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Les systémes différentiels extérieurs et leurs applications géométriques.
(Actualités Scientifiques et Industrielles, no. 994.) By Elie Cartan.
Paris, Hermann, 1945. Second ed, 1971.

The first part of this book contains the theory of integration of total differential
equations connected with a general system of exterior differential forms (covariant
alternating quantities). The symbolism used is the ω-method introduced in Cartans
well-known publications [Ann. Sci. Ecole Norm. Sup. (3) 18, 24–311 (1901); 21,
153–206 (1904), in particular, chap. I] with some modifications due to E.Kahler
[Einfuhrung in die Theorie der Systeme von Differential-gleichungen, Hamburger
Math. Einzelschr., no. 16, Teubner, Leipzig-Berlin, 1934]. The first two chapters
contain an exposition of the method. In chapter III, after introducing the important
notions of closed systems and characteristic systems the theory of completely inte-
grable systems is presented and applied to the ordinary problem of Pfaff. Chapter
IV contains the definitions of the integral elements, the characters and the genus and
two fundamental existence theorems. Systems in involution are defined in chapter V
and this chapter contains several simple forms of the conditions for these systems.
The theory of prolongation is dealt with in chapter VI. For the chief theorem of pro-
longation, proved by Cartan in 1904, another proof is given for the case m = 2. In
No. 117 special attention is paid to the cases where the proof is not valid.

The second part of the book contains applications to several problems of dif-
ferential geometry. Chapter VII deals with old and new problems of the classical
theory of surfaces. In each case the degree of freedom of the solution is discussed.
The last chapter contains problems with more than two independent variables. A
new method is developed for orthogonal systems in n variables. The problem of the
realization of a V 2 with a given ds2 in an R6 is discussed elaborately and special
attention is paid to the singular solutions of this problem.

Reviewed by J. A. Schouten
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Preface

This book is the reproduction, quite radically changed, a course taught during the
first semester 1936-1937 at the Faculty of Sciences of the University of Paris.

The first part of this work is devoted to discussion of the theory of systems of
differential equations in total, which was the subject of several memoirs, already
old, published mainly in the Annals of Ecole Normale Superieure1 between years
1902 and 1908, this theory was the basis for my theory of the structure of infinite
transformation groups, in the sense of S. Lie2.

It has since been generalized by various authors, especially by E. Kähler3, who
has extended to any system of differential equations Exterior.

I adopt in this work the notation advocated by E. Kähler of designating by dω ,
and called exterior differential of an exterior differential form ω of any degree, what
I called earlier by ω ′ and what I called the exterior derivative of the form ω .

After a first chapter, purely algebraic, the exterior forms and Exterior systems of
equations, Chapter II is devoted to exterior differential forms (symbolic forms of E.
Goursat4) and the operation of exterior differentiation.

Chapter III introduces the concept of closed exterior differential system and char-
acteristic system, outlines the theory of completely integrable systems with applica-
tions to the classical problem of Pfaff5.

Chapter IV introduces the concepts of integral element, character and gender,
devoted also to two fundamental theorems of existence.

1 It was founded in 1864 by Louis Pasteur. For more informations, see:
http://www.math.ens.fr/edition/annales/
2 Marius Sophus Lie (1842–1899) was a Norwegian mathematician. For more informations, see:
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html
3 Erich Kähler (1906–2000) was a German mathematician. For more informations, see:
http://www-history.mcs.st-andrews.ac.uk/Biographies/Kahler.html
4 Édouard Jean-Baptiste Goursat (1858–1936) was a French mathematician. For more informa-
tions, see: http://www-history.mcs.st-andrews.ac.uk/Biographies/Goursat.html
5 Johann Friedrich Pfaff (1765–1825) was a German mathematician. For more informations, see:
http://www-history.mcs.st-andrews.ac.uk/Biographies/Pfaff.html
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6 Contents

Chapter V is devoted to differential systems with independent variables imposed,
especially for systems in involution with existence theorems relating to these sys-
tems and the latest indication of several simple criteria of involution, it is especially
this Chapter which writing was the most altered.

