
Concurrent Programming
Session 6: Thread Management and Session 6: Thread Management and

Synchronization on Win32

Computer Engineering Department
Iran University of Science and Technology

Tehran, Iran

Instructor: Hadi SalimiInstructor: Hadi Salimi
Distributed Systems LabDistributed Systems LabDistributed Systems Lab.Distributed Systems Lab.
Computer Engineering Department,Computer Engineering Department,
Iran University of Science and Technology,Iran University of Science and Technology,
hsalimi@iust ac irhsalimi@iust ac irhsalimi@iust.ac.irhsalimi@iust.ac.ir

Objects and HandlesObjects and HandlesObjects and HandlesObjects and Handles
An (operating system) object is a data structure
that represents a system resource e g file that represents a system resource, e.g., file,
thread, bitmap.

A li i d di l bj An application does not directly access object
data or the resource that an object represents.
Instead the application must acquire an object
h dl hi h i i dif h handle which it uses to examine or modify the
state of the system resource.

Each handle refers to an entry in an internal
object table that contains the address of a
resource and means to identify the resource type.y yp

Handle and ObjectsHandle and ObjectsHandle and ObjectsHandle and Objects
The win32 API provides functions which:

◦ Create, get, close, destroy an object

◦ Set and get information about the object

Objects fall into one of three categories:

◦ kernel objects: used to manage memory, process and kernel objects: used to manage memory, process and
thread execution, and inter-process communication

◦ user objects: used to support window management

◦ gdi objects: supporting graphics operations

ExamplesExamplesExamplesExamples
Windows kernel Objects: kernel32.dll

E fil d i◦ Events, files and pipes

◦ Memory-Mapped Files

◦ Mutex and Semaphore objectsp j

◦ Processes and Threads

GDI Objects: gdi32.dllGDI Objects: gdi32.dll

◦ pens, brushes, fonts and bitmaps

U Obj t 32 dllUser Objects: user32.dll

◦ Windows, hooks, menus, mouse cursors

ThreadsThreadsThreadsThreads
• A thread is a path of execution through a program’s

code plus a set of resources (stack register state code, plus a set of resources (stack, register state,
etc) assigned by the operating system.

• A thread lives in one and only one process A • A thread lives in one and only one process. A
process may have one or more threads.

• Each thread in the process has its own call stack but • Each thread in the process has its own call stack, but
shares process code and global data with other
threads in the process.

• Pointers are process specific, so threads can share
pointers.

Threads vs ProcessesThreads vs ProcessesThreads vs. ProcessesThreads vs. Processes
A Process is inert. A process never executes anything; it
i i l i f h dis simply a container for threads.

Threads run in the context of a process. Each process
has at least one thread.has at least one thread.

A thread represents a path of execution that has its
own call stack and CPU state.

Threads vs ProcessesThreads vs ProcessesThreads vs. ProcessesThreads vs. Processes

Process

Global Variables

Process Heap

Process Environment Strings

Thread1 Stack Thread2 Stack Thread3 Stack

Thread1 Thread2 Thread3Thread1 Thread2 Thread3

Thread SchedulingThread SchedulingThread SchedulingThread Scheduling

Windows XP, 2000 and NT are
preemptive multi-tasking systems. Each
task is scheduled to run for some brief
time period before another task is given
control of CPU.

Threads are the basic unit of scheduling g
on current Win32 platforms.

Thread BenefitsThread BenefitsThread BenefitsThread Benefits
Keeping user interfaces responsive even if required

i k l i lprocessing takes a long time to complete.

◦ handle background tasks with one or more threads

◦ service the user interface with a dedicated thread◦ service the user interface with a dedicated thread

Take advantage of multiple processors available for a
computation.

Avoid low CPU activity when a thread is blocked Avoid low CPU activity when a thread is blocked
waiting for response from a slow device or human by
allowing other threads to continue.

Avoid BlockingAvoid BlockingAvoid BlockingAvoid Blocking

Non-Blocking Communication in Asynchronous System

Process #2Process #1

receiversender
function sending

data to
Process #2

interprocess
communication

FIFO queue

processing
thread

receiver
thread

function receiving
data from

Process #1

Potential Problems with ThreadsPotential Problems with ThreadsPotential Problems with ThreadsPotential Problems with Threads
Conflicting access to shared memory

 th d b i ti h d i d d ◦ one thread begins an operation on shared memory, is suspended,
and leaves that memory region incompletely transformed

Race Conditions occur when:Race Conditions occur when:
◦ correct operation depends on the order of completion of two

or more independent activities

Starvation
◦ a high priority thread dominates CPU resources, preventing

lower priority threads from running often enough or at alllower priority threads from running often enough or at all.

Deadlock

MFC and Win32 APIMFC and Win32 APIMFC and Win32 APIMFC and Win32 API

Developers can work with threads using p g
either Windows API or supplementary
libraries such as MFC.

Using such libraries abstracts developers Using such libraries abstracts developers
viewpoint form detailed and complex
concepts of the operating system concepts of the operating system.

Creating ThreadsCreating ThreadsCreating ThreadsCreating Threads
CWinThread* AfxBeginThread(pfnThreadProc, pParam)

pfnThredProc
Pointer to the thread function

pParamp
Parameter that is passed to the thread
function. function.

void AfxEndThread(nExitCode , bDelete)void AfxEndThread(nExitCode , bDelete)

Thread SynchronizationThread SynchronizationThread SynchronizationThread Synchronization

Synchronizing threads means that every y g y
access to data shared between threads is
protected.p

The principle means:The principle means:
◦ Interlocked increments
◦ Critical Sections
◦ Mutexes
◦ Events

Interlocked OperationsInterlocked OperationsInterlocked OperationsInterlocked Operations
InterlockedIncrement increments a 32 bit
i t t i ti It i integer as an atomic operation. It is
guaranteed to complete before the
incrementing thread is suspended.g p

long value = 5;
InterlockedIncrement(&value);InterlockedIncrement(&value);

InterlockedDecrement decrements a 32 bit
i i iinteger as an atomic operation:

InterlockedDecrement(&value);();

Win32 Critical SectionsWin32 Critical SectionsWin32 Critical SectionsWin32 Critical Sections

CCriticalSection is an MFC class used to
protect a critical region against
concurrent thread access.

CCriticalSection cs;
cs.lock();

 // desired critical region… // desired critical region

U l k()cs.Unlock();

MFC MutexesMFC MutexesMFC MutexesMFC Mutexes
A mutex synchronizes access to a resource
shared between two or more threadsshared between two or more threads.
◦ CMutex constructs a mutex object
◦ Lock locks access for a single thread

U l k l h f i i i b ◦ Unlock releases the resource for acquisition by
another thread

CMutex cm;CMutex cm;
cm.Lock();

// access a shared resource
cm.Unlock();

CMutex objects are automatically released if
the holding thread terminates.

CSingleLockCSingleLock & & CMultiLockCMultiLockCSingleLockCSingleLock & & CMultiLockCMultiLock
CSingleLock and CMultiLock classes can be used

 i i l i d to wrap critical sections, mutexes and events,.

CCriticalSection cs;
CSingleLock slock(cs);
slock.Lock();

// do some work on a shared resource// do some work on a shared resource
slock.Unlock();

Th CS l L k b ll l l k f This CSingleLock object will release its lock if an
exception is thrown inside the synchronized area,
because its destructor is called. That does not
happen for the unadorned critical section.

