فصل ۹
متر ریمان

۱.۹ ضرب داخلي
در فصول قبل تقریباً همه ساختمان‌های ممکن با فضاهای پارادایمی، ولذا ساختمان‌های با کلاس‌ها را مطرح کردیم. اما، یک مورد مهم از قلم افراده است – هرگز، راجع به ضرب داخلي سختی بگفتیم. اگر در دنیای آن رسمه ای هست که این ابزار جالب افراده را معرفی کنیم.

منظور از یک ضرب داخلی بر فضای پارادایم V بر میدان F, F، تابعی است دوخطی $\langle v, w \rangle \mapsto \langle v, w \rangle$ از $V \times V$ به F که با نماد $\langle v, w \rangle$ نشان می‌دهیم، و با استناد متناسبق و $w = v$, آنگاه $\langle v, w \rangle = 0$. و نتیجه‌گیری‌های مناسب: اگر از این پس، هیات (میدان) F را R به عنوان مجموعه اعداد حقیقی می‌گوییم.

به ازای هر یک ضرب داخلي $\langle \cdot, \cdot \rangle$ بر R^n با ضابطه

\[\langle a, b \rangle_r := \sum_{i=1}^{r} a_i b_i - \sum_{i=r+1}^{n} a_i b_i \]

می‌توانیم تعیین کنیم. این نتایج به این اندازه است، چرا که اگر $a \neq 0$, آنگاه

\[\langle (a^1, \ldots, a^n), (a^1, \ldots, a^r, -a^{r+1}, \ldots, -a^n) \rangle = \sum_{i=1}^{n} (a_i^1)^2 > 0 \]

می‌توانیم برای $v, w \in V$, به ضرب داخلي استاندارد $\langle v, w \rangle$ بر R^n می‌ریسم: $\langle v, w \rangle = v \cdot w$, برای $\langle a, b \rangle$ در مورد این ضرب داخلي، به ازای هر $a \neq 0$, ای داریم $\langle a, a \rangle > 0$.

۳۲۱
في فصل 9 متریمان

1.9 ضرب داخلی

در کل، یک تابع دو خطی منقارن () را در صورتی می‌شناسیم که به ازای هر روشین است که هر تابع دو خطی مثبت معین، تناهیده است و

در نتیجه، یک ضرب داخلی است.

توجه کنید که در ضرب داخلی ()، متغیر V منحصر به فرض است و لذا اگر f تبدیل خطي باشد، آنگاه ()، یک تابع دو خطی منقارن بر است. این تابع دو خطی منقارن ممکن است تناهیده باشد حتی اگر f یک همکاوش باشد. مثلًا، بر اساس

\[f(a) = (a, a) \quad \text{بر} \quad \mathbb{R} \rightarrow \mathbb{R}^n \quad \text{بر} \quad (a, b) = a^2 + b^2 \quad \text{که در این عبارت}

\[g_{ij} := \langle v_i, v_j \rangle \]

بنابراین، معنای () ایجاد می‌کند که ماتریس () ماتریس باشد:

ماتریس () تعبیر مهم دیگری نیز دارد. چون هر ضرب داخلی () نسبت به مؤلفه دومش خطي است، نگاشتی خطي می‌باشد. به ازای هر v ∈ V می‌توانیم نتیجه‌گیری کنیم:

\[v \rightarrow \varphi_v(w) = \langle v, w \rangle \]

چون () نسبت به مؤلفه اولش نیز منطقی است، نگاشت v ≠ 0 آنگاه تنها خطي از V به V* می‌باشد. ناتوانیم () ایجاد می‌کنیم که اگر آنگاه v ≠ 0 با ضابطه:

\[\langle v, w \rangle = \alpha(v)w \]

به ما می‌دهد. به وضوح، ماتریس () درست ماتریس () نسبت به پایه‌ای {v_i} برای V* است، بنابراین، ناتوانیم () معادل با شرط زیر است:

\[\det(g_{ij}) \neq 0 \quad \text{ناتوانیم است بعنوان} \quad (g_{ij}) \]

\[222 \]
فصل 9: متریمان

مثبت معین یکدین (۰) به شرطی پیچیده‌تر در مورد (gij) متناظر است: (gij) با یاد مثبت معین باشد. به عبارتی: به ازای هر که یک مثلث باقی از آنها مختص دقیق صحیح است، داریم: ۰ \geq \sum_{i=1}^{n} g_{ij} a_i a_j

به ازای هر ضرب داخلی مثبت معین یکدین (gij) به نظیر را به صورت

\|v\| := \langle v, v \rangle^{1/2}

(ریشه‌های عددی مثبت گرفته شده است)

تعیین من کنیم، فرم متناظر به (.) در \mathbb{R^n} را با ناماد

\|a\| = (a, a)^{1/2} = \left(\sum_{i=1}^{n} (a_i)^2 \right)^{1/2}

نکته مهم‌ترین خواص اصلی \|\cdot\| در ذ불 آمده است:

1. قضیه: به ازای هر v, w \in V از داریم

\|av\| = |a| \|v\| \quad (1)

2. \langle v, w \rangle \leq \|v\| \|w\|

و باشند. به عبارتی: \nu = \lambda w \quad (\text{nامساوی شوازی})

\|v + w\| \leq \|v\| + \|w\| \quad (2)

اثبات:

1. بديهي است.

2. اگر \nu v \text{ و مستقل خطی باشند، به غیرین تساوی برقرار است. در غیرین صورت،}

\nu w \neq \nu v \text{ و مستقل خطی باشند، آنگاه به ازای هر } \lambda \in \mathbb{R}

\|\nu w - \nu v\| = \langle \nu w - \nu v, \lambda v + \lambda w \rangle = \lambda^2 \|v\|^2 - 2 \lambda \langle v, w \rangle + \|w\|^2

\langle v, w \rangle \neq 0 \quad \|v\|^2 \neq 0 \quad \|w\|^2 \neq 0

پس سمت راست یک معادله درجه دوم بر حسب \lambda \text{ است و همچی ریشه‌ای ندارد.}

در نتیجه، اگر ممکن آن منفی باشد. پس

\langle v, w \rangle^2 - 4 \|v\|^2 \|w\|^2 \leq 0

و برهمان نعام است.

223
1.9 ضرب داخلي

(۲) بنابر (۲) دارم

\[\|v + w\|^r = \langle v + w, v + w \rangle = \|v\|^r + \|w\|^r + 2 \langle v, w \rangle \]
\[\leq \|v\|^r + \|w\|^r + 2 \|v\| \|w\| = (\|v\| + \|w\|)^2 \]

اکنون کافی است از طرفین جذر بگیریم.

تابع \(\| \cdot \|\) خواص نامطلوبی دارد - مثل، تابع \(| \cdot | \) بر \(\mathbb{R}^n \) در \(\mathbb{R}^n \) دیفرانسیل‌پذیر نیست - که تابع \(\| \cdot \|\) این مشکلات را ندارد. تابع اخیر، تابعی درجه دوم بر \(V \) است - بر حسب یادآوری \(\{v_i\} \) برای \(V \)، آنرا به صورت یک چند جمله‌ای همگن درجه ۲ می‌توان نوشت

\[\left\| \sum_{i=1}^{n} a^i v^i \right\|^r = \sum_{i, j=1}^{n} g_{ij} a^i a^j \]

به بیان دیگر

\[\|v\|^r = \sum_{i, j=1}^{n} g_{ij} v^*_i v^*_j \]

با توجه به قضیهٔ دیگر می‌توان تعیین ناپایداری برای نوای تابع درجه دوم به دست آورد (مسئلهٔ ۱).

2.1.9 قضیه (اتحاد قطعی سازی). اگر \(\| \cdot \| \) فرم مناظر به ضرب داخلي \(\langle \cdot, \cdot \rangle \) بر \(V \) باشد، آنگاه

\[\langle v, w \rangle = \begin{cases} \frac{1}{r} \left(\|v + w\|^r - \|v\|^r - \|w\|^r \right) & \text{در } r \neq 1 \text{ و } r \neq -1, \\ \frac{1}{2} (\|v + w\|^2 - \|v - w\|^2) & \text{در } r = 1 \end{cases} \]

اثبات: محاسبه است.

قضیهٔ ۲.1.9 نشان می‌دهد که هر دو ضرب داخلي که یک چک فرم را را از کناری، با هم برابرند. به ضرورت مشابه اگر \(f : V \to W \) حافظ فرم باشد (یعنی به ازای هر \(v \in V \) \(\|f(v)\| = \|v\| \))، آنگاه \(f \) حافظ ضرب داخلي نیز هست (یعنی به ازای هر \(v, w \in V \)

\[\langle f(v), f(w) \rangle = \langle v, w \rangle \]
فصل 9 متغیه‌های

1.9 ضرب داخلم

حال نشان می‌دهیم که در هر ایزومورفیسم تنها یک ضرب داخلمی مثبت معین بر هر فضای برداری وجود دارد.

3.1.9 قضیه. اگر (v, v) یک ضرب داخلمی مثبت معین بر فضای برداری n–بعدی \(V \) باشد، آنگاه پایهای \(\{v_1, \ldots, v_n\} \) برای \(V \) چنان وجود دارد که

\[
\langle v_i, v_j \rangle = \delta_{ij} \quad i, j = 1, \ldots, n
\]

به عبارت دیگر، \((v, v) = \langle (v, v) \rangle \) است. با یکی از ابزارهای دانشجویی معمول‌تر، \(v_1 \) را به دست می‌آوریم. چون 0، \(w_1 \) نیست، \(w_1 \) را به دست می‌آوریم. فرض کنید موفق به ساخت \(v_1, \ldots, v_k \) شده‌اید. پس

\[
\langle v_i, v_j \rangle = \delta_{ij}
\]

و بعلاوه

\[
\{v_1, \ldots, v_k\} = - \{w_1, \ldots, w_k\}
\]

بنابراین، \(\langle v_k, v_1 \rangle \) نیست و مستقل خطی است. گیریم

\[
w_{k+1}' := w_{k+1} - \langle v_1, v_{k+1} \rangle v_1 - \cdots - \langle v_k, v_{k+1} \rangle v_k \neq 0
\]

به سادگی مشاهده می‌گردد که

\[
\langle w_{k+1}', v_i \rangle = 0 \quad i = 1, \ldots, k
\]

و لذا \(w_{k+1}' := w_{k+1}'/||w_{k+1}'|| \) به استقرار ادامه می‌دهیم.

برخی اوقات، ضرب داخلمی مثبت معین (و) بر \(V \) را تراکم‌بری \(V \) می‌نامند. دلیل آن این است که با تعیین \(p(v, w) = ||v - w|| \) به یک تراکم‌بری \(V \) می‌رسیم. نام‌های مختلف (قسمت (3) از قضیه 1.9) نشان می‌دهد که \(p \) عامل یک متراست. را طول \(v \) می‌نامند.

