Concurrent Programming
Session 7: POSIX Thread Programming

Computer Engineering Department
Iran University of Science and Technology
Tehran, Iran

Instructor: Hadi Salimi

Distributed Systems Lab.

Computer Engineering Department,

Iran University of Science and Technology,
hsalimi@iust.ac.ir

What'’s POSIX

» POSIX stands for Portable Operating
System Interfaces for uniX.

¢ |s a family of related standards specified
by IEEE to define the application
programming interface (API).

e The term POSIX was suggested by
Richard Stallman in response to an IEEE
request for a memorable name.

POSIX Threads

» POSIX standard for thread programming
e Available for Linux and Unix OS family
e Available for Windows:
> Open Source
» C Language Interface

> Programming types and method calls

° Implemented as standalone library or another
library like libc.

Pthread API

e Thread Management: creation, detaching,
joining, etc.
e Mutexes: deal with synchronization

» Condition Variables: communication
between threads and sharing a variable.

pthread create()

e pthread_t *tid

> Handle of created thread
* const pthread_attr_t *attr

o Attributed of the created thread
* void* (*function) (void*)

° Function to be mapped to thread
* void™ arg

o Single argument to thread

pthread create() explained

* Spawn a thread running the function

e Thread handle returned via the first
parameter.
o Specify NULL for default parameters.

e Single argument to function
° If NO arguments, send NULL.

e Check error codes.

Example

#include <stdioc.h>
#include <pthread.h>

void *hello (void * arg) {
printf (“*Hello Thread\n”);

}

main() {
pthread t tid;

pthread create(&tid, NULL, hello, NULL);

What Happens?

Waiting for a thread

e pthread_t tid
> Handle for joinable thread
* void** val_ptr

o Exit value returned by joined thread.

pthread join Explained

e Calling thread waits for thread with
handle tid to terminate

> Only one thread can be joined
> Thread must be joinable

* Exit value is returned from joined thread
o Type returned is (void *)

> Use NULL if no return value expected

Thread States

 Pthreads threads have two states
° joinable and detached
e Threads are joinable by default
> Resources are kept until pthread_join
> Can be reset with attributes or API call
* Detached threads cannot be joined

o Resources can be reclaimed at termination
> Cannot reset to be joinable

An Example

#include <stdio.h>
#include <pthread.h>
#define NUM THREADS 4

void *hello (void *arg) {
printf (“Hello Thread\n”);
}

main() {
pthread t tid[NUM THREADS];
for (int i = 0; i < NUM THREADS; i++)
pthread create(&tid[i], NULL, hello, NULL);

for (int i = 0; i < NUM THREADS; i++)
pthread join(tid[i], NULL);

Q:What'’s Wrong!?

void *threadFunc(void *pArg) ({

int* p = (int*)pArg;

int myNum = *p;

printf(“Thread number %d\n”, myNum);
}

// from main():
for (int i = 0; i < numThreads; i++) {
pthread create(&tid[i], NULL, threadFunc, &i);

}

Solution: Local Storage

void *threadFunc(void *pArg)
{
int myNum = *((int*)pArg) ;
printf(“Thread number %d\n”, myNum);

}

// from main() :
for (int i = 0; i < numThreads; i++) {

tNum[i] = i;

pthread create(&tid[i], NULL, threadFunc, &tNum[i]):;
}

Pthread mutex variables

* Enables correct programming structures
for avoiding race conditions
* New types

o pthread_mutex_t
the mutex variable
o pthread_mutexattr_t

mutex attributes

e Before use, mutex must be initialized

pthread mutex_init

* pthread _mutex_t *mutex
° mutex to be initialized
e const pthread mutexattr_t *attr

o attributes to be given to mutex

Programmer must always pay
attention to mutex scope

pthread mutex_lock

» pthread _mutex_t *mutex

> Mutex to attempt to lock
* Attempts to lock mutex

o If mutex is locked by another thread, calling thread
is blocked

* Mutex is held by calling thread until unlocked

> Mutex lock/unlock must be paired or deadlock
occurs

pthread mutex_unlock

* pthread _mutex_t *mutex
> Mutex to attempt to lock

Example

f#define NUMTHREADE 4

pthread mutex t gMutex; // why does this have to be glcbal?
int g sum = 0;

wvoid *threadFunc(void *arg)
{
int mySum = bigComputation() ;
pthread mutex lock(&gMutex);
g_sum += mySum; // threads access one at a time
pthread mutex unlock(&gMutex);
}

main() {
pthread t hThread[NUMTHREADS] ;

pthread mutex init(&gMutex, NULL);
for (int i = 0; i < NUMTHREADS; i++)
pthread create (&shThread[i] ,NULL, threadFunc NULL) ;

for (int i = 0; i < NUMTHREADS; i++)
pthread join (hThread[i]);
printf (“Glocbal sum = %f\n”, g sum);