Finally, Chapter VI introduces the notion of prolongation of a differential sys-
tem, with applications that can make a search of soIutions a system that is not in
involution.

Throughout this first part, from Chapter IV, equations of the systems considered
involve only the analytic functions, the Cauchy-Kowalewski theorem, on that un-
derlie the existence theorems that are proven, having no validity and even sene that
if the data is analytic.

The second Part of the book is devoted to applications to problems in differential
geometry. It consists of two chapters.

The problems addressed in Chapter VII are all related to the classical theory
of surfaces. Many are old, quite a few others are new. In each case the degree of
generality of the solution is given, and how we should pose the Cauchy problem,
comprehending where the data are characteristic.

Chapter VIII refers to problems with more than two independent variables, con-
taining the problem of orthogonal triple systems, the general problem of orthogonal
systems p-tuples of p-dimensional Euclidean space: in the latter case, the problem of
Cauchy is presented in a simple form which has not yet, I believe, been considered.

Finally the problem of realization of ds2 has three variables in Euclidean space
has six dimensions is discussed in detail, with indications of singular solutions of
this problem.

Throughout this second Part, use is made almost exclusive method of moving
frame, which is particularly suitable ii using the theory of differential systems in
involution outside.

In writing this book, I used a first draft due to Luc Gauthier, responsible for re-
search, after the notes taken during. This first draft has made me the greatest service
and he is agrbable to express my gratitude Mr. Gauthier.

Élie Cartan
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Part I
Theory of exterior differential systems
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Chapter 1
Exterior Forms

1.1 Symmetric and alternating bilinear forms, Exterior algebraic
quadratic forms

1. In classical algebra, a bilinear form of two sets of variables u1,u2, · · · ,un and
v1,v2, · · · ,vn of the same number n, is an expression1

F(u,v) = ai juiv j, (1.1)

with coefficients ai j belonging to a given field, we assume, for simplicity, be the
field of real numbers Rrelationship.

This form is called symmetric if it remains identical to itself when we replace
variables ui by variables vi with the same index and vice versa, i.e. if one has

ai j = a ji, (i, j = 1, · · · ,n). (1.2)

With any symmetric bilinear form we can associate a quadratic form

F(u) = ai juiu j. (1.3)

has a single set of variables, the form (1.1) is the polar form of the quadratic form
(1.2), that is

F(u,v) = vi ∂F
∂ui = ui ∂F

∂vi . (1.4)

There is an intrinsic relation between the form (1.1) and the form (1.2), in the sense
that if we perform on the variables ui and the variables vi a single linear transforma-
tion

1 We adopt a convention once and for all, now classic, which is to remove the summation sign in
front of an expression that contains the same index repeated twice, in the formula (1.1), it is two
summation indices i and j, each repeated twice.
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10 1 Exterior Forms

ui = Ai
k Uk, vi = Ai

k V k, (1.5)

the bilinear form (1.1) is transformed into bilinear form a Φ(U,V ) still symmetric
and the quadratic form (1.2) in the quadratic form Φ(U) associated, such that

Φ(U,V ) = ai jAi
kA j

hUkV k, Φ(U) = ai jAi
kA j

hUkUk. (1.6)

We check easily that the form Φ(U,V ) is symmetric, since the coefficient of UkV h

which is the sum ai jAi
kA j

h where i and j are two indices of summation independent,
can be written a jiA

j
kAi

h = ai jAi
hA j

k, which is the coefficient, precisely. But this ver-
ification can be avoided if we note as exchanging the two sets of variables U i and
V i exchange returns has two sets of variables ui and vi, which does not change the
initial form F(u,v).

2. The form (1.1) is called alternating if it changes sign with exchange two sets
of variables ui and vi:

F(v,u) =−F(u,v); (1.7)

this results in the anti-symmetry of the coefficients:

a ji =−ai j. (1.8)

If we put vi = ui we get this time a form identical zero. Yet we can associate in
the alternating form F(u,v) a quadratic form, but non-commutative multiplication.