325
1.9 ضریب داخلی

برای آغاز به کار، به نشان‌گذاری جبری دیگری نیاز داریم. یادآور می‌شود که هر \(V \) بر \(\alpha : V \rightarrow V^* \) بر \(V \) یک ایزوپرهفمسم تعیین می‌کند. به کمک ایزوپرهفمسم طبیعی \(i : V \rightarrow V^{**} \) تعیین می‌کنیم:

\[i(v)(\lambda) = \lambda(v) \]

به این ترتیب، ایزوپرهفمسم

\[\beta : V^* \xrightarrow{\alpha^{-1}} V \xrightarrow{i} (V^*)^* \]

را داریم. اگر از \(\beta \) برای تعیین یک تابع دو خطی \(\langle \cdot, \cdot \rangle \) بر \(V^* \) با ضابطه

\[\langle \lambda, \mu \rangle^* = \beta(\lambda)(\mu) = i\alpha^{-1}(\lambda)(\mu) = \mu(\alpha^{-1}(\lambda)) \]

می‌توانیم استفاده کنیم. اگر متقارن بودن (و) را به صورت

\[\alpha(v)(w) = \alpha(w)(v) \]

می‌توان توضیح داد، با فرض \(\lambda \) و \(\alpha(v) = \lambda \) این رابطه را به صورت

\[\lambda(\alpha^{-1}(\mu)) = \mu(\alpha^{-1}(\lambda)) \]

می‌توان نوشته که نشان می‌دهد \(\langle \cdot, \cdot \rangle^* \) نیز متقارن است. \(\langle \lambda, \mu \rangle^* = \langle \lambda, \mu \rangle \) نتیجتاً.

\[\langle \mu, \lambda \rangle = \langle i\lambda, \mu \rangle = \langle \lambda, i\mu \rangle = \langle \mu, i\lambda \rangle \]

برای اینکه بین این کل نه به جه معنی است، پایداری \{ \langle v \rangle \} برای \(V^{**} \) در نظر گرفته گرفته و فرضی که یکی از این دوگان نظیر برای \(V \) است و

\[\langle v_i \rangle = \sum_{i,j=1}^{n} g_{ij} v_i^* \otimes v_j^* \]

در این صورت (ماتریس \(g_{ij} \) است. بنابراین \(\alpha : V \rightarrow V^* \) نسبت به \(\{ v_i \} \) و \(\{ v_i^* \} \) است. بنابراین \(\beta : V^* \rightarrow V^{**} \) نسبت به \(\{ v_i^* \} \) و \(\{ v_i \} \) است. بنابراین \(\alpha^{-1} \) و \(\beta^{-1} \) ماتریس \(g_{ij}^{-1} \) است. و نتیجه‌گیری، اگر تعیین کنیم \(\{ v_i^* \} \) نسبت به \(V^{**} \) است.

آنگاه

\[\sum g^{ik} g_{kj} = \delta_j \]

و به علاوه، اگر \(v_i \) را عضوی بگیریم:

\[\langle v_i \rangle^* = \sum_{i,j=1}^{n} g^{ij} v_i^* \otimes v_j^* = \sum_{i,j=1}^{n} g^{ij} v_i \otimes v_j \]

326
19 ضرب داخلی

توجه کنید که اگر ω منبت معین باشد، آنگاه به ازای $\alpha(v) = \lambda$ به ازای هر $\lambda \neq 0$

بنابراین، ωv نیز منبت معین است. این را مستقیماً از تعیین بر حسب پایه‌ها می‌توان اثبات نمود. در حالت منبت معین، ساده‌ترین راه برای توصیف ωv به شرح ذیل است: $\{v_1, \ldots, v_n\}$ برای $\omega^* V$ وقی، و نتیجه نسبت به ω^* معتمد است که $\{v_1, \ldots, v_n\}$ نسبت به (ωv) معتمد باشد.

تکنیک‌های مشابهی را (مسأله 4) برای تهیه ضرب داخلی بر کلیه فضاهای برداری $\Omega^k(V)$ و $T_k(V) = T^k(V^*)$, $T^k(V)$ توجه داریم، که بطور کامل به شکل نویسندگان تعیین نیستند. فضایی برداری w به بعدی است، بنابراین برای تعیین ωv به وقی نسبت به (ωv) بطول به‌نیاز داریم. گریم $\{v_1, \ldots, v_n\}$ و (w_1, \ldots, w_n) دویایی‌ای برای V که نسبت به (ωv) معتمد می‌باشند، اگر نویسیم $w_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ در این صورت

$$\delta_{ij} = \langle w_i, w_j \rangle = \left(\sum_{k=1}^{n} \alpha_{ki} v_k, \sum_{\ell=1}^{n} \alpha_{\ell j} v_{\ell} \right) = \sum_{k, \ell=1}^{n} \langle v_k, v_{\ell} \rangle = \sum_{k=1}^{n} \alpha_{kj} \alpha_{ki}$$

بنابراین، ترانش $AA^T = I$ در رابطه A ماتریس A^T صدق می‌کند، که از آن اثبات می‌شود که $\det A = \pm 1$. از قضیه $\lambda - 5\Omega^1(v)$ نتیجه می‌گردد که به ازای هر λ داریم

$$w(v_1, \ldots, v_n) = \pm w(v_1, \ldots, v_n)$$

از این به وضوح نتیجه می‌گردد که

$$v^*_1 \land \cdots \land v^*_n = \pm w^*_1 \land \cdots \land w^*_n$$

بنابراین، اگر عنصر متناوت از $\Omega^n(V)$ داریم؛ آن‌ها به شکل $\Omega^n(V)$ وقی هستند. آنها را عنصر به طول $\pm v_1 \land \cdots \land v_n$ می‌نامیم. اگر جهت μ نیز در اختیار باشد، آن‌ها را با $\mu v_1 \land \cdots \land v_n$ می‌نامیم. از تعریف $\Omega^n(V)$ نتیجه می‌گردد که به صورت $v_1 \land \cdots \land v_n = \mu v_1 \land \cdots \land v_n$ است، منبت می‌نامیم، آن‌را عنصر به طول منبت $\pm v_1 \land \cdots \land v_n$ می‌نامیم.
برای بسط عناصر به طول یک بر حسب یک بر حسب پایه‌ای دلخواه پایه‌ای معادم \(v_1, \ldots, v_n\) انجام می‌گردد که

\[
\det(\alpha_{ij}) w_i^* \wedge \cdots \wedge w_n^* = v_i^* \wedge \cdots \wedge v_n^*
\]

اگر نویسیم

\[
\langle , \rangle = \sum_{i,j=1}^n g_{ij} w_i^* \otimes w_j^*
\]

آنگاه

\[
g_{ij} = \langle w_i, w_j \rangle = \left(\sum_{k=1}^n \alpha_{ki} v_k, \sum_{\ell=1}^n \alpha_{\ell j} v_\ell \right) = \sum_{k=1}^n \alpha_{ki} \alpha_{kj}
\]

و لذا اگر \(A = (\alpha_{ij})\) آنگاه

\[
\det(g_{ij}) = \det(A^T A) = (\det A)^t
\]

بی ویژه، \((\alpha_{ij})\) هموار مشت‌بست است. نتیجه‌گیری نویسیم \(\Omega^n(V)\) عبارت از

\[
\pm \sqrt{\det(g_{ij})} w_i^* \wedge \cdots \wedge w_n^*, \quad g_{ij} = \langle w_i, w_j \rangle
\]

2.9 متر ریمان

\(\xi = \pi : E \to B\) اکنون این ابزار جدید را در مورد کلاف‌های برداری بکار می‌گیریم. اگر کلاف برداری باشد، تابع \(\pi^{-1}(p)\) که به هر \(p \in B\) کلاف برداری باشد، تابع \(\pi^{-1}(p)\) را نسبت می‌دهد (بر فضای \(\pi^{-1}(p)\) و پوسته است، به این تعبیر که به ازای هر در برش پوسته \(\pi^{-1}(p)\) تابع

\[
\langle s_1, s_2 \rangle = p \mapsto \langle s_1(p), s_2(p) \rangle
\]

نیز پوسته است، یک متر ریمان بر \(\xi\) می‌گوییم. اگر کلاف برداری هموار بر منیفولد هموار \(B\) باشد. از متر ریمان هموار می‌توانیم سخن بگوییم.
اروش دبگری هم برای تعیین وجود دارد. گریمی $Euc(V)$ مجموعه همه ضریب‌های داخلی مثبت معین بر V است. اگر هر $\pi^{-1}(p)$ را با $\pi^{-1}(p)$ تعیین کنیم و فرض شود
\[
Euc(\xi) = \bigcup_{p \in B} Euc(\pi^{-1}(p))
\]
در این صورت، منظور از یک متر ریمان بر ξ برلیش از $Euc(\xi)$ است. بنابراین مشکل این است که فضای برداری نیست. به همین دلیل $\pi^{-1}(p)$ نقطه از ساختار $Euc(V)$ کلی تبادل کلاف ندارد.

1.2.9 قضیه: گریمی $\xi = \pi: E \to M$ هموار (روی منطقه هموار M به ترتیب همواری π) بر ξ وجود دارد.

اثبات: یک پوشش موضعی منتاین U برای M که بر هر یک از آنها یک بنیای سازی (به ترتیب هموار) در اختیار است. بر ξ به وضوح یک متر ریمان $Euc(\xi)$ ماتریس ثابت وجود دارد. چنانچه (به ترتیب ξ)، تعیین می‌کنیم
\[
\langle v, w \rangle_p := (t_U(v), t_U(w))_{Euc(\xi)}^U
\]
در این صورت، $Euc(\xi)$ یک متر ریمانی (به ترتیب، هموار) با π است. گریمی ξ یک افراز پیکانی زیردست U است. (و) را به صورت
\[
\langle v, w \rangle_p := \sum_{U \in \mathcal{U}} \varphi(U)(v, w)^U_p \quad v, w \in \pi^{-1}(p)
\]
تعیین می‌کنیم، در این صورت (و) پوششی (به ترتیب هموار) است و به ازای p هر $\varphi(U)(v, w)^U_p$ تابعی دوخطی و متقارن است. برای نشان دادن مثبت معین بودن آن، نویسه می‌کنیم که
\[
\langle v, v \rangle_p = \sum_{U \in \mathcal{U}} \varphi(U)(v, v)^U_p
\]
و هریک از $\varphi(U)(v, v)^U_p$ ها نامنفی اند. به ازای یکی از U ها مثبت است. شبیه همین استدلال نشان می‌دهد که هر کلاف برداری روزی یک فضا $\pi^{-1}(p)$ پارافشرده، متر ریمانی می‌باید.
توجه شود که استدلال مرحله‌ آخر در حالتی که ناپاهاه‌دیگی ضریب‌های داخلی بر از کنار برمی‌گردد درست نبود. در واقع (مسئلهٔ ۷) بر از وجود ندارد که این تابع یا متریک دو خطی الگو که مثبت معین باشد، وی ناپاهاه‌دیگی نباشد.

