
Concurrent Programming
S 7 1 P ll l Al hSession 7-1: Parallel Algorithms

Computer Engineering DepartmentComputer Engineering Department
Iran University of Science and Technology

Tehran, Iran

Instructor: Hadi SalimiInstructor: Hadi Salimi
Presenter: Arash KhosravianiPresenter: Arash Khosraviani
Distributed Systems LabDistributed Systems LabDistributed Systems Lab.Distributed Systems Lab.
Computer Engineering Department,Computer Engineering Department,
Iran University of Science and Technology,Iran University of Science and Technology,
hsalimi@iust ac irhsalimi@iust ac irhsalimi@iust.ac.irhsalimi@iust.ac.ir

MotivationMotivationMotivationMotivation

Computer world move toward parallelismp p
Parallelism tools is improving these days
◦ Hardware: Multi Core CPUs, GPUs, Hardware: Multi Core CPUs, GPUs,

Computer Network …
◦ OS: Support Multitasking and Multithreading, pp g g,

Network Management Capabilities, …
◦ Software Development Tools: PThread, p

Cilk++, OpenMP, TBB, MPI, …

So Algorithms should be paralleled too!g p

Problem DecompositionProblem DecompositionProblem DecompositionProblem Decomposition

The first step in developing a parallel p p g p
algorithm is to decompose the problem
into tasks that can be executed
concurrently
A given problem may be decomposed g p y p
into tasks in many different ways
In general the number of tasks in a In general, the number of tasks in a
decomposition exceeds the number of
processing elements availableprocessing elements available

Decomposition TechniquesDecomposition TechniquesDecomposition TechniquesDecomposition Techniques

So how does one decompose a task into p
various subtasks?

◦ recursive decomposition
◦ data decompositiondata decomposition
◦ exploratory decomposition
◦ speculative decompositionspeculative decomposition

Recursive Decomposition (R D)Recursive Decomposition (R D)Recursive Decomposition (R.D.)Recursive Decomposition (R.D.)
Generally suited to problems that are
solved using the divide-and-conquer
strategy

A given problem is first decomposed into
 f b bl a set of sub-problems.

These sub-problems are recursively
decomposed further until a desired

l it i h d granularity is reached

Warm up: FibonacciWarm up: FibonacciWarm up: FibonacciWarm up: Fibonacci

FIB(n) ()
1 if n < 2
2 then return n2 then return n
3 return FIB(n− 1) + FIB(n− 2)

Can Anybody make it Parallel?
It’s so simple!

Warm up: Parallel FibonacciWarm up: Parallel FibonacciWarm up: Parallel FibonacciWarm up: Parallel Fibonacci
P-FIB(n)
1 if n < 2
2 then return n
3 X = P-FIB(n− 1)
4 Y = P-FIB(n− 2)

one processing
element do this

the other do this()
5 return X + Y

We can make it parallel simply
using Pthreads, Cilk++, OpenMPusing Pthreads, Cilk , OpenMP

Warm up: Parallel Fibonacci (cont.)Warm up: Parallel Fibonacci (cont.)Warm up: Parallel Fibonacci (cont.)Warm up: Parallel Fibonacci (cont.)

R D Capable AlgorithmsR D Capable AlgorithmsR.D. Capable AlgorithmsR.D. Capable Algorithms

We are able to decompose the recursive p
algorithms easily, cause they are
decomposed by default!p y
◦ Quick Sort and Merge Sort
◦ Eight Queeng Q
◦ Hanoi tower
◦ …

But we can make parallel some other part
of these algorithms tooof these algorithms too.

Parallel Merge SortParallel Merge SortParallel Merge SortParallel Merge Sort

Merge-Sort(A, beg, end)g (g)
1 if beg < end
2 then mid = (beg + end)/22 then mid (beg + end)/2
3 Merge-Sort(A, beg, mid)
4 M S t(A id + 1 d)4 Merge-Sort(A, mid + 1, end)
5 P-Merge(A, beg, mid, mid+1, end)
6 return

Each processing element do one of these.p g f

Parallel MergeParallel MergeParallel MergeParallel Merge
P-MERGE(T, p1, r1, p2, r2, A, p3)
1 n1 = r1 - p1 + 1p
2 n2 = r2 - p2 + 1
3 if n1 < n2
4 exchange p1 with p2

Sorted sub array T[p1…r1]Sorted sub array T[p2…r2]Result array A[p3…r3]

5 exchange r1 with r2
6 exchange n1 with n2
7 if n1 == 0
8 return8 return
9 else q1 = [(p1 + r1)/2]
10 q2 = BINARY-SEARCH(T [q1], T, p2, r2)
11 q3 = p3 + (q1 - p1) + (q2 – p2)11 q3 p3 (q1 p1) (q2 p2)
12 A[q3] = T[q1]
13 P-MERGE(T, p1, q1 – 1, p2, q2 – 1, A, p3)
14 P-MERGE(T, q1 + 1, r1, q2, r2, A, q3 + 1)