Note why if we shall meet the two terms of a12u1v2 −a21u2v1, we obtain

a12(u1v2 −u2v1) = a12

∣∣∣∣u1 u2

v1 v2

∣∣∣∣ , (1.9)

can we agree to write a12 u1 ∧ u2, the notation u1 ∧ u2 recalling the determinant
whose first row is formed of two variables u1,u2, the second of two variables v1,v2.
The expression a12 u1 ∧u2 can be regarded as a monomial quadratic multiplication
non-commutative Grassmann, the product of two variables u1, u2 changing sign
with the order of factors. We can therefore, in this case has involved the alternating
bilinear form

F(u,v) = ai juiv j, (ai j =−a ji), (1.10)

the quadratic form has exterior multiplication or, more briefly, the exterior quadratic
form

F(u,v) =
1
2

ai j ui ∧u j, (ai j =−a ji). (1.11)
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1.1 Symmetric and alternating bilinear forms 11

We put the numerical factor 1
2 because the second order product u1 ∧ u2 appeared

two times, in the form u1 ∧ u2 and as u2 ∧ u1 = −u1 ∧ u2, which gives the total
coefficient 1

2 a12 − 1
2 a21 = a12.

There is a correspondence between the intrinsic bilinear form alternating and the
quadratic form associated exterior, this correspondence subsisting linear substitution
effected simultaneously on two sets of variables ui and vi. If we set

ui = Ai
k Uk, vi = Ai

k V k, (1.12)

the form F(u,v) becomes

Φ(U,V ) = ai jAi
kA j

hUkV h, (1.13)

with antisymmetric coefficients U iV i products, and the form F(u) becomes

Φ(U) =
1
2

ai jAi
kA j

h Uk ∧Uh; (1.14)

we see that we deduce the form of F(u) by replacing everywhere ui by Ai
kU

k and
performing the multiplication under the rules of algebraic multiplication, but taking
care not to invert the order of the variables U i in the partial products that arise.

3. There are certain similarities between the classical quadratic forms, which we
call algebraic, and exterior quadratic forms. Define the partial derivative of the
quadratic form exterior F(u) by the relation

∂F
∂ui = aikuk. (1.15)

The derivative of each monomial is zero if ui is not among the factors of the
monomial; ui appears as if the first factor, as in the term ai j[uiu j], the derivative is
ai ju j; appears as a second factor, we have the same rhgle, but taking care, first, to
pass ui in front, the derivative with respect to a ui of ai j[uiu j] is that of - a ji[uiu j],
that is to say - a jiu j = ai ju j. The derivative with respect to ui of the derivative with
respect to ai j is after this and we write

∂ 2F
∂u j∂ui = ai j =− ∂ 2F

∂ui∂u j . (1.16)

Note that the sum ui ∂F
∂ui = ai juiuk is zero, whereas if the quadratic form is alge-

braic sum ui ∂F
∂ui , after of Euler’s theorem, is equal to 2F .

Now suppose that instead of multiplying the following traditional rules ui and
∂F
∂ui , the exterior multiplication is performed, we will, as it is easy to see, following
the form F is algebraic or exterior

ui ∧ ∂F
∂ui = 0, ui ∧ ∂F

∂ui = 2F. (1.17)
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12 1 Exterior Forms

Theorem. Any algebraic quadratic form F satisfies the relations

ui ∂F
∂ui = 2F, ui ∧ ∂F

∂ui = 0. (1.18)

Instead any exterior quadratic form F satisfies relations

ui ∂F
∂ui = 0, ui ∧ ∂F

∂ui = 2F. (1.19)

4. The exterior multiplication of the two forms indices f (u), ϕ(u) same variables
gives the quadratic form external associated to the alternating bilinear form

f (u)ϕ(v)−ϕ(u) f (v) =
∣∣∣∣ f (u) ϕ(u)

f (v) ϕ(v)

∣∣∣∣ ; (1.20)

be denoted by the notation f (u)∧ϕ(u) the quadratic form F and the multiplication
result of term end of the two forms f (u) and ϕ(u), but taking care not to invert the
order of factors:

F = aiui ∧b ju j = aib j ui ∧u j. (1.21)

Note that in the second member aib j the coefficient is not antisymmetric, al-
though the form of the second member is exterior, but we can write, by exchanging
the two indices of summation,

F = aib j ui ∧u j = a jbi u j ∧ui =−a jbi ui ∧u j, then F =
1
2
(aib j −a jbi)ui ∧u j,

(1.22)

and now the coefficient of ui ∧u j is antisymmetric.
We still here two theorems that correspond.