به عنوان یک نکته از قضیهٔ جنگ در مورد کلاف‌های برداری که تاکنون مانده، حل می‌گردد.

\[\text{درام یوگسلاوی (۴) ایجاد می‌کنند که رابطه‌های همس‌ه weighs } \alpha_p : \pi^{-1}(p) \to \{\pi^{-1}(p)\}^* \]

با ضابطهٔ

\[\alpha_p(v(w)) = (v, w)_p \quad v, w \in \pi^{-1}(p) \]

\[E' = \{ \xi \in \pi : E \to M \mid \xi(p) \in \pi^{-1}(p) \}^* \]

\[\text{درام یوگسلاوی (۴) اگر } \alpha_p \text{ هم‌ارزی از } E \text{ به } \pi \]

\[\text{و نه } \text{یک } \pi \text{ کلاف } ۱ \text{ صفحه‌ای باشد، آنگاه } \xi \text{ وقتی} \]

\[\text{نتیجه‌ای } \text{اغر } \xi = \pi : E \to M \]

\[\text{انتهایی } \text{اغر } \xi \text{ باشد جهت پذیرنده است. اگر } \xi \text{ دارای جهت } \mu \text{ بوده و } \text{متر ریمانی بر} \]

\[M \text{ باشند، آنگاه } (p) \text{ از منحصر به فرد وجود دارد که} \]

\[(s(p), s(p))_p = 1 \quad \text{و } [s(p)] = \mu_p \]

\[f(\lambda s(p)) = f(p) \text{ را با ضابطهٔ} \]

\[\text{به وضوح } s \text{ سپس هم‌ارزی} \]

\[(p, \lambda) \text{ تعیین می‌گردد. } \]

\[\text{نکته‌ای دیگر. } \text{می‌دانم (به توضیح پس از قضیهٔ ۷-۹ توجه کنید) که} \]

\[\text{اغر } \xi \text{ جهت پذیرنده باشد، آنگاه } \text{یک بریش همه‌ها نااسفر درای \(\Omega \text{)} \xi} \text{ وجود دارد، و} \]

\[\text{لذا } \xi \text{ به همین اساس. اما } \xi. \]

\[\text{همهً این مشاهده‌های هنگامی اهمیت بیشتر بردا می‌کنند که کلاف ما، کلاف مماس} \]

\[\text{به یک منفرد هم‌ارزی باشد. در این حالت، به یک متر ریمانی هم‌ارزی } \pi \text{ برای } TM \]

\[330 \]
فصل 9 متغیرمان

ای یک ضرب داخلی مثبت معین الگه می‌کند، را متغیرمان بر

صلحیاب‌های مختصاتی بر

در رابطه

جواب، مونی بر

صبرت

می‌توان نوشته، که توابع هموار در رابطه

متقارن است، و

متقارن است. پس به ازای هر تابع هموار

که به پوشش دو خطی است؛ این وقتی و تئی متغیرمان بر

باشد (یعنی به ازای هر

که تئی متغیره یک تابع‌کردنی به

از مرهبی دوست می‌توانیم نویسیم

توصیف ضرب داخلی بر

ماتریس (gij(p)) وارون

ماتریس (gij(p)) است؛ در نتیجه

به صورت مشابه به ازای هر

 مشخص می‌کند: عنصر بطول یک، قبلاً دیده‌ایم می‌توان نوشت

اگر دارای جهت باشد، آنگاه

امکان تغییر یک منفی را فراهم

حافظ

جهت باشد، آنگاه این فرم را بر

به صورت

می‌توان نوشته، این الگه حجم با نام

د نشان می‌دهم، که الگه در اینجا بی

معنی است (حتی وقتی

جهت‌بندی باشد و آن‌ا بتوان به‌عنوان یک

فرم بتوان

331
فصل ۹ متریمان

تصمیم کرد و آن را رمان حجم مشخص شود توسط متر (۶)، می‌نامیم. به این ترتیب، حجم
متر به صورت
حرفه ای متانیم تعیین کنیم. روش است که اگر
باشد. این نمونه با معنی است، در حالت
متر از ۸ تا ۱۰ توجه کنید.
با این انتگرال عددی مشخص است و از بر هر عدد بزرگ دلخواه برگر است (بر زیر
مجموعه‌های فشرده متر بر روی عدد بزرگ دلخواه می‌شود). در این حالت می‌گوییم
به حجم نامن‌نی است.

\[
\langle ., . \rangle = \sum_{i=1}^{n} dx^{i} \otimes dx^{i}
\]

اگر یک منحنی
باشد، آنگاه در در نتیجه،
آن می‌شود.

۳.۹ طول منحنی

ساخت مهندسی نظر به متر ریمان بر
به ازای هر منحنی همواره
به ازای هر منحنی همواره
راه داریم و بنابراین از (۱) برای محاسبه طول
آن می‌توان استفاده کرد

\[
\left\| \frac{d\gamma}{dt} \right\| = \left(\frac{d\gamma_{1}}{dt} \right)^{2} + \cdots + \left(\frac{d\gamma_{n}}{dt} \right)^{2}
\]

دقت بر

اگر
هموار تکه‌ای باشد، به این معنی که افرآزی
وجود داشته باشد که
و راست مختل در
طول
را به صورت

شکل ۹.۱۹: مینهای هموار

۰۳۲
فيصل 9 متر ريمان

\[\ell^h_a(\gamma) = \sum_{i=1}^{n} \ell^h_{t_{i-1}} \left(\gamma \bigg| \gamma'_{t_{i-1}}, t_i \right) \]

مايون تعريف كر. هرگاه ابهامی در میزان محاسبه \(\ell^h \) وجود داشته باشد، تنها از نماد مايون استفاده کرده است. استدلال مختصر (مسأله 15) نشان می‌دهد که از ازای هر منحنی تکمیل هویت در \(\mathbb{R}^n \) با متر ریمان معمولی، این تعريف طول کوچک‌ترین کران بالایی طول منحنی‌های چند ضلعی واقع بر منحنی، بکی است.

همچنین، تابعی \(s : [a, b] \rightarrow \mathbb{R} \) به نام تابع طول قوس \(\gamma \) به صورت

\[s(t) = \ell^i_a(\gamma) = \int_a^t \left\| \frac{d\gamma}{dt} \right\| dt \]

مايون تعريف نمود. طبقاً

\[s'(t) = \left\| \frac{d\gamma}{dt} \right\| \quad (1.9) \]

در نتیجه، \(s(t) = t \) دقیقاً در صورتی به طول یک است که معنی است که \(a - b = s(b) = \ell^h_a(\gamma) \) در این صورت، \(s(t) = t = a \) با ضابطه \(\gamma' = \gamma(t - a) \) به صورت منحنی ای بر \([0 : b - a]\) در مورد این منحنی گونه دارد.

جمهی جدید

\[s(t) = \ell^i_a(\gamma) = \ell^{i+a}_a(\gamma) = \text{قدیم} - s(t + a) = t \]

جمهی در شرط \(s(t) = t \) خود در کندی منحنی \(\gamma \) توسط طول قوس پارامتره شده است. (ولی ما مايون به جای \(t \) از مايون استفاده کرد).

در هر کلاسیک، قرم (1.9) چنین اذعان می‌کرد که به زرین هر منحنی \(\gamma \) و mutually نظر به \([a, b]\) داریم.

نتیجتاً، در نوشته‌ها کلاسیک، مورد

\[ds = \sum g_{ij} dx^i \otimes dx^j \]

وجود دارد. امروزه، این معادله را به صورت

\[\langle \gamma \rangle = \sum g_{ij} dx^i \otimes dx^j \]

(323)
تعبیر می‌گذرد و در عمل آن را به معنی
\[||v||^2 = \sum_{i,j=1}^n g_{ij} dx^i dx^j \]

می‌گیرند. نماد دیازا در اینجا، عبارت بازگشایی dx² برحسب نیم توان تعبیر کرده. نمایی است درجه دوم
\[v \mapsto dx^i(p).dx^j(p)(v) \quad v \in T_p M \]

و امروزه از هنین نماد استفاده می‌شود. روش کلاسیک کاربرد dx² Ω dx² بسیار شوی یک عدد ثابت که منحنی کوهک گرفته می‌شود نوشته
\[\sum_{i,j=1}^n g_{ij} dx^i \delta x^j \]

که dx و دو بینهایت کوهک مستقل هستند. (اًد نظر کلاسیک، ریمان نامنی بر
بردارها مماس نیست، بلکه ضرب داخلی دو تعبیر مثل بینهایت کوهک
است)، حال یک متر ریمان (،) بر منیفلد همینه در نظر گیریم. اگر p و q دو نقطه
دلخواه باشند، آنگاه جدایی بین منحنی تکه‌ای همواراز p به q به
دارد (حتی می‌توانی را نتیجه که منحنی ای همواراز p به q وجود دارد) تعریف می‌گنیم
\[d(p,q) := \inf \{ \epsilon \mid \gamma \in \mathcal{C}^0(\gamma) \} \]

روشن است که \(r \in M \) به علاوه، اگر \(\epsilon > 0 \) منحنی های تکه‌ای هموار
به ازای هر \(\epsilon > 0 \) می‌تواند، سومی باشد،
\[d(p,r) \leq d(p,q) + d(q,r) \]

چون این مطلب به ازای هر \(\epsilon > 0 \) است، نتیجه می‌گیریم که
\[d(p,r) \leq d(p,q) + d(q,r) \]
فصل ۹ متریمان

جنگ جنگی مسنجی‌های همواره عمیقاً در میان نیایه‌های درستی در بینشانی این آب از ۳۲۲ مشکلاتی

\[d : M \times M \to \mathbb{R} \]

قرار داده که همانند این \(d \) از دو جزء اصلی تشکیل می‌شود. تابع

\[d(p, q) = \begin{cases} 0 & \text{اگر } p = q \\ \infty & \text{اگر } p \neq q \end{cases} \]

\[d(p, q) > 0 \]

\[\text{این به شکل زیر حل می‌شود.} \]

\[p : M \times M \to \mathbb{R} \text{ متری بر است، و اگر } d : M \times M \to \mathbb{R} \text{ متر اولیه بر } M \] باشد (که این \(M \) به می‌اندیشد تا از دیگری به دیگری). آنگاه (با \(M \))

\[(M, d) \]

\[\text{معادل است.} \]

\[\square \]

اثبات: به وضوح هردو بخش قضیه، نتایج آن می‌بیند.

\[B = \{ p \in \mathbb{R}^n : |p| \leq 1 \} \]

\[\|, , , , e, \rangle = \sum_{i=1}^{n} dx^i \otimes dx^j \text{ است.} \]

\[\langle , , , , \rangle = \sum_{i=1}^{n} dx^i \otimes dx^j \text{ است.} \]

\[\|, , \|, , = \|, \|, e, \| \text{ است.} \]

\[\text{گریمی (ی) متریمان معمولی با اقلیدسی بر} \]

\[U \]

\[\text{همساخته. فرض کنیم (ی) متریمان دلخوایی بر} \]

\[U \]

\[\text{فرم‌های نظریه هستند. در این صورت اعداد} \]

\[m, M > 0 \]

\[m, |, \|, \leq |, |, \| \leq |, M, |, | \]

\[\text{و نتیجه‌ا، به ازای هر} \]

\[m, \ell, e, (\gamma) \leq \ell, (\gamma) \leq M, \ell, e, (\gamma) \]

\[\text{اهنگ: تعریف می‌کنیم. در این} \]

\[m, M > 0 \]

\[\text{صبرنگ} \]

\[G(p, a) = \|a \|_p \to \mathbb{R} \]

\[G : B \times S^{n-1} \to \mathbb{R} \]

\[G(p, a) = \|a \|_p \to \mathbb{R} \]

\[\text{فشرده است، اعداد} \]

\[\text{بر} \]

\[m < G < M \]

\[\text{حال اگر} \]

\[a = b|b| \]

\[b \in S^{n-1} \]

\[p \in B \]

\[\text{در این صورت} \]

\[m|b| < |b| G(p, a) < M|b| \]

\[\text{چرا که} \]

\[|b|G(p, a) = |b|, |a \|_p = |(|b|a \|_p = |b|,)_p \]

\[325 \]
۴.۹ حساب تغییرات

به منظور مطالعه بیشتر منظور در خصوص کوشهرتین منحنی‌ها، به نکته‌هایی از حساب تغییرات نیاز داریم. برای توضیح اینگونه روشهای، با مثال‌های ساده شدویم می‌کنیم.

