
Concurrent Programming
Session 5: Shared Variable ProgrammingSession 5: Shared Variable Programming

Computer Engineering Department
I U i i f S i d T h lIran University of Science and Technology

Tehran, Iran

Instructor: Hadi SalimiInstructor: Hadi Salimi
Distributed Systems Lab.Distributed Systems Lab.
Computer Engineering DepartmentComputer Engineering DepartmentComputer Engineering Department,Computer Engineering Department,
Iran University of Science and Technology,Iran University of Science and Technology,
hsalimi@iust.ac.irhsalimi@iust.ac.ir

DefinitionsDefinitionsDefinitionsDefinitions

State of a Program
◦ The state consists of the values of the program

variables at a point of time.
◦ Both implicit and explicit variables◦ Both implicit and explicit variables
History (trace)
◦ A particular execution of a program can be A particular execution of a program can be

viewed as a history: S0 S1 S2 … SN
Question?
◦ Starting from an initial state, is it possible to make

two different histories?
For both parallel and sequential program?For both parallel and sequential program?

HistoriesHistoriesHistoriesHistories

About histories
◦ Some are not valid at all
◦ Some are not desirable

The role of synchronization is to
constrain the possible histories to constrain the possible histories to
desirable ones.

Program PropertiesProgram PropertiesProgram PropertiesProgram Properties

A property is an attribute that is true of
every possible history of that program.
There are two kind of attributes:
◦ Safety: the program never enters a bad state
◦ Liveness: the program eventually enters a

d t t good state.
Mutual Exclusion is an example of safety.
T i i i l f li Termination is an example of liveness.
How one can go about safety or liveness

ti f ti ?satisfaction?

Critical SectionCritical SectionCritical SectionCritical Section

From some viewpoint, a Critical Section is p
the implementation of an atomic action in
software.
Unlike hardware, the atomic structures
should be constructed at software level
(in which layer?).

Race ConditionsRace ConditionsRace ConditionsRace Conditions

Two processes want to access shared memory at
same time. What happens if they try to access it
i l l ?simultaneously?

Race Conditions (cont)Race Conditions (cont)Race Conditions (cont.)Race Conditions (cont.)

Situations like this are called race
conditions.
What will happen if two processes at w appe two p ocesses
execute the following code?

X=0;
……
Read(x);
X++;
Write(x);Write(x);

Critical SectionsCritical SectionsCritical SectionsCritical Sections

We should prohibit more than one p
process from reading and writing the
shared data at the same time.
In other words, what we need is mutual
exclusion.
The part of the program where the
shared memory is accessed is called the shared memory is accessed is called the
critical section or critical region.

Critical SectionsCritical SectionsCritical SectionsCritical Sections

Four properties should satisfied:p p
◦ Mutual Exclusion
◦ Absence of Deadlock
◦ Absence of Unnecessary Delay
◦ Eventual Termination

Which one is a safety property?
Which one is a liveness property?Which one is a liveness property?

Locks (an example)Locks (an example)Locks (an example)Locks (an example)

Locks?Locks?Locks?Locks?

Is there any scalability problem with the y y p
mentioned solution?
What’s the solution?at s t e so ut o ?

Spin LocksSpin LocksSpin LocksSpin Locks
In the case of an spin lock, all processes spin
around a single lock variable
The lock variable can be protected by means
f h d ft t h iof hardware or software techniques.

Sleep and WakeupSleep and WakeupSleep and WakeupSleep and Wakeup

The described solutions requiring busy q g y
waiting.
Is also can have unexpected effects like s a so ca ave u e pecte e ects e
priority inversion:
◦ There is two processes H and L.There is two processes H and L.
◦ H has higher priority than L.
◦ L is in its critical section and H becomes L is in its critical section and H becomes

ready.
◦ What happens?W at appe s?

SemaphoreSemaphoreSemaphoreSemaphore

In many problems there is a need to y p
count an event, like producing an item or
consuming it. g
Accessing to this counter should be
protected against concurrent processes.p g p
Such a protected counter is called a
semaphore which has more features semaphore which has more features.

Semaphore (cont)Semaphore (cont)Semaphore (cont.)Semaphore (cont.)

Two operators are defined on a semaphore: Two operators are defined on a semaphore:
Down and Up (generalizations of sleep and
wakeup)wa eup)

Down(int& x){ Up(int& x) {
If (x > 0)

x--;
If (there is any waiting process)

Pick a process from queue and make it
ready;

else
Sleep() };

ready;

else
++ }Sleep() }; x++ };

Semaphore (cont)Semaphore (cont)Semaphore (cont.)Semaphore (cont.)

How to protect a critical section using p g
semaphores?

int s = 1;
D ()Down(s);
Critical Section
Up(s); Up(s);

Semaphore (cont)Semaphore (cont)Semaphore (cont.)Semaphore (cont.)

Consider a resource which can be shared
by 3 processes. How accessing this device
can be protected using semaphores?p g p

int x = 3;
D ()Down(x);
…
Accessing the shared resourceAccessing the shared resource.
…
Up(x); Up(x);

MonitorsMonitorsMonitorsMonitors

To make it easier to write correct
programs, a higher level primitive called
monitor is introduced.
It is a collection of procedures, variables
and data structures that are all grouped in g p
a package.
An important property: An important property:
◦ Only one process can be active in a monitor

at any time. at any time.

Monitors (cont)Monitors (cont)Monitors (cont.)Monitors (cont.)

monitor examplep
int x;

procedure producer(x)procedure producer(x)
…
dend;

procedure consumer(x)
…
end;;

Monitors (cont)Monitors (cont)Monitors (cont.)Monitors (cont.)

Monitors are a programming language p g g g g
construct, so the compiler should handle
calls to procedures. p
When a process calls a monitor
procedure, the first few instructions of p ,
the procedure will check to see if any
other process is currently active or not. p y