Theorem. If f 1, f 2, · · · , f p are p independent linear forms with n variables
u1,u2, · · · ,un, the relation

f 1ϕ1 + f 2ϕ2 + · · ·+ f pϕp = 0, (1.23)

where ϕ1,ϕ2, · · · ,ϕn are p forms are the same variables, implies that the ϕi are
linear combinations of forms to f i coefficients antisymmetric

ϕi = αih f h, (αi j =−α ji); (1.24)

on the contrary causes the relation

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



1.1 Symmetric and alternating bilinear forms 13

f 1 ∧ϕ1 + f 2 ∧ϕ2 + · · ·+ f p ∧ϕp = 0, (1.25)

that are linear combinations ϕi forms f i to have coefficients αi j symmetric.

Proof. Suppose first p = n, in which case the forms are independent f i any linear
form can be expressed as a linear combination of f i. By asking ϕi = αik f k was then
f iϕi = αik f i f k, and f i ∧ϕi = αi j f i ∧ f k. The sum f iϕi is zero if αi j =−α ji and the
sum [ f iϕi] is zero if αi j = α ji, which proofs the theorem.

Now assume p < n, then, introduce new n− p forms f p+1, · · · , f n mutually inde-
pendent and independent of the first p given forms. We can then apply the theorem
proved in the case p = n by taking the functions ϕp+1, · · · ,ϕn identically zero. We
will then, since the form ϕp+1 is zero, αp+1,k = 0 ( j = 1,2, · · · ,n− p; k = 1,2, · · · ,n)
where, in both cases, αk,p+ j = 0. The indices p+1, p+2, · · · ,n are therefore not in-
cluded in the coefficients αi j which do fall under the terms of ϕi through f i and the
theorem is well proved in the general case. □
Note. The two equations f iϕi = 0 and f i ∧ϕi = 0 assumed verified if and only if all
ϕi = 0.

5. It is known that any algebraic quadratic form can be put in a canonical form, in
which the all rectangular coefficients are zero. There are even a canonical form for
exterior quadratic forms.

Theorem. Any quadratic form can be reduced to exterior form

F =U1 ∧U2 +U3 ∧U4 + · · ·+U2p−1 ∧U2p, (1.26)

where U i being the 2p independent linear forms.

Proof. The proof is very simple. Suppose the form F(u) not identically zero and, for
example a12 ̸= 0. We can write

F =
(

u1 +
a23

a12
u3 + · · ·+ a2n

a12
un
)
∧ (a12u2 +a13u3 · · ·+a1nun)+Φ , (1.27)

the form Φ containing only the variables u3,u4, · · · ,un. Just then suppose

U1 = u1 +
a23

a12
u3 + · · ·+ a2n

a12
un, U2 = a12u2 +a13u3 · · ·+a1nun, (1.28)

for an exterior quadratic form F −U1 ∧U2 which depends only on variables of
u3, · · · ,un, since n forms U1,U2,u3, · · · ,un being independent. If the form Φ is
identically zero the theorem is proved, the integer p is equal to 1. Otherwise we
will perform on Φ the same operation as that performed on F and so on. □
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14 1 Exterior Forms

One can find the integer p without needing to actually the previous reduction. In-
deed note that for any linear substitution of variables, the system of linear equations

∂F
∂u1 = 0,

∂F
∂u2 = 0, · · · , ∂F

∂un = 0, (1.29)

is retained. Because if we set ui = Ai
kU

k, the determinant of the coefficients Ai
k being

non-zero, we immediately see that we have

∂F
∂U i = Ak

i
∂F
∂uk , (1.30)

and as the determinant of Ak
i is non-zero, the vanishing of partial derivatives ∂F

∂ui

implies vanishing the ∂F
∂U i and vice versa.