فرض کنید تابعی (با اندازه کافی دفرانسیل‌پذیر) در دامنه است. در این نوشتار، به قسمت ب از شکل ۴.۹ توجه شود. به دنبال آن تابعی هستیم که کمیت

\[\int_a^b F(t, f(t), f'(t)) \, dt \]

را می‌کنیم (با مینیمم) می‌سازد، مثلاً اگر به دنبال تابعی (b, b') و (a, a') بین t → (t, f(t)) هستیم که به آرا آن منحنی (b; b') بر p طول را دارد

\[\int_a^b \sqrt{1 + (f'(t))^2} \, dt \]
به عنوان دومین مثال، جدی‌ترین
سطح حاصل از دوران نمودار تابع f حول $-x$ محور هستیم (به قسمت افد از شکل
2.9 نوجه شود):

$$\int_a^b f(t) \sqrt{1 + (f'(t))^2} \, dt$$

به جهت برداختن به این نوع مسائل، ابتدا روش‌های مورد استفاده در انواع ساده‌ترین
مسائل، در خصوص ماکزیمم و مینیمم تابع به شکل f را مورد بررسی قرار
$f'(x) = 0$. برای حل این مسئله، نقاط تغییر f را در نظر می‌گیریم. نقاطی که x
 نقطه تغییر لزومی ندارد که ماکزیمم یا مینیمم، و با هنگی ماکزیمم موضعی با مینیمم
موضعی باشد، با این حال نقاط تغییر نتیجه‌ای کاهدی برای ماکزیمم و مینیمم هستند، به
شرط آنکه f در همه جا دیفرانسیل‌پذیر باشد. به طور مشابه، به ازای هر تابع f
در نظر می‌گیریم که برای آنها

$$D_1 f(x, y) = D_2 f(x, y) = 0$$

(2.9)

(به قسمت ب از شکل 2.9 نوجه شود) این بدان معنی است که منحیهای

$$t \mapsto f(x + t, y) \quad t \mapsto f(x, y + t)$$

در مشتق گزینه دارد. ممکن است با در نظر گرفتن شرط ذیل، اطلاعات بیشتری
به دست آید: به ازای هر منحنی دلخواه c که به دست آمده $f \circ c$ و $c (\mathbb{R}) = (x, y)$
ولی این عملیات گردد که به کمک فاصله زنجیری مشتق، همه این
شرايط از (2.9) قابل استنتاج هستند.

زیرین برای بحث ماکزیمم و مینیمم

$$J(f) = \int_a^b F(t, f(t), f'(t)) \, dt$$
به طریق مشابه عمل کنیم. در این راستا منحنی‌های در مجموعه‌های توابع $$\alpha$$ را در نظر می‌گیریم. این را با در نظر گرفتن "تغییر$$\alpha$$" یعنی تابعی $$\alpha(t) = f(t)$$ که $$\alpha(0, t) = f(t)$$ در انجام می‌دهیم (به شکل 4.9 توجه شود).

در این صورت توابع $$\alpha(u, t)$$ خانواده‌ای از توابع بر $$(u, t)$$ است که به ازای $$(-\varepsilon, \varepsilon)$$ فاصله نشان می‌دهد. این ناب از یک تابع $$\alpha$$ از $$(a; b)$$ به مجموعه‌ای توابع $$\alpha$$ است. اگر $$f$$ از $$(a; b)$$ به شرط $$(u, t)$$ صدق کند، به عبارت دیگر به ازای $$(u, t)$$ $$(a, b) = b'$$ آنگاه می‌گوییم $$\alpha$$ تغییری از $$f$$ است که نقاط انتهایی را نیز به نگاه می‌دارد.

![شکل 4.9](image)

حال به ازای $$\alpha$$، داریم

$$\frac{dJ(\alpha)}{du} \bigg|_{u=a} = \frac{dJ(\alpha)}{du} \bigg|_{u=-} = \int_{a}^{b} F(t, \alpha(u, t), \frac{\partial \alpha}{\partial t}(u, t)) \, dt$$

$$= \int_{a}^{b} \left\{ \frac{d}{du} \left[F(t, \alpha(u, t), \frac{\partial \alpha}{\partial t}(u, t)) \right] \right\} \, dt$$

$$= \int_{a}^{b} \left\{ \frac{\partial \alpha}{\partial u}(u, t) \frac{\partial F}{\partial x}(t, f(t), f'(t)) \right\} \, dt$$

$$+ \frac{\partial x}{\partial u}(u, t) \frac{\partial F}{\partial y}(t, f(t), f'(t)) \, dt$$

چون $\frac{\partial^2 \alpha}{\partial t \partial u} = \frac{\partial^2 \alpha}{\partial u \partial t}$، از قاعده جزء به جزء در مورد جمله دوم انتگرال بالا می‌توانیم استفاده کنیم، و به دست یابیم

$$\frac{dJ(\alpha)}{du} \bigg|_{u=a} = \int_{a}^{b} \left[\frac{\partial \alpha}{\partial u}(u, t) \frac{\partial F}{\partial x}(t, f(t), f'(t)) \right] \, dt$$

$$+ \frac{\partial x}{\partial u}(u, t) \frac{\partial F}{\partial y}(t, f(t), f'(t)) \, dt$$

$$= 328$$
فصل 9 متغیران

\[-\frac{d}{dt} \left(\frac{\partial F(t, f(t), f'(t))}{\partial y} \right) \] \(\text{dt (3.9)} \)
\[+ \frac{\partial \alpha}{\partial u} \left. \frac{\partial F(t, f(t), f'(t))}{\partial y} \right|_{a}^{b} \]

چنانچه \(\alpha \) نقاط انتهایی را حفظ کند، جمله دوم صفر است، و لذا داریم
\[\frac{dJ(\alpha(u))}{du} \bigg|_{u=b} = \int_{a}^{b} \eta(t) \left\{ \frac{\partial F}{\partial x}(t, f(t), f'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y}(t, f(t), f'(t)) \right) \right\} dt \] \(\text{دلیل: اگر جمله دوم صفر باشد. هموگون در حالت حسابان به } f \text{ از } \alpha \text{ نقاط انتهایی را حفظ می‌کند، لذا } \partial F/\partial y \text{ به آزادی } \alpha \text{ را اجازه می‌دهد. } \delta J(\alpha) \text{ به آزادی } \alpha \text{ می‌گذارد که } f \text{ مانند } \alpha \text{ می‌گذرد. }
\]

در مباحث کلاسیک حساب تغییرات، تغییرات \(\alpha \) در نظر گرفته می‌شود که به شکل خاص
\[\alpha(u, t) = f(t) + u\eta(t) \]

است. \(\eta : [a, b] \rightarrow \mathbb{R} \) است. این تریبون، داریم
\[\frac{dJ(\alpha(u))}{du} \bigg|_{u=b} = \int_{a}^{b} \eta(t) \left\{ \frac{\partial F}{\partial x}(t, f(t), f'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y}(t, f(t), f'(t)) \right) \right\} dt \]

اكنون دو اصلی همه تغییرات \(f \) از \(\alpha \) حفظ می‌کند. دو اصلی، داشته باشیم، شکل خاص (4.9) اکنون موجب می‌گردد که
\[\delta J(\alpha) = \int_{a}^{b} \eta(t) \left\{ \frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial y} \right\} dt \]
1.4.9 قضیه (معادله اولر). تابع (mj) \(f \) از کلاس \(C^2 \) وقتي و تختي یک نقطه تکین \(f \) است که \(f \) در شرط زیر صدق کند:

\[
\frac{\partial F}{\partial x}(t, f(t), f'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y}(t, f(t), f'(t)) \right) = 0
\]

اثبات: روشن است که با مدت \(f \) انتگرال در (4.9) را به ارزی‌های \(\eta(t) = \frac{\partial \alpha}{\partial u} \) که \(a \) و \(b \) صفر می‌شود، صفر کند. پس، قضیه از لح ساده زیر نتیجه می‌گردد.

\[
[a; b] \rightarrow [a; b] \rightarrow \mathbb{R}
\]

\(g = \frac{\partial \eta}{\partial t} \) در شرط \(\eta(a) = \eta(b) \) با

\(\forall (a) = \varphi(b) = 0 \) مثبت است و \(\varphi \) را \(\varphi \) به عنوان مثال، حالی را در نظر بگیرد که \(\varphi \) در این حالت چنین است:

\[
\frac{d}{dt} \left(f'(t) \right) \left(f''(t) \right) = \frac{f''}{f'(t)} - \frac{f'(t)}{f''(t)} \left(1 + f'(t)^2 \right)
\]

در نتیجه \(\eta = f'' \), ولذا \(f'' = 0 \) که \(f \) خطي است.

\(f \) را در نظر می‌گیریم نیز همین نتیجه حاصل می‌شود. زیرا در این حالت معادله اولر به شکل ساده \(f(t) = f'(t) \) می‌شود. این شاهد بسیاری با حالات در حسابان یک بعدی دارد، که نقاط تکین \(\sqrt{f} \) همگون

\(f(t, x, y) = \frac{1}{\sqrt{1 + y'^2}} \sqrt{1 + y'^2} \)

در حال روند دوام که \(F(t, x, y) = f(t) + f'(t) \) معادله اولر

\(\frac{d}{dt} \left(\frac{f(t)f'(t)}{\sqrt{1 + (f'(t))^2}} \right) \)

است. این به معادله \(f'' = 0 \) متنهی می‌گردد که آن را به شکل کلاسیک

به صورت

\[\frac{1 + (\frac{dy}{dx})^2}{y} \frac{d^2y}{dx^2} = 0 \]

می‌توان نوشت، برای حل این معادله، کیکی از \(\eta \) تکیک استاندارد را مورد استفاده قرار می‌دهیم (ابن جمله را برای چندین تحلیل کند). گریم \(p = y' = \frac{dy}{dx} \), در این
صورت

\[\frac{dy}{dx} = \frac{dp}{dy} = \frac{dp}{dx} \]

بنابراین، معادله ما چنین می‌شود

\[\frac{1}{y} \log(1 + p) = \log y + \text{ثابت} \]

⇒ \[y = \text{ثابت} \times \sqrt{1 + p} \]

⇒ \[p = \frac{dy}{dx} = \sqrt{cy - 1} \]

⇒ \[\frac{dy}{\sqrt{cy - 1}} = dx \]

⇒ \[\frac{1}{c} \cosh^{-1}(cy) = x + k \]

در مورد تعريف و خواص (کسبوس هایپنلیک) و وارونش به مسالمه ۳۰ توجه کنید.

(۵.۹)

بال تعييس c با ل دو اين معادله را به صورت

\[y = c \cosh \left(\frac{x + k}{c} \right) \]

می‌توان نوشت که (۵.۹) می‌توان N
فصل 4 حساب تغییرات

\[J(f) = \int_a^b F(t, f(t), f'(t)) \, dt \quad \text{و} \quad f : [a; b] \to \mathbb{R}^n \]

برای \(\alpha : \mathbb{R} \to \mathbb{R}^n \times [a; b] \):

\[
\frac{dJ(\mathbf{\pi}(u))}{du} \bigg|_{u=\alpha} = \int_a^b \sum_{\ell=1}^n \frac{\partial \alpha}{\partial u}(\alpha, t) \left\{ \frac{\partial F}{\partial y^\ell}(t, f(t), f'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y^\ell}(t, f(t), f'(t)) \right) \right\} \, dt
\]

بنابراین، هر نقطهٔ تکین \(J \) برای \(f \) با استناد \(n \) معادله به شرح زیر صدق کنند:

\[
\sum_{\ell=1}^n \frac{\partial \alpha}{\partial u}(\alpha, t) \frac{\partial F}{\partial y^\ell}(t, f(t), f'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y^\ell}(t, f(t), f'(t)) \right) = 0 \quad \ell = 1, \ldots, n
\]

اگر \(\alpha \) احکام را در مورد مسألهٔ بافتین کوتاه‌ترین مسیرهای در یک منیفولد دلخواه، و \(M \) بکار می‌گیریم، آنگاه حالیت \(\gamma \) یک منحنی تابعی چون به عنوان یک تابعی نتایب \(\gamma \) را باشد، نتیجه‌گیری یک تابعی \(\gamma \) را تابعی \(\gamma : [a; b] \to \mathbb{R}^n \)

\[\alpha(\gamma(t)) = \gamma(t) \quad (1) \]

(2) افرایی از آن \(a = t_0 < t_1 < \cdots < t_N = b \) نوار \((-\varepsilon, \varepsilon) \times [t_{i-1}; t_i] \) انتهایی گوئیم که \(\alpha \) به ازای هر \(u \in (-\varepsilon, \varepsilon) \) در صورتی یک تغییراژ گزارش حافظ نقاط

\[\alpha(u, a) = p \quad \text{و} \quad \alpha(a, b) = q \quad (3) \]

شکل 5.9

342
همجون قبل، فرض کنیم α مسیر $\bar{\alpha}(u)$ به ازای هر تغییر α حافظ نقاط انتهایی صدق می‌کند، هستیم، البته نجربه‌ای از اولین مثل داریم، و ابتدا نقاط نمین:

$$E(\gamma) = \frac{1}{T} \int_a^b \left\| \frac{d\gamma}{dt} \right\|^2 dt = \frac{1}{T} \int_a^b \left(\frac{d\gamma}{dt} \right)^2 dt$$

را در نظر می‌گیریم، که مناسب‌ترین تابع انتگرال را دارد؛ پیش از هر کاری، ابتدا بین انتگرال‌ها را مورد نظر قرار می‌دهیم.