Parallel MergeParallel MergeParallel MergeParallel Merge
P-MERGE(T, p1, r1, p2, r2, A, p3)
1 n1 = r1 - p1 + 1p
2 n2 = r2 - p2 + 1
3 if n1 < n2
4 exchange p1 with p2

without loss of generality,
larger array should be first

5 exchange r1 with r2
6 exchange n1 with n2
7 if n1 == 0
8 return

Both empty?
8 return
9 else q1 = [(p1 + r1)/2]
10 q2 = BINARY-SEARCH(T [q1], T, p2, r2)
11 q3 = p3 + (q1 - p1) + (q2 – p2)11 q3 p3 (q1 p1) (q2 p2)
12 A[q3] = T[q1]
13 P-MERGE(T, p1, q1 – 1, p2, q2 – 1, A, p3)
14 P-MERGE(T, q1 + 1, r1, q2, r2, A, q3 + 1)

Each processing element do one of these.

Parallel Merge (cont)Parallel Merge (cont)Parallel Merge (cont.)Parallel Merge (cont.)

Another R D ExampleAnother R D ExampleAnother R.D. ExampleAnother R.D. Example

The problem of finding the minimum p g
number in a given list (or indeed any
other associative operation such as sum, p
AND, etc.) can be fashioned as a divide-
and-conquer algorithm.q g

Serial MinimumSerial MinimumSerial MinimumSerial Minimum
MIN (A, n)
1 min = A[1];
2 for i = 2 to n
3 if A[i] < min
4 min = A[i];4 min A[i];
5 return min;

Parallel MinimumParallel MinimumParallel MinimumParallel Minimum
REC-MIN (A, n)
1 if 1 1 if n == 1
2 min = A[1] ;
3 else3 else
4 lmin = REC-MIN(A[1], n/2)
5 rmin = REC-MIN(A[n/2], n - n/2)
6 if lmin < rmin
7 min = lmin
8 else8 else
9 min = rmin
10 return min

Parallel Minimum (cont)Parallel Minimum (cont)Parallel Minimum (cont.)Parallel Minimum (cont.)

As you see we can rewrite loop to have y p
recursive decomposition

Now if have n/2 processing element, we
can have a more efficient algorithmcan have a more efficient algorithm

Parallel Minimum (cont)Parallel Minimum (cont)Parallel Minimum (cont.)Parallel Minimum (cont.)
P-MIN (A, n)
1 p = index of this processor1 p = index of this processor
2 gap = 1
3 for step = 1 to log(n)
4 if (p % gap) 0

If this processor needs
to execute in this step

4 if (p % gap) == 0
5 first = A[2*p – 1]
6 second = A[2*p – 1 + gap]
7 if fi d7 if first < second
8 A[2*p – 1] = first
9 else
10 A[2*p – 1] = second
11 gap = gap * 2
12 return A[1][]

Each processing element,
individually do one iteration of this loop

Data DecompositionData DecompositionData DecompositionData Decomposition

Identify the data on which computations y p
are performed
Partition this data across various tasksa t t o t s ata ac oss va ous tas s
This partitioning induces a decomposition
of the problemof the problem
Data can be partitioned in various ways.
this critically impacts performance of a this critically impacts performance of a
parallel algorithm

Serial MatrixSerial Matrix--Vector MultiplicationVector MultiplicationSerial MatrixSerial Matrix Vector MultiplicationVector Multiplication

MAT-VEC (A, X, Y, n)()
1 for i = 1 to n
2 for j = 1 to n2 for j 1 to n
3 Y[i] = Y[i] + A[i][j]. x[j]
4 t Y4 return Y

For this problem, we should decompose the matrix data.
of course we can do others!

Parallel MatrixParallel Matrix--Vector MultiplicationVector MultiplicationParallel MatrixParallel Matrix Vector MultiplicationVector Multiplication

P-MAT-VEC (A, X, Y, n, beg, end)
1 if beg == end
2 for j = 1 to n
3 Y[beg] = Y[beg] + A[beg][j].X[j]
4 else mid = [(beg + end)/2][(g)/]
5 P-MAT-VEC(A, X, Y, n, beg, mid)
6 P-MAT-VEC(A, X, Y, n, mid+1, end)(, , , , ,)
7 return

Each processing element do one of these.

Parallel MatrixParallel Matrix--Vector Multiplication (cont.)Vector Multiplication (cont.)Parallel MatrixParallel Matrix Vector Multiplication (cont.)Vector Multiplication (cont.)

Matrix MultiplicationMatrix MultiplicationMatrix MultiplicationMatrix Multiplication
Consider the problem of multiplying two n x n matrices
A d B i ld i C Th i C b A and B to yield matrix C. The output matrix C can be
partitioned into four tasks as follows

Parallel Matrix MultiplicationParallel Matrix MultiplicationParallel Matrix MultiplicationParallel Matrix Multiplication
P-MATRIX-MULTIPLY(C, A, B)
1 n A rows1 n = A.rows
2 if n == 1
3 c[1][1] = a[1][1].b[1][1]

T is a temporary matrix
for storing middle resultsDecompose Matrix data[][] [][] [][]

4 else
5 let T be a new n*n matrix
6 partition A B C and T into n/2*n/2 6 partition A, B, C and T into n/2 n/2

submatrices
7 P-MATRIX-MULTIPLY(C[1][1],A[1][1],B[1][1])
8 P MATRIX MULTIPLY(C[1][2] A[1][1] B[1][2])8 P-MATRIX-MULTIPLY(C[1][2],A[1][1],B[1][2])
9 P-MATRIX-MULTIPLY(C[2][1],A[2][1],B[1][1])

Parallel Matrix Multiplication (cont.)Parallel Matrix Multiplication (cont.)Parallel Matrix Multiplication (cont.)Parallel Matrix Multiplication (cont.)

10 P-MATRIX-MULTIPLY(C[2][2],A[2][1],B[1][2])
11 P-MATRIX-MULTIPLY(T[1][1],A[1][2],B[2][1])
12 P-MATRIX-MULTIPLY(T[1][2],A[1][2],B[2][2])
13 P-MATRIX-MULTIPLY(T[2][1],A[2][2],B[2][1])
14 P-MATRIX-MULTIPLY(T[2][2],A[2][2],B[2][2])
15 for i = 1 to n
16 for j = 1 to n
7 C[i][j] C[i][j] T[i][j]

Add two temporary data

17 C[i][j] = C[i][j] + T[i][j]

CilkCilk++ Matrix Multiplication++ Matrix MultiplicationCilkCilk++ Matrix Multiplication++ Matrix Multiplication
Despite making Matrix Multiplication algorithm parallel, if we
use Cilk++ it’s more simple to do ituse Cilk it s more simple to do it
Of course it is important how we decompose the matrices

P-MATRIX-MULTIPLY (A B)P MATRIX MULTIPLY (A, B)
1 n = A.rows
2 let C be a new n*n matrix
3 parallel for i = 1 to n3 parallel for i = 1 to n
4 parallel for j = 1 to n
5 C[i][j] = 0
6 f k 1 t 6 for k = 1 to n
7 C[i][j] = C[i][j] + A[i][k]*B[k][j]
8 return C

Different Parallel Data Layouts for Different Parallel Data Layouts for
MatricesMatrices

0123012301230123

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

6) 2D Row and Column Block
Cyclic Layout

0 1

2 3 0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

y y2 3

5) 2D Row and Column Blocked Layout

Different Parallel Data Layouts for Different Parallel Data Layouts for
MatricesMatrices

0123012301230123

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

0 1 2 3

Which one is the best?

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

It depends on your system architecture
It depends on your compiler

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layoutsIt depends on your compiler
It depends on your CPU

It depends on your Cache size
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

6) 2D Row and Column Block
Cyclic Layout

0 1

2 3

It depends on …

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

y y2 3

5) 2D Row and Column Blocked Layout

Exploratory Decomposition Exploratory Decomposition Exploratory Decomposition Exploratory Decomposition
In many cases, the decomposition of the
problem goes hand-in-hand with its
execution.
These problems typically involve the
exploration (search) of a state space of

l ti solutions.
Problems in this class include a variety of
discrete optimization problems (0/1 discrete optimization problems (0/1
integer programming, QAP, etc.), theorem
proving game playing etc proving, game playing, etc.

15 15 puzzlepuzzle15 15 puzzlepuzzle

A simple application of exploratory p pp p y
decomposition is in the solution to a 15
puzzle (a tile puzzle)p (p)

The state space can be explored by The state space can be explored by
generating various successor states of the
current state and to view them as current state and to view them as
independent tasks

15 15 puzzle (cont)puzzle (cont)15 15 puzzle (cont.)puzzle (cont.)

Task 1 Task 2 Task 3 Task 4

Speculative Decomposition Speculative Decomposition Speculative Decomposition Speculative Decomposition
In some applications, dependencies between tasks are

 k i i not known a-priori.

For such applications, it is impossible to identify
independent tasks. independent tasks.

There are generally two approaches to dealing with
such applications: conservative approaches, which
identify independent tasks only when they are
guaranteed to not have dependencies, and, optimistic
approaches, which schedule tasks even when they may pp , y y
potentially be erroneous.

Conservative approaches may yield little concurrency
d ti i ti h i ll b k and optimistic approaches may require roll-back

mechanism in the case of an error.

Speculative Decomposition: Speculative Decomposition:
Example Example

A classic example of speculative
decomposition is in discrete event
simulation.
Th t l d t t t i di t The central data structure in a discrete
event simulation is a time-ordered event list.
Events are extracted precisely in time order Events are extracted precisely in time order,
processed, and if required, resulting events
are inserted back into the event list.
Therefore, an optimistic scheduling of other
events will have to be rolled back.