But if we put F in the canonical form

F =U1 ∧U2 +U3 ∧U4 + · · ·+U2p−1 ∧U2p, (1.31)

the system (1.29) becomes, with the variables U i,

U1 =U2 = · · ·=U2p−1 =U2p = 0. (1.32)

The integer 2p is the rank of the table of coefficients forms. This table is symmetrical
left, and it is well known that the rank of such a table is always even.

The rank 2p states at the same time the minimum number of variables that can
be included in the form F , if it is transformed by a suitable linear substitution of
variables effected.

There are similar theorems for algebraic quadratic forms. The rank of the table of
coefficients forms ∂F

∂ui also indicates the minimum number of variables that can be
included in the form F ; the easiest way to recognize it is to use the decomposition
of the form of a sum of squares.

1.2 Exterior forms of arbitrary degree

6. We will assume in general exterior forms of any degree. A cubic exterior form,
for example, is written as

F =
1
6

ai jk ui ∧u j ∧uk, (1.33)

where the coefficients ai jk are anti-symmetric: this means that if one performs a
permutation of three indices i, j, k, the coefficient is equal to itself, or it changes
sign depending on whether the permutation is even or odd. The symbol [uiu juk] can
be regarded as a product but which changes sign if we interchange two factors, this
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1.2 Exterior forms of arbitrary degree 15

product remains equal to itself by an even permutation of the three factors, becomes
equal to its objects by an odd permutation of these factors.

With to these conventions, we see that if one considers the different monomials
which appear in, the order was near, the three factors u1, u2, u3, we get six different
terms, but whose sum is a123[u1u2u3]. It is hardly worth noting that the monomials
that have two identical factors must be regarded as zero.

One can consider a 3−linear alternating form F , as a form with three sets of
variables ui, vi, wi

1
6

ai jk

∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣ . (1.34)

More generally we may consider exterior forms of degree 4, 5, etc., which could be
combined alternating forms with 4, 5, etc., sets of variables.

7. Addition and multiplication of exterior forms. The sum of two exterior forms of
the same degree is the form of same degree whose coefficients are the sums of the
coefficients of the two given types. For example, the sum of the form (1.33) and of
the form

Φ =
1
6

ai jk ui ∧u j ∧uk (1.35)

is the sum

F +Φ =
1
6
(ai jk +bi jk)ui ∧u j ∧uk. (1.36)

Called exterior product of two forms of exterior degrees equal or not, for example,
two forms

F =
1
2

ai j ui ∧u j, Φ =
1
6

bi jk ui ∧u j ∧uk. (1.37)

the form obtained by multiplying exterior of all possible ways each monomial of the
first form of each monomial of the second, taking care to respect the order of two
monomials and adding the resulting monomials2

F ∧Φ =
1
12

ai jbkhl ui ∧u j ∧uk ∧uh ∧ul . (1.38)

The second member of relation (1.38) does not have its coefficients antisymmetric
with respect to five indices i, j,k,h, l. But we can arrange to bring up the antisym-
metric coefficients by performing as we have done to the exterior product of two
linear forms.

2 The numerical coefficients of the forms can be placed at any position, being the law of commu-
tative property holds for these coefficients.
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16 1 Exterior Forms

The exterior product of forms F , Φ may depend on the order in which one ar-
ranges the factors F and Φ . Indeed change the order of these factors is to replace
the monomial ui ∧u j ∧uk ∧uh ∧ul the monomial uk ∧uh ∧ul ∧ui ∧u j to make this
change we can advance each of the three factors of two places to the left , resulting
in 2×3 successive changes of sign.

Generally, if F and Φ are of respective degrees p and q, then the relation

F ∧Φ = (−1)pq Φ ∧F, (1.39)

holds, or

Theorem. The exterior product of two forms of exterior degrees p and q does
not change when one reverses the order of two factors, except if both factors
are of odd degree, in which case the product changes sign.