می‌توانیم فرض کنیم که هر γ^i در یک دستگاه مختصات (x, U) دارد (در غیر این صورت، بارزه‌ها یا نویسندگان می‌کنیم). اگر γ^i دستگاه مختصات استاندارد در باشند، می‌نویسیم $(-\varepsilon, \varepsilon) \times [a; b]$. بنابراین، بردار معادل لحظه‌ای به منحنی $\bar{\alpha}(u)$ به میزان $\partial\alpha/\partial t(u, t)$ بر می‌دهد.

$$\alpha^i(u, t) = x^i(\alpha(u, t)), \quad \gamma^i(t) = x^i(\gamma(t)) = \alpha^i(\gamma, t)$$

را مطرح کنیم، در این صورت

$$\frac{\partial \alpha}{\partial t}(u, t) = \sum_{i=1}^{n} \frac{\partial \alpha^i}{\partial t}(u, t) \frac{\partial x^i}{\partial x^i}(u, t)$$

$$\frac{\partial \alpha}{\partial t} = \sum_{i=1}^{n} \frac{\partial \alpha^i}{\partial t} \bigg|_{\alpha(t)}$$

بنابراین

$$E(\gamma)_{\mid_{t_i, t_i}} = \frac{1}{T} \int_{t_{i-1}}^{t_i} \left\langle \frac{d\gamma}{dt}, \frac{d\gamma}{dt} \right\rangle dt$$

$$= \frac{1}{T} \int_{t_{i-1}}^{t_i} \sum_{i=1}^{n} g_{i,j}(\gamma(t)) \left\langle \frac{dx^i}{dt}, \frac{dx^j}{dt} \right\rangle dt$$

اگر از دستگاه مختصات x برای یکی گیری U استفاده کنیم، و $g_{i,j}$ ها را به عنوان توابعی بر \mathbb{R}^n در نظر گیریم، در این صورت می‌گیریم که

$$F(x, y) = \frac{1}{T} \sum_{i,j=1}^{n} g_{i,j}(x, y^i y^j)$$

243
$$\frac{\partial F}{\partial x^i}(\gamma(t), \frac{d\gamma}{dt}) = \frac{1}{\sqrt{2}} \sum_{i,j=1}^{n} \frac{\partial g_{ij}}{\partial x^i} (\gamma(t)) \frac{d\gamma^j}{dt} \frac{d\gamma^i}{dt}$$

و

$$\frac{\partial F}{\partial y^r}(\gamma(t), \frac{d\gamma}{dt}) = \sum_{r=1}^{n} g_{\ell r}(\gamma(t)) \frac{d\gamma^r}{dt}$$

در نتیجه

$$\frac{d}{dt} \left(\frac{\partial F}{\partial y^r}(\gamma(t), \frac{d\gamma}{dt}) \right) = \sum_{r=1}^{n} \frac{\partial g_{\ell r}}{\partial y^r} \frac{d\gamma^r}{dt} \frac{d\gamma^r}{dt} + \sum_{r,j=1}^{n} \frac{\partial g_{ij}}{\partial x^j} (\gamma(t)) \frac{d\gamma^j}{dt} \frac{d\gamma^r}{dt}$$

به جهت اینکه شکل ظاهری معادلات متقاون‌تر می‌شود، توجهی می‌کنیم که

$$\sum_{r,j=1}^{n} \frac{\partial g_{ij}}{\partial x^j} \frac{d\gamma^r}{dt} \frac{d\gamma^r}{dt} = \sum_{i,j=1}^{n} \frac{\partial g_{ij}}{\partial x^j} \frac{d\gamma^j}{dt} \frac{d\gamma^j}{dt}$$

در نتیجه

$$\sum_{r,j=1}^{n} \frac{\partial g_{ij}}{\partial x^j} \frac{d\gamma^r}{dt} \frac{d\gamma^r}{dt} = \frac{1}{\sqrt{2}} \sum_{i,j=1}^{n} \frac{\partial g_{ij}}{\partial x^j} \frac{d\gamma^j}{dt} \frac{d\gamma^j}{dt} + \frac{1}{\sqrt{2}} \sum_{i,j=1}^{n} \frac{\partial g_{ij}}{\partial x^j} \frac{d\gamma^j}{dt} \frac{d\gamma^j}{dt}$$

از (**), اگون بنست می‌آوریم

$$\frac{d}{du} \left(\left. \frac{\partial (\alpha_i^r)}{\partial (\alpha^r)} \right|_{t_{i-1}, t_i} \right) \bigg|_{u_s} = - \int_{t_{i-1}}^{t_i} \sum_{i=1}^{n} \frac{\partial \alpha_i^r}{\partial u^i} (\gamma(t)) \left\{ \sum_{r=1}^{n} g_{\ell r}(\gamma(t)) \frac{d\gamma^r}{dt} \right\} dt$$

$$+ \sum_{i,j=1}^{n} \frac{1}{\sqrt{2}} \left\{ \frac{\partial g_{ij}}{\partial x^j} (\gamma(t)) - \frac{\partial g_{ij}}{\partial x^i} (\gamma(t)) + \frac{\partial g_{ij}}{\partial x^j} (\gamma(t)) \right\} \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt}$$

$$+ \sum_{i=1}^{n} \frac{\partial \alpha_i^r}{\partial u^i} (\gamma(t)) \sum_{r=1}^{n} g_{\ell r}(\gamma(t)) \frac{d\gamma^r}{dt} \bigg|_{t_{i-1}}$$
باسط کردن می‌شود که γ نهایی تکمیل یاباد آور. بگیریم میدان برداری دست راست γ در $\frac{\partial \gamma}{\partial t}(t_i+)=t_i$ و نقطه شروع که مجموع آخر در فرمول بالا بطور ساده عبارت است از

$$\left< \frac{\partial \alpha}{\partial u}(\mathbf{o}, t_i), \frac{\partial \gamma}{\partial t}(t_i--) \right> - \left< \frac{\partial \alpha}{\partial u}(\mathbf{o}, t_{i--}), \frac{\partial \gamma}{\partial t}(t_{i--}) \right>$$

به منظور ساده‌تر شدن انتگرال، نمادهای زیر را مطرح می‌کنیم. این توابع به دستگاه مختصاتی مستقیم دارند، وی انتگرال

$$- \int_{t_{i--}}^{t_i} \sum_{r=1}^{n} g_{ir}(\gamma(t)) \frac{d\gamma_r}{dt} dt + \sum_{i,j=1}^{n} [ij, \ell](\gamma(t)) \frac{d\gamma_i}{dt} \frac{d\gamma_j}{dt} \right> dt$$

که در حکم ما ظاهر می‌گردد، به وضوح چنین نبست. نتیجتاً درست همین عبارت را برای هر $[t_{i--}; t_i]$ استفاده می‌کنیم حتی اگر دستگاه‌ها حرکت کنند در میان باشد (و لذا g_{ir} γ^i ها متفاوت هستند).

حال این احکام را جمع‌بندی می‌کنیم. گیریم

$$\Delta t_i \frac{d\gamma}{dt}(t_i+)=\frac{d\gamma}{dt}(t_i+)-\frac{d\gamma}{dt}(t_i-), \quad i=1,\ldots, N-1$$

$$\Delta t_N \frac{d\gamma}{dt}(t_N+)=\frac{d\gamma}{dt}(t_N-)-\frac{d\gamma}{dt}(t_N-).$$

بنابراین، فرمول زیر را داریم (که در انتگرال از یک خلاصه نویسی استفاده شده است).

345
1.5.9 قضیه (اولین فرمول تغییراتی).

\[
\left. \frac{dE((\alpha)(u))}{du} \right|_{u = u^0} = - \int_a^b \sum_{\ell = 1}^n \frac{\partial \alpha^\epsilon}{\partial u} (\gamma(t)) \left\{ \sum_{r = 1}^n g_{\ell r}(\gamma(t)) \frac{d\gamma_0^r}{dt} \gamma_0^r \right\} dt + \sum_{i, j = 1}^n [i, j](\gamma(t)) \frac{d\gamma_0^i}{dt} \frac{d\gamma_0^j}{dt} dt \\
- \sum_{i = * \gamma} \left\{ \frac{\partial \alpha}{\partial u}(\gamma(t), t_i) \Delta \gamma_0 \frac{d\gamma_0}{dt} \right\}
\]

در حالت تغییر حافظ دو اندازه مجموعاً را از 1 + 1 - N می‌توان گفت.

این حکم چنین زیبا نیست، ولی نمونه‌ای زیباتری آن وجود دارد. با پایین‌تفکر شود که

[\alpha, \beta] ها مولفه‌های هیچ ناسوری نیستند. پس از این جهت تغییر ناپدید برای اولین

فرمول تغییراتی نداریم. در بخش مانده از این فصل، ابتدا با عذر خواهی همین روند

واسته به مختصات را ادامه می‌دهیم. ابتدا، حکم ساده‌تری در مورد نقاط نکی از

اولین فرمول تغییراتی به دست می‌آید.

2.5.9 نتیجه. اگر \([a; b] \rightarrow M \) مسیری هموار باشد، آنگاه وقتی و تنها وقتی

\(\gamma \) یک نقطه نکین است که به ازای هر دستگاه مختصات \((x, U)\) داشته باشیم

\[
\sum_{r = 1}^n g_{\ell r}(\gamma(t)) \frac{d\gamma_0^r}{dt} \gamma_0^r + \sum_{i, j = 1}^n [i, j](\gamma(t)) \frac{d\gamma_0^i}{dt} \frac{d\gamma_0^j}{dt} = 0 \quad \gamma(t) \in U \quad \text{به ازای هر } t \text{ با } [a; b] \] \(\gamma(t) \in U \text{ به ازای هر } t \text{ با } [a; b] \text{ افرآزی \(\gamma(t) \in U \)} \)

اثبات: فرض کنید \(\gamma \) نقطه‌ای نکین است. به ازای هر \(t \) با \([a; b] \)

با \(U \) مdíک \(\gamma(t) \in U \text{ به ازای } t \text{ با } [a; b] \text{ اگر تغییری از } \gamma \text{ با نقاط انتهایی ثابت باشد، آنگاه می‌توان در اولین فرمول تغییراتی }

فرض کرد که همین مقدار از \(t \) بر حسب \([a; b] \) نوشته شده است. جمله‌ی \([a; b] \) در فرمول صفر است، زیرا \(\gamma \) همبود است. حال روش بکار رفته در ابتدای این

را استفاده نموده و همین‌جا را در فرمول \(\gamma \) را صفر می‌گیریم، بجز یکی که در از

\([a; b] \) صفر است، اما تابع مثبت ضرب در به‌کارگیری از \([a; b] \) صفر است. به چهار

به جهت بیان معادلات در نتیجه ۱۰ به شکل استاندارد، نمادهای زیر را مطرح

\[326 \]
فصل 9 من ریمان

می‌کنیم:

\[
\Gamma^k_{ij} = \sum_{\ell=1}^n g^{k\ell} [ij, \ell] = \sum_{\ell=1}^n g^{k\ell} \left\{ \frac{\partial g_{i\ell}}{\partial x^j} + \frac{\partial g_{j\ell}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^\ell} \right\}
\]

به این ترتیب، معادلات مذکور را به شکل

\[
\frac{d^2 \gamma^k}{dt^2} + \sum_{i,j=1}^n \Gamma^k_{ij}(\gamma(t)) \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} = 0
\]

می‌توان نوشت. از قضاوت استاندارد در خصوص دستگاه‌های معادلات دیفرانسیل مرتبه

\[
\dot{\gamma} : (\mathbb{V}, \mathbb{M}, \mathbb{G}) \rightarrow M
\]

dوم (مساله 5–4) می‌دانیم که به ازای هر

\[
\gamma: (\mathbb{V}, \mathbb{M}, \mathbb{G}) \rightarrow M
\]

ای منحصربفرد (به ازای یک \(\varepsilon \) وجود دارد. به گونه‌ای که

\[
\gamma(t) = p
\]

\[
\frac{d\gamma}{dt}(t) = v
\]

\[
\frac{d^2 \gamma^k}{dt^2} + \sum_{i,j=1}^n \Gamma^k_{ij}(\gamma(t)) \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} = 0
\]

بعلاوه، این \(\gamma \) به \(\varepsilon \) هموار است. این حکم آخر نشان می‌دهد که اگر

\[
\gamma(t) = \gamma(t) + \varepsilon
\]

\(\gamma(t) \) یکی از هموار و صادق در این روابط باشد، و نیازگر

\[
\gamma(t) = \gamma(t) + \frac{d\gamma}{dt}(t)\varepsilon
\]

آن‌گاه \(\gamma \) و \(\varepsilon \) هماه با هم یک تابع هموار بر \(\varepsilon \) تشکیل می‌دهند. طبیعی است که

\(\gamma(t) \) را به مقدار دقیقی از \(t \) می‌توان تغییر نمود. حال حکمی دیق‌تر بایان می‌کنیم.

\(\gamma(t) \) و تنها وقتی یک

\(\gamma: [a; b] \rightarrow M \)

نقطه‌تکین هموار باشد و به ازای هر دستگاه مختصات

\(x, U \)

به ازای هر \(\gamma(t) \) در معادلات زیر صدق کند:

\[
\frac{d^2 \gamma^k}{dt^2} + \sum_{i,j=1}^n \Gamma^k_{ij}(\gamma(t)) \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} = 0 \quad \gamma(t) \in U
\]

اثبات: گذینم \(\gamma(t) \) نقطه‌تکین است. را مثل قبل انتخاب کرده (همه

\(\alpha \) خارج \(t_i - 1; t_i \) صفرند) و مشاهده می‌کنیم که

\(\Gamma^k_{ij} \) در معادله صدق می‌کند.

\(\alpha \)
زیرا جمله از اولین فرمول تغییرات باز هم یا صفر است. حالا را طوری می‌گیریم که

\[\frac{\partial \alpha}{\partial u}(\cdot; t_i) = \Delta_i, \quad \frac{d\gamma}{dt} = i = 1, \ldots, N - 1 \]

از قبل می‌دانیم که همه \(\Delta_i \) صفرند. بنابر این، اگر دقت به معنی این است که رابطه کلی [\(a; b \)] هموار است.

\[\langle \cdot \rangle = \sum_{i=1}^{n} \text{dx}^i \otimes \text{dx}^i \text{رای هم} \quad \gamma_i = \delta_{ij} \quad \text{رای نرمالی می‌گردد} \text{و به‌دست می‌آید} \quad \gamma_i^k \]

صدق کند. بنابراین، \(\gamma \) یک خط راست واقع است. به همین ترتیب، هر نقطه \(t \) تکین برای تابع طول قوس نیز باید است. چنانچه ما تنها منحنی‌های به شکل \((t, f(t)) \) را در نظر بگیریم، بسیار وضعیت منفی‌گرای خواهد بود. در حالی که کلی مورد بررسی قرار گرفته، جنگل‌های \(\gamma \) یک نقطه تکین باشند، آن‌گاه به‌طور گسترده تعریف آن نیز جواب می‌دهد. این که تابع تکین برای طول وجود دارد که مشخصا نقطه تکین نیستند، زیرا کمی قبل ملاحظه کردیم که برای اینکه \(\gamma \) نقطه تکین برای انرژی باشد. لازم است مولفه‌های \(\gamma \) خطي باشند و لذا با پایتی \(\gamma \) حتما به صورت تابع خطی از طول قوس پارامتره شود. چنین وضعیتی بسیار مفید است.

4.5.9 قسمت. اگر \(\gamma \) نقطه‌ای تکین برای \(E \) باشد، آن‌گاه \(\gamma \) به صورت نسبی از طول قوس پارامتره شده است.

اثبات: ابتدا از تعریف ملاحظه می‌گردد که

\[\frac{\partial g_{ij}}{\partial x^k} = [i\ell, j] + [j\ell, i] \quad (7.9) \]

اگر داریم

\[\frac{d}{dt} \left\| \frac{d\gamma}{dt} \right\| = \frac{d}{dt} \left(\sum_{i,j=1}^{n} g_{ij} (\gamma(t)), \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \right) \]

348
فصل ۹ متریمان

ولایت فرمول تعبیراتی و رمزگذاری

\[
\frac{d}{dt} \frac{d\gamma}{dt} = \sum_{i,j=1}^{n} \frac{\partial g_{ij}}{\partial x^\ell} (\gamma(t)) \frac{d\gamma^\ell}{dt} + \sum_{i,j=1}^{n} g_{ij}(\gamma(t)) \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \\
+ \sum_{r,j=1}^{n} g_{jr}(\gamma(t)) \frac{d\gamma^r}{dt} + \sum_{i,r=1}^{n} g_{ir}(\gamma(t)) \frac{d\gamma^i}{dt} \\
\]

با جاگزاري مقدار از (۷.۹) می‌توان نوشت

\[
\frac{d}{dt} \frac{d\gamma}{dt} = \sum_{i,j=1}^{n} g_{ij} \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \\
+ \sum_{r,j=1}^{n} g_{jr} \frac{d\gamma^r}{dt} + \sum_{i,r=1}^{n} g_{ir} \frac{d\gamma^i}{dt} \\
\]

چون \(\gamma \) نقطه‌ی نکین برای \(E \) است، هر دو جمله‌ی دوپرانتز صفرند (نتیجه ۱۰۰). بنابراین

\[
\text{طول } \|d\gamma/dt\| \text{ همواره ثابت است.}
\]

فرمول (۷.۹) مطرح شده در اتاق‌های قضیه‌ی با، بعداً به مناسب‌سازی می‌گیرد. از آن همچنین برای کسب فرمولی برای می‌توان استفاده کرد. برای استخراج آن، ابتدا از فرمول \(g_{rj} g_{mj} = \delta_{ij} \) مشتق می‌گیریم، بنابراین

\[
\sum_{m=1}^{n} g_{tm} \frac{\partial g_{mj}}{\partial y^k} = - \sum_{m=1}^{n} \frac{\partial g_{tm}}{\partial y^k} g_{mj}
\]

از حال این دستگاه معادلات، داریم

\[
\frac{\partial g_{ij}}{\partial y^k} = \sum_{\ell,m} g_{\ell i} g_{tm} \frac{\partial g_{mj}}{\partial y^k} = - \sum_{\ell,m} g_{\ell i} g_{mj} \frac{\partial g_{tm}}{\partial y^k}
\]

\[
= - \sum_{\ell,m} g_{\ell i} g_{mj} ([\ell k, m] + [mk, \ell]) \tag{۷.۹}
\]

\[
= - \sum_{\ell} g_{\ell i} \Gamma^i_{\ell k} - \sum_{\ell} g_{mj} \Gamma^m_{\ell k}
\]

و در نتیجه

\[
\frac{\partial g_{ij}}{\partial y^k} = - \sum_{\ell=1}^{n} (g_{\ell i} \Gamma^j_{\ell k} + g_{mj} \Gamma^i_{\ell k}) \tag{۸.۹}
\]

درست به همان شیوه‌ای که نقاط تکین تابع انرژی را به دست آورده‌ایم، می‌توانیم معادلات برای نقاط تکین برای تابع طول را به دست بیاوریم. فعلاً، تنها منحنی هایی \(\gamma : [a, b] \to [a, b] \)
را در نظر می‌گیریم که در همه جا \(d\gamma/dt \neq 0 \) در مورد بخش مختصاتی \((x, U)\) مفروض، داریم.

\[
L(\gamma|[t_i-1; t_i]) = \int_{t_{i-1}}^{t_i} \sqrt{\sum_{i,j=1}^{n} g_{ij}(\gamma(t)) \frac{d\gamma}{dt}_i \frac{d\gamma}{dt}_j} \, dt
\]

با در نظر گرفتن دستگاه مختصاتی استاندارد بر \(\mathbb{R}^n \) عمل‌الدرا به حالت با

\[
F(x, y) = \sqrt{\sum_{i,j=1}^{n} g_{ij}(x) x^i y^j}
\]

مواد هستیم. فرض کنیم شرط (\(s(t) = L_a^t(\gamma) \) تابع طول فاصله است. در این صورت

\[
\frac{ds}{dt} = \left\| \frac{d\gamma}{dt} \right\| = F\left(\gamma(t), \frac{d\gamma}{dt}\right)
\]

و بنابراین

\[
\frac{\partial F}{\partial x^i}\left(\gamma(t), \frac{d\gamma}{dt}\right) = \sum_{i,j=1}^{n} \frac{\partial g_{ij}(\gamma(t))}{\partial x^i} \frac{dx^i}{dt} \frac{dx^j}{dt}
\]

\[
\frac{\partial F}{\partial y^j}\left(\gamma(t), \frac{d\gamma}{dt}\right) = \sum_{r=1}^{n} \frac{g_{jr}(\gamma(t))}{\frac{ds}{dt}} \frac{dy^r}{dt}
\]

پس از کمی محاسبات بیشتر، سرانجام به معادلات به شرح زیر برای نقاط تکین \(L \) می‌رسیم:

\[
\frac{d\gamma}{dt} + \sum_{i,j=1}^{n} \Gamma_{ij}^{k}(\gamma(t)) \frac{d\gamma}{dt}_i \frac{d\gamma}{dt}_j \frac{d\gamma}{dt} - \frac{d\gamma}{ds} \frac{ds}{dt} = 0
\]

از این فرمول مشهور است که نقاط تکین \(E \) نقاط تکین نیز هستند (زیرا در \(\forall t : d\gamma/dt \neq 0 \) صدق دارد،) با اگر در نظر گرفته شده در نظر بگیریم، این منحنی جدید بارامتر مشتری \(L_a^t(\gamma) \) را می‌توانیم \(\gamma \) در نظر بگیریم. این منحنی جدید بارامتر مشتری \(M \) در نظر بگیریم، این منحنی بارامتر مشتری \(L \) است.
و لذا با استناد به معادلات دیفرانسیل صدق کند. جنون منحنی نویدته برمی‌شود، با پایام طول قوس پارامتره شده است، دومن جمله صفر است، ولذا

\[\frac{d^2 \gamma}{dt^2} + \sum_{i,j=1}^{n} \Gamma_{ij}^k \frac{d \gamma^k}{dt} = 0. \]

\(t \to \gamma(\epsilon t) \) هستند. که خاصیت مهمی به شرح ذیل دارد: اگر \(\gamma \) رئولژی ب تشکیل شده است، این جنبه از معادله امکان اصلاح احکام به کمک قضاوتی وجود و بکننده اساسی را می‌گذارد.

5.5.9 قضیه. گیبریم \(p \in M \) همسایه‌ای \(U \) و \(p \) دربار مباس به \(q \in U \) دارد که به ازای هر \(q \in U \) و \(q \in U \) مختصه به

\[\gamma_0(0) = q, \quad \frac{d \gamma_0}{dt}(0) = v. \]

اثبات: قضیه وجود بکننده اساسی می‌گوییم که همسایگی یا

\[\epsilon > 0 \text{ و } \epsilon > 1, \epsilon > 1 \]

\(q \text{ وجود دارد که } \gamma_0 \text{ به شرایط اولیه } q \text{ و } \gamma_0 \text{ در } \gamma_0(0) \)

\[\epsilon \in (0, \epsilon) \]
1.9 نگاشت نمایی

اگر برداری باشند که برای آن زئودژی $v \in T_qM$ صادق در $\gamma^{(0)}: \gamma^{(0)}(v) = v$ و q

\[
\exp(v) = \exp_q(v) = \gamma^{(1)}(v)
\]

می توانم تعیین کنم. (دلیل این اسم گذاری در فصل بعد مشخص می گردد.) بنابراین،

\[
\gamma(t) = \exp_q(tv)
\]

می توان نتوانست نمونه. جون T_qM فضای برداری n به دو است. طریقی طبیعی برای تعیین ساختار هموار بر آن وجود دارد. اگر مجموعه همه بردارها $\exp_q(v) \in T_qM$ برداری که با ازای آنها $\exp_q(v) \in T_qM$ تعیین می گردد، در این صورت نگاشت هموار است. زیرا جوابهای معادلات دیفرانسیل برای زئودژی ها، T_qM دارای شار هموار است، با یکی گیری فضای معاس M به نگاشتی قابلی

\[
\exp_q(v) : T_qM \rightarrow T_{\exp_q M}
\]

می رسم. به ویژه، ادعا می کنیم که نگاشتی قابلی

\[
\exp_q(v) : T_qM \rightarrow T_{\exp_q M}
\]

در واقع، برای به دست آوردن منحنی c (البته با یکی گیری $c(t) = tv$) می توانم فرض کنیم $\exp_q \circ c(t) = \exp_q(tv)$ در زمان t و در نتیجه

\[
\exp_q \circ c(t) = \exp_q(tv)
\]

قبل از اثبات حکم بعید، چند حکم در مورد منحنی T_qM را باید اثبات کنیم. اگر $v \in T_qM$ باشد، آنگاه برای $q \in U$ دستگاهی مختصات بر M باشد. به دنبال آن، T_qM را به صورت $x^i(v)$ باز مشاهده می کنیم

\[
v = \sum_{i=1}^{n} x^i(v) \frac{\partial}{\partial x^i} \mid_{\pi(v)}
\]

352
دستگاهی مختصاتی بر (U) است. به ازای \(\pi^{-1}(U) \) مثابه بردارهای مسیره
\[
\frac{\partial}{\partial \hat{x}^i} \bigg|_v \in T_v(TM)
\]
را داریم. همه بردارهای \(\frac{\partial}{\partial \hat{x}^i} \bigg|_v \in T_v(TM) \) در \(T_qM \subseteq TM \) مسیره حالت آنکه بردارهای \(\frac{\partial}{\partial \hat{x}^i} \bigg|_v \), زیر فضایی متمم در \(T_qM \) در \(U \) تولید می‌گردد (به قسمت الف از شکل 7.9 نویه شود).

\[
\exp_q(v) = q'
\]

\(\epsilon > 0 \) تایمی‌شگر بردار مسیره بر فرد \(q' \) که \(\exp_q(v) = q' \). در این صورت (2) گونه‌ای که است. است به
\[
\epsilon > 0 \quad v \in T_qM \quad \text{به طول } W \times W
\]
(3) به ازای هر \(q \in W \) به روش ممکنی باز \(U_q \) که \(W \) باز در بر دارد می‌گردد. تایمی‌شگر \(T_qM \) در منیفلد \(V \) همگی که \(\pi \in T_pM \) به گونه‌ای که \(F : V \rightarrow M \times M \) نمایی می‌گردد. تایمی همراهی \(F(v) = (\pi(v), \exp(v)) \) تعیین می‌گردد. نتایج فصل 9 متریامان

\[
\text{شکل 9}
\]

\(\epsilon > 0 \quad v \in T_qM \quad \text{به طول } W \times W
\]
گریم (x, U) دستگاه مختصاتی حول \(p \) است. از دستگاه مختصات \((x^1, \ldots, x^n) \) توصیف شده در بالا برای \(\pi^{-1}(U) \) استفاده می‌کنیم. اگر بر مولفه‌ای ام باشید، در این صورت

\[
(x^1 \circ \pi_1, \ldots, x^n \circ \pi_1, x^1 \circ \pi_2, \ldots, x^n \circ \pi_2) = (x^1, \ldots, x^n, x^1, \ldots, x^n)
\]

دستگاه مختصاتی بر \(U \times U \) است. حال با استفاده از اینکه همانی است، مشاهده این که در \(\exp_p \circ T_p M \) روابط زیر برقرار است، کار دشواری نیست.

\[
 F^* \left(\frac{\partial}{\partial \bar{x}^i} \bigg|_{\pi} \right) = \frac{\partial}{\partial x^i} \bigg|_{(p, p)}, \quad F^* \left(\frac{\partial}{\partial \bar{\dot{x}}^i} \bigg|_{\pi} \right) = \frac{\partial}{\partial \dot{x}^i} \bigg|_{(p, p)}
\]

نتیجه‌اً \(p \) یکیک است، ولذا \(F^* \) دیفرمورف بری همسایگی از \(V' \) از \(\exp_p \circ T_p M \) در \(F \).

(p, p) \in M \times M
\[
\begin{align*}
\exp (\psi) &= \exp \left(\psi \right) \\
\exp (\psi) &= \exp \left(\psi \right) \\
\exp (\psi) &= \exp \left(\psi \right)
\end{align*}
\]}
\[
\begin{align*}
&\text{دکتر کریم میرزاخانی}
\end{align*}
\]
تشکر کردم.
إذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\begin{align*}
\frac{(a+b)}{2} &\leq \frac{(a+b)}{2} + \frac{(a-b)}{2} = a \quad \text{و} \quad \left(\frac{(a+b)}{2}\right)^2 = \frac{a^2 + b^2}{2} \\
\frac{(a-b)}{2} &\leq \frac{(a+b)}{2} + \frac{(a-b)}{2} = b \\
\end{align*}
\]

إذاً، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولا يوجد علاقة بين القيم المطلقة لـ \(a \) وـ \(b \) وـ \(c \) في حالة العامة:

\[
\left|a + b + c\right| \neq |a| + |b| + |c|
\]

عليه، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

فتوى عامة: ينص النظرية العامة على أن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]

ولذا، فإن القيم المطلقة لـ \(a \) وـ \(b \) تحقق:\n
\[
\left|a \pm b\right| \leq |a| + |b|
\]
در ریاضیات، نام یکی از گروه‌های جبری میدان است که در آن، عمل جمع و ضرب دارای خاصیتی است که در مجموعه‌های دیگر نیست. این گروه‌ها به وسیلهِ تابع اعمال شده‌اند.
۲۰. قضیه: هر مجموعه $N \subseteq M$ زیرمجموعه متناهی از M است. در این صورت M دارای تعداد کاملاً تصادفی N در M می‌باشد.

این مسئله برای N به نظر نمی‌رسد، نمی‌تواند N هم‌سازی کامل باشد.

$E := \{ v : v \in T_p N \land v \in T_p M \land v \in T_p E \} \quad \text{برای} \quad E := \{ q : q = d(q, M) \}

با توجه به قضیه $\lambda \geq \lambda$، فرضیه λ به نظر نمی‌رسد. در این صورت E به نظر زیرمجموعه M در V می‌باشد.

$\text{اگر} \quad M \subseteq V \subseteq E \subseteq U \subseteq N \subseteq M$ به نظر نمی‌رسد. در این صورت E به نظر زیرمجموعه M در V می‌باشد.

$\text{اگر} \quad M \subseteq V \subseteq E \subseteq U \subseteq N \subseteq M$ به نظر نمی‌رسد. در این صورت E به نظر زیرمجموعه M در V می‌باشد.

$\text{اگر} \quad M \subseteq V \subseteq E \subseteq U \subseteq N \subseteq M$ به نظر نمی‌رسد. در این صورت E به نظر زیرمجموعه M در V می‌باشد.

$\text{اگر} \quad M \subseteq V \subseteq E \subseteq U \subseteq N \subseteq M$ به نظر نمی‌رسد. در این صورت E به نظر زیرمجموعه M در V می‌باشد.

$\text{اگر} \quad M \subseteq V \subseteq E \subseteq U \subseteq N \subseteq M$ به نظر نمی‌رسد. در این صورت E به نظر زیرمجموعه M در V می‌باشد.
کیهان از طریق تغییرات مصرفی، نمونه‌های اصلی از این اسکیت در آبی‌می‌باشند. در نظر گرفتن هر دو روش، نمونه‌های اصلی از این اسکیت در آبی‌می‌باشند.

2. قطعه‌های ثابت در ساختار بازسازی شده، N اسامی در این صورت، نمونه‌های اصلی در آبی‌می‌باشند.

درباره کارکرد یک نمونه از این اسکیت به‌نام ای. استفاده کنید. نمونه‌های اصلی در آبی‌می‌باشند.

3. تغییرات مصرفی نمونه‌های اصلی از این اسکیت در آبی‌می‌باشند.

4. تغییرات مصرفی نمونه‌های اصلی از این اسکیت در آبی‌می‌باشند.

5. تغییرات مصرفی نمونه‌های اصلی از این اسکیت در آبی‌می‌باشند.
معادله کینه و \(W \) و \(\psi \) نسبت به 초기 توپولوژی نویسیده و \(\psi \) ها در \(8 \) هند.

\[
\text{درک این دو توجه و توانا ویه \(W \) را به کار \(\psi \) است.}
\]

\[
\text{درک این دو توجه و توانا ویه \(W \) را به کار \(\psi \) است.}
\]

\[
\text{درک این دو توجه و توانا ویه \(W \) را به کار \(\psi \) است.}
\]

\[
\text{درک این دو توجه و توانا ویه \(W \) را به کار \(\psi \) است.}
\]

\[
\text{درک این دو توجه و توانا ویه \(W \) را به کار \(\psi \) است.}
\]

\[
\text{درک این دو توجه و توانا ویه \(W \) را به کار \(\psi \) است.}
\]

اگر $\mathbf{U} = \langle u_1, \ldots, u_k \rangle$ و $\mathbf{V} = \langle v_1, \ldots, v_k \rangle$ دو گروه کاربردی باشند، آنگاه برای کلید کردن درشت، رابطه $\det(\mathbf{U}) = \det(\mathbf{V})$ وجود دارد.

در اینجا با استفاده از روشی که در زبان اصلی به آن می‌گویند، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

برای یافتن درستی ویژه در اینجا، نموداری زیر ارائه می‌شود.

![نمودار](image.png)

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

در این نمودار، با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

این نمونه شامل طرح‌های مختلفی از روش‌های مربوطه است که با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.

با استفاده از روش‌های مربوطه، تقریباً هر گروه کاربردی را می‌توان با استفاده از روش‌های مربوطه نمود.
\[
\sum_{k=1}^{\infty} g_{ik} g_{kj} = \delta_{ij} \quad \sum_{k=1}^{\infty} g_{ik} \delta_{kj} = \delta_{ij}
\]

تنویه: دراین صورت

\[
g_{ik} \delta_{ij} = \sum_{j} g_{ik} \delta_{ij}
\]

پنگوین
\[
\frac{dV_{n-1}(p)}{dV_n(p)} = \det \left(\begin{array}{c}
(u_1(p)) \\
(u_2(p)) \\
\vdots \\
(u_n(p))
\end{array} \right)
\]

نحوه محاسبه ضروری است:

\[
\sum_{i=1}^{n} (-1)^{i-1} u_i(p) \frac{dV_{n-1}(p)}{dV_n(p)} A ... A \frac{dV_{n-1}(p)}{dV_n(p)} A ... A \frac{dV_{n-1}(p)}{dV_n(p)}
\]

به‌طوری که \(p \in R^n \)

\[
\left< u_i(p), v \right> = \sum_{i=1}^{n} (-1)^{i-1} u_i(p) v_i(p) A ... A v_i(p) A ... A v_i(p)
\]

در جایی که \(M \in \mathbb{R}^n \) خواهد بود و \(v_i(p) = \frac{dV_{n-1}(p)}{dV_n(p)} \) است.

\[
\frac{dV_{n-1}(p)}{dV_n(p)} = X \sum_{i=1}^{n} \frac{dV_{n-1}(p)}{dV_n(p)} a_i(p) + \sum_{i=1}^{n} \frac{dV_{n-1}(p)}{dV_n(p)} a_i(p)
\]

\[
\sum_{i=1}^{n} \frac{dV_{n-1}(p)}{dV_n(p)} = \sum_{i=1}^{n} \frac{dV_{n-1}(p)}{dV_n(p)} a_i(p) + \sum_{i=1}^{n} \frac{dV_{n-1}(p)}{dV_n(p)} a_i(p)
\]

\[
\int_M \text{div}(x) \, dV_n = \int_M < x, v > \, dV_n
\]

که \(x \in \mathbb{R}^n \) است و \(v \) و \(v_i(p) \) تقاطعات می‌باشند. در مورد این که \(M \) یک فضای متناهی می‌باشد،

\[
\omega = \sum_{i=1}^{n} (-1)^{i-1} a_i(p) A ... A v_i(p) A ... A v_i(p)
\]

در جایی که \(M \subset \mathbb{R}^3 \) خواهد بود و \(x \) و \(v_i(p) \) تقاطعات می‌باشند.

\[
\int_M < \nabla \times X, Y > \, dA = \int_M < X, Y > \, ds
\]

که \(X \) در سطح \(V_n \) تکنیک شده است.

\[
V_n = \int_{V_{n-1}} \left(1 - \frac{n^2}{n-2} \right)^{(n-1)/2} \, dV_{n-1}
\]

\[
I_n = \frac{1}{n} \int_0^1 (1 - \frac{n^2}{n-2})^{(n-1)/2} \, dx
\]

با توجه به اینکه \(\int_0^1 x^{n-1} \, dx = \frac{1}{n} \) و \(V_2 = \pi \) و \(V_1 = 2 \) سپس به دست می‌آید:

\[
V_n = \begin{cases}
\pi^{n/2} / \left(n/2 \right)!
& \text{for } n = 0, 2, 4, \ldots \\n2^{(n+1)/2} \pi^{(n-1)/2} / \left(1, 3, 5, \ldots, n \right)
& \text{for } n = 1, 3, 5, \ldots, n
\end{cases}
\]
نقاط اصلی در دوی پایه اولین مهندسی نیروی دفاعی و بیل‌های داده‌ها و درمان وارد نشده‌اند.

\[\sinh(x) = \frac{1}{2} (e^x - e^{-x}) \quad \cosh(x) = \frac{1}{2} (e^x + e^{-x}) \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \]
وجدنا انها

\[F = \frac{1}{2} \gamma^2 \cdot \frac{d^2 y}{d \chi^2} \]

لذا

\[d^2 y / d \chi^2 = \frac{d^2 F}{d \gamma^2} = \frac{d}{d \gamma} \left(\frac{d F}{d \gamma} \right) = \frac{d^2 F}{d \gamma^2} \]

معنیًً انها

\[F = \gamma^2 \cdot \frac{d^2 y}{d \chi^2} \]

و في آخره

\[\frac{d^2 F}{d \gamma^2} = \frac{d}{d \gamma} \left(\frac{d F}{d \gamma} \right) \]

نظام لاتيقتضي سبب تغييرات في F هواي كي كروكوب تنويع أو توزيع في دائم مسارات

\[\frac{d^2 y}{d \chi^2} = \frac{d^2 F}{d \gamma^2} \]

معنیًً انها

\[F = \gamma^2 \cdot \frac{d^2 y}{d \chi^2} \]

و في آخره

\[\frac{d^2 F}{d \gamma^2} = \frac{d}{d \gamma} \left(\frac{d F}{d \gamma} \right) \]

نظام لاتيقتضي سبب تغييرات في F هواي كي كروكوب تنويع أو توزيع في دائم مسارات

\[\frac{d^2 y}{d \chi^2} = \frac{d^2 F}{d \gamma^2} \]

معنیًً انها

\[F = \gamma^2 \cdot \frac{d^2 y}{d \chi^2} \]

و في آخره

\[\frac{d^2 F}{d \gamma^2} = \frac{d}{d \gamma} \left(\frac{d F}{d \gamma} \right) \]
\[\rho_0 = \sum_{i,j,k} \frac{\rho_i \rho_j \rho_k}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \cdot \sum_{i,j,k} \frac{\rho_i \rho_j \rho_k}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \]

\[\Gamma_{ij}^{\alpha} = \sum_{i,j,k} \frac{g_{ij} \rho_i \rho_j \rho_k}{\sum_{i,j,k} \rho_i \rho_j \rho_k} + \sum_{i,j,k} \frac{g_{ij} \rho_i \rho_j \rho_k}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \]

\[\text{در نهایت:} \quad \mathbf{R}^n \rightarrow \mathbf{R}^n \]

\[\text{چگونه کنیم؟} \]

\[\rho_{ij} = \frac{\rho_i \rho_j}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \]

\[\mathbf{A}^{ij} = \sum_{l=1}^{n} \frac{3 \rho_l}{\rho_i \rho_j} \cdot \frac{\partial f}{\partial \rho_l} \cdot \frac{\partial f}{\partial \rho_l} \]

\[\mathbf{B}_{ij,k} = \sum_{l=1}^{n} \frac{g_{ij} \rho_l}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \cdot \frac{\partial f}{\partial \rho_l} \cdot \frac{\partial f}{\partial \rho_l} \]

\[\text{در نهایت:} \quad \mathbf{B}_{ij,k} = [i,j,k] \]

\[\text{در نهایت:} \quad \mathbf{A}_{ij}^{\alpha} = \sum_{l=1}^{n} \frac{g_{ij} \rho_l}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \cdot \frac{\partial f}{\partial \rho_l} \cdot \frac{\partial f}{\partial \rho_l} \]

\[\text{در نهایت:} \quad \mathbf{A}_{ij}^{\alpha} = \sum_{l=1}^{n} \frac{g_{ij} \rho_l}{\sum_{i,j,k} \rho_i \rho_j \rho_k} \cdot \frac{\partial f}{\partial \rho_l} \cdot \frac{\partial f}{\partial \rho_l} \]
\[\begin{align*}
\sum_{i,j} \frac{d^2}{dt^2} \frac{d^i}{dt^j} \leq n^2 \sum_{i,j} \left(\frac{d^i}{dt^j} \right)^2
\end{align*} \]
لا يمكنني قراءة النص العربي في الصورة. إذا كنت بحاجة إلى مساعدة في شيء آخر، يرجى قنائي.
\[\lim_{x \to a} f(x) = L \]

\[\frac{f(x) - f(a)}{x - a} \]

\[\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2} \]

\[\int_a^b f(x) \, dx \]

\[\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i = \int_a^b f(x) \, dx \]

\[\text{تقریب} \quad \Delta x = \frac{b - a}{n} \]

\[\text{ب) نسبت بزرگی کررده} \quad \frac{\Delta y}{\Delta x} \]

\[\text{دریافت از مانند} \quad \lim_{n \to \infty} \frac{\sum_{i=1}^{n} f(x_i) \Delta x_i}{n} \]

\[\text{یکدیگر از روش جبری} \quad \frac{\Delta y}{\Delta x} \]

\[\text{دریافت از مانند} \quad \lim_{n \to \infty} \frac{\sum_{i=1}^{n} f(x_i) \Delta x_i}{n} \]

\[\frac{d}{dx} \left(f(x)g(x) \right) = f'(x)g(x) + f(x)g'(x) \]

\[\frac{d}{dx} \left(\frac{1}{f(x)} \right) = -\frac{f'(x)}{f(x)^2} \]

\[\frac{d}{dx} \left(\log_b x \right) = \frac{1}{x \ln b} \]

\[\frac{d}{dx} \left(e^x \right) = e^x \]

\[\frac{d}{dx} \left(\sin x \right) = \cos x \]

\[\frac{d}{dx} \left(\cos x \right) = -\sin x \]

\[\frac{d}{dx} \left(\tan x \right) = \sec^2 x \]

\[\frac{d}{dx} \left(\cot x \right) = -\csc^2 x \]

\[\frac{d}{dx} \left(\sec x \right) = \sec x \tan x \]

\[\frac{d}{dx} \left(\csc x \right) = -\csc x \cot x \]
اسنادی از بخشی سه بعدی و دو نشانه: 2

این قومی از صفحه‌ها و دو نشانه: 2

سپری کردن را بیشتر سه بعدی و دو نشانه: 2

یکنیه به طوری که در نتیجه بدست آمده باشد.

این قومی از صفحه‌ها و دو نشانه: 2

سپری کردن را بیشتر سه بعدی و دو نشانه: 2

یکنیه به طوری که در نتیجه بدست آمده باشد.

این قومی از صفحه‌ها و دو نشانه: 2

سپری کردن را بیشتر سه بعدی و دو نشانه: 2

یکنیه به طوری که در نتیجه بدست آمده باشد.

این قومی از صفحه‌ها و دو نشانه: 2

سپری کردن را بیشتر سه بعدی و دو نشانه: 2

یکنیه به طوری که در نتیجه بدست آمده باشد.

این قومی از صفحه‌ها و دو نشانه: 2

سپری کردن را بیشتر سه بعدی و دو نشانه: 2

یکنیه به طوری که در نتیجه بدست آمده باشد.
\[f(x) = \frac{ax + b}{cx + a}, \quad a, b, c, d \in \mathbb{R}, \quad ad - bc > 0. \]

In the diagram, the triangle ABC is transformed into triangle A'B'C'. The transformation matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is used to map the points from one triangle to the other. The determinant \(ad - bc \) must be non-zero for the transformation to be invertible.

In the text, the discussion is about the properties of the transformation and its effect on the geometric shapes.
با استاندارد سال 1377، وزارت آموزش و پرورش به من بخشی از مصرف کتب آموزشی را فراهم می‌کند.