallel and sequential program?

Histories

» About histories
> Some are not valid at all
> Some are not desirable
e The role of synchronization is to

constrain the possible histories to
desirable ones.

Program Properties

* A property is an attribute that is true of
every possible history of that program.

e There are two kind of attributes:

° the program never enters a bad state
0 the program eventually enters a
good state.

e Mutual Exclusion is an example of safety.
e Termination is an example of liveness.

. one can go about safety or liveness
satisfaction!?

Critical Section

* From some viewpoint, a

is

the implementation of an atomic action in

software.

e Unlike hardware, the atomic structures
should be constructed at software level

(in which layer?).

Race Conditions

Spocler
directary
abe | out-a |
prog.c
prag.n
| in=7 |

» Two processes want to access shared memory at
same time.What happens if they try to access it

simultaneously?

Race Conditions (cont.)

e Situations like this are called race
conditions.

e What will happen if two processes
execute the following code!?

X=0;

Read(x);
X++;
Write(x);

Critical Sections

* We should prohibit more than one
process from reading and writing the
shared data at the same time.

¢ In other words, what we need is mutual
exclusion.

* The part of the program where the
shared memory is accessed is called the
critical section or critical region.

Critical Sections

 Four properties should satisfied:

[e]
o
o

[e]

* Which one is a safety property?
* Which one is a liveness property?

Locks (an example)

#idefine FALSE 0
#defing TRUE 1

#define N 2 /* number of processes */

int turn; f= whose fum is it7 */

int interested{N]; [+ all values initially O (FALSE} */

void enter_region(int process); /> process is0 or 1*/

{
int other. /* numbet of the other process */
other = 1 — process; /* ihe opposite of process */
interastedprocess] = TRUE; /* show that you are interested */
turn = other ; i* set flag */
while (turn == other && interested[cther] == TRUE) / null statement */;

i

void leave _region(int process) /* process: who is leaving */

interested[process] = FALSE; /* indicate depaiture from critical region */

Locks!?

* |s there any scalability problem with the
mentioned solution?

e What’s the solution?

Spin Locks

¢ In the case of an spin lock, all processes spin
around a single lock variable

* The lock variable can be protected by means
of hardware or software techniques.

enier_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER#0 | was lock zerg?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave_region:
MOVE LOCK #0 | stere a 0 in lock
RET| return to calter

Sleep and Wakeup

* The described solutions requiring busy
waiting.

e |s also can have unexpected effects like
priority inversion:
> There is two processes H and L.
> H has higher priority than L.

o Lis in its critical section and H becomes
ready.

> What happens!?

Semaphore

* In many problems there is a need to
count an event, like producing an item or
consuming it.

* Accessing to this counter should be
protected against concurrent processes.

* Such a protected counter is called a
semaphore which has more features.

Semaphore (cont.)

Two operators are defined on a semaphore:
Down and Up (generalizations of sleep and
wakeup)

Down(int& x){ | |Up(int& x) {
If (X > 0) If (there is any waiting process)
. Pick a process from queue and make it
X== ready;
else else
Sleep() }; x++ };

Semaphore (cont.)

* How to protect a critical section using
semaphores!?

ints = 1;
Down(s);
Critical Section
Up(s);

Semaphore (cont.)

Consider a resource which can be shared
by 3 processes. How accessing this device
can be protected using semaphores?

int x = 3;
Down(x);

Accessing the shared resource.

Up(x);

Monitors

e To make it easier to write correct
programs, a higher level primitive called
monitor is introduced.

e It is a collection of procedures, variables
and data structures that are all grouped in
a package.

e An important property:
> Only one process can be active in a monitor

at any time.

Monitors (cont.)

monitor example
int X;
procedure producer(x)

end;

procedure consumer(x)

end,;

Monitors (cont.)

e Monitors are a programming language
construct, so the compiler should handle
calls to procedures.

* When a process calls a monitor
procedure, the first few instructions of
the procedure will check to see if any
other process is currently active or not.