Another important theorem is on the distributivity of multiplication over addition.
This theorem leads to the general equality(

F1 +F2 + · · ·+Fh
)
∧
(
Φ1 +Φ2 + · · ·+Φk

)
= ∑

i, j
Fi ∧Φ j, (1.40)

where we assume the forms F1,F2, · · · ,Fh are of the same degree p and forms
Φ1,Φ2, · · · ,Φk are of the same degree p.

8. Exterior forms monomials. An exterior form of degree p will be called monomial
if it can be represented as the exterior product of p linear forms. We will look at what
conditions must meet the coefficients of the form so that it is monomial.

Consider why the system of linear equations (associated system) obtained by
vanishing all the partial derivatives of order p−1 form. These derivatives are defined
in the case of a form of any degree as a quadratic form, which depend on the order
in which the derivations are performed, but in fact that order does not matter here
since the only change that can be subjected the derivative of the change of the order
of derivations is optionally a change of sign.

The associated system we consider has an intrinsic meaning in the sense that
if a substitution is made linear non-zero determinant variables on transforming the
form F(u1,u2, · · · ,up) in the form Φ(U1,U2, · · · ,U p), the same linear substitution
transforms the system associated to F in the associated system of Φ ; this is that the
linear substitution

ui = Ai
kU

k (1.41)

leads

∂Φ
∂U i = Ai

k
∂F
∂uk ,

∂ 2Φ
∂U i∂U j = Ai

kA j
h

∂ 2F
∂uk∂uh , · · · (1.42)
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1.2 Exterior forms of arbitrary degree 17

This posed assume a monomial exterior form, we can make a linear substitution
of variables such that this form contains only one term au1 ∧u2 ∧u3 ∧·· ·∧up (Un-
less the form is identically zero, if we exclude). The system combines this form is
obviously

u1 = 0, u2 = 0, · · · , up = 0; (1.43)

it therefore reduces to p independent equations.
Conversely if the system associated to a form F of degree p reduces to p inde-

pendent equations, one can, for a linear substitution on variables, make the system
is associated

u1 = 0, u2 = 0, · · · , up = 0; (1.44)

but then no non-zero coefficient of the form may not contain an index other than
1,2, · · · , p, as a non-zero coefficient ai1i2···ip−1(p+1) as for example, would involve the
variable in the derivative ∂ p−1F/∂ui1 ∂ui2 · · ·∂uip−1 , in contrast to the hypothesis.
The form is u1 ∧u2 ∧·· ·∧up, that is to say a monomial.34

Theorem. For an exterior form of degree p is monomial if and only if its
associated system is of rank p.

9. Let us apply this criterion for necessary and sufficient conditions to be met by
an exterior form factors for it to be monomial. We start with the simple case of
quadratic forms. Is a quadratic form

F =
1
2

ai j ui ∧u j, (1.45)

we do not assume identically zero. Suppose for definiteness a12 ̸= 0. Among the
equations of system associated the two equations are

∂F
∂u1 = a12u2 +a13u3 + · · ·+a1nun = 0, (1.46)

∂F
∂u2 = a22u2 +a23u3 + · · ·+a2nun = 0. (1.47)

These two equations are independent and gives

3 The same argument shows that if the system is associated of rank r, it is possible, by a change
of variables, find an expression of the form which is made only r variables and it is obviously
impossible to involve less otherwise the number would be associated exterior system rank r.
4 The theorem has already been practically proves for p = 2 thanks to the introduction of the
canonical form.
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18 1 Exterior Forms

u1 =
1

a12

(
a23u3 + · · ·+a2nun

)
, (1.48)

u2 =
−1
a12

(
a13u3 + · · ·+a1nun

)
. (1.49)

Looking coefficient uk in ∂F/∂ui taking into account the values of u1, u2 that we
just wrote. We have

∂F
∂ui =

(
aik +

ai1

a12
a2k −

ai2

a12
a1k

)
uk =

1
a12

(
a12aik −a1ia2k +a1ka2i

)
uk. (1.50)

The second member must be zero if one requires that the system associated is of
rank 2, or the necessary and sufficient conditions, in case a12 ̸= 0,

a12aik −a1ia2k +a1ka2i = 0. (1.51)

This relation was demonstrated assuming a12 ̸= 0, but it is true even if a12 =
0; indeed the indices 1,2, i,k, all play the same role as any permutation of these
four indices leaves unaltered the relation . It is still true if any of the coefficients
a12,a2i,a2k,a1i,a1k,aik is nonzero, it is a fortiori if they are all zero. One can thus
replace the indices 1, 2 by any other evidence without the relation (1.51) ceases to
take place.

Theorem. If a quadratic exterior form be monomial, there are relations be-
tween its coeficients

ai jakh −aika jh +aiha jk = 0, (i, j,k,h = 1,2, · · · ,n). (1.52)

Conversely, if these relations are verified, the form is monomial, because if we
assume a12 ̸= 0, the relations (1.51), which are taken from the relations (1.52), are
checked and we have seen that in these conditions form is monomial.

10. The same method applies a form of any degree. Suppose to fix our ideas p = 5,
and the coefficient nonzero a12345. The associated system of the form contains five
independent equations
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1.2 Exterior forms of arbitrary degree 19

∂ 4F
∂u2∂u3∂u4∂u5 = a12345u1 +a2345kuk = 0,

∂ 4F
∂u1∂u3∂u4∂u5 =−a12345u2 +a1345kuk = 0,

∂ 4F
∂u1∂u2∂u4∂u5 = a12345u3 +a1245kuk = 0, (1.53)

∂ 4F
∂u1∂u2∂u3∂u5 =−a12345u4 +a1235kuk = 0,

∂ 4F
∂u1∂u2∂u3∂u4 = a12345u5 +a1234kuk = 0.

For the form be monomial, it is necessary and sufficient that all equations of the
associated system are of the consequences of the five previous ones, that is to say,
that there replacing u1,u2,u3,u4,u5 by their values from of these five equations,
other equations are identically verified. For example, consider the equation

∂ 4F
∂ui1 ∂ui2∂ui3∂ui4

= 0; (1.54)

the coefficient of uk in the first member, once replaced u1,u2,u3,u4,u5 by their val-
ues, will, when multiplied by a12345, equal to

a12345ai1i2i3i4k −ai1i2i3i41a2345k +ai1i2i3i42a1345k

−ai1i2i3i43a1245k +ai1i2i3i44a1235k −ai1i2i3i45a1234k. (1.55)

We see that in this expression are 10 indexes, which are divided into two groups:
the indices i1, i2, i3, i4 will form the first group and indices 1,2,3,4,5,k the second
group within each group all the cues are the same role. The term is antisymmetric
with respect to the indices i1, i2, i3, i4 the first group and antisymmetric with respect
to the indices of the second group. The resulting expression is invalid if the form
is given monomial, supposing a123450, but it is even though a12345 = 0, unless the
coefficients a1234k,a1235k,a1234k,a1345k,a2345k, are all zero at the same time, because
if one of them is not zero, the first example, since the indices 1,2,3,4,5,k play the
same will be found rble the same expression starting from the hypothhse a1234k ̸= 0,
if we write the conditions for the form is monomial. It is obvious, moreover, that if
the 5 coefficients a1234k,a1235k,a1234k,a1345k,a2345k are zero, the expression is zero
itself. This brings us to the following theorem:

Theorem. For a form of degree 5 is monomial, it is necessary and sufficient
as the

(n
4

)(n
6

)
equations
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20 1 Exterior Forms

Hi1i2i3i4, j1 j2 j3 j4 j5 j6 ≡ ai1i2i3i4 j1a j2 j3 j4 j5 j6 −ai1i2i3i4 j2 a j1 j3 j4 j5 j6

+ai1i2i3i4 j3a j1 j2 j4 j5 j6 −ai1i2i3i4 j4 a j1 j2 j3 j5 j6 (1.56)
+ai1i2i3i4 j5a j1 j2 j3 j4 j6 −ai1i2i3i4 j6 a j1 j2 j3 j4 j5 ,

are all zero.

The condition is necessary: show this fact. It is sufficient, because if it is done,
and if the coefficient qp, is not no one among the equations (1.56) are the relations,

Hi1i2i3i4,12345k = 0 (1.57)

which we have seen, are necessary and sufficient, in hypothesis a12345 ̸= 0 to the
form is monomial.

We see that these conditions all result in quadratic relations between coefficients
of the form given.

If the shape was cubic, one would consider a n(n−1)
2

n(n−1)(n−2)(n−3)
24 relations

Hi j,khlm := ai jkahlm −ai jhaklm +ai jlakhm −ai jmakhl = 0 (1.58)

but there are discounts for if k = i, j = h, the expression Hi j,khlm itself is zero. If
k = i, the expression has only three terms instead of four:

Hi j,ihlm =−ai jhailm +ai jlaihm −ai jmaihl . (1.59)

1.3 Exterior differential systems

11. Consider a system of equations obtained by canceling one or more external
forms built with n variables u1,u2, · · · ,un. Each of these equations is to some de-
gree, but they are not all necessarily the same degree. Let us look u1,u2, · · · ,un

such as the cartesian coordinates of a point in n dimensional space. We say that
a variety plane through the origin of coordinates (we do not consider other) satis-
fies the given system, or is a solution of this system, if the equations of the system
are all verified taking into account the equations of the flat variety, equations that
are linear and homogeneous with respect to variables. For example, if the variete is
flat p−dimensions (we say it is a p−plane), it is defined by n− p linear indepen-
dent relations between the coordinates, if one takes n− p of coordinates, such as
n− p last, according to other u1,u2, · · · ,up, will be replaced in the first members of
the given system of equations, up+1, · · · ,un by values based on u1,u2, · · · ,up, and
forms will be obtained in exterior forms u1,u2, · · · ,up which should be identically
zero. More generally we can express u1,u2, · · · ,up, be a p−linear forms as variables
t1, t2, · · · , t p and the result will be in exterior forms t1, t2, · · · , t p to be identically
zero. A first remark is to be done, and leads to
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1.3 Exterior differential systems 21

Theorem. Any exterior equation of degree p is automatically verified by any
variety of flat less than p dimensions.

This results from an exterior form of degree q< p variables is automatically void.
To express a p−plane solution is a system of equations exterior, it is therefore

unnecessary to consider the system of equations which are of degree greater than p.

12. To investigate whether a p−plane is a solution of given system of exterior
equations, one can start from the consideration of what is called the Plückerian5

coordinates or better Grassmannian6 coordinates of a p−plane (through the origin).
Such a p−plane is defined completely if one takes p independent vectors from the
origin are respectively ξ i

1,ξ
i
2, · · · ,ξ i

p components of these p vectors. Let us form
table with p rows and n columns

ξ 1
1 ξ 2

1 · · · ξ n
1

ξ 1
2 ξ 2

2 · · · ξ n
2

...
...

...
ξ 1

p ξ 2
p · · · ξ n

p

 , (1.60)

and denote by ui1i2···ip the determinant formed by the p rows of the table and the
columns of order i1, i2, · · · , ip. These quantities ui1i2···ip are antisymmetric with re-
spect to their p indices. If we replace these p given vectors by other p independent
vectors taken in the same p−plane, with components ξ̄ i

1, ξ̄
i
2, · · · , ξ̄ i

p, the components
will be deducted ξ̄ i

1, ξ̄
i
2, · · · , ξ̄ i

p descomposantes ξ i
1,ξ

i
2, · · · ,ξ i

p (given i) by a linear
substitution, the same regardless of i. We then see that new determinants ūi1i2···ip by
multiplying the former with the same indexes determinants ui1i2···ip by the same fac-
tor, namely the determinant of the substitution which increased from ξ i

1,ξ
i
2, · · · ,ξ i

p

to ξ̄ i
1, ξ̄

i
2, · · · , ξ̄ i

p. The coordinates of the p−plane are well defined within a factor
near zero: it is the Plückerian coordinates of p−plan and are still overdetermined
and homogeneous if p > 1.

Conversely coordinates Pluckerian knowledge - of a p−plane completely deter-
mines the p-plane, since its equations are obtained by expressing the vector from
the origin, components ui, is a linear combination of vectors ξ i

1,ξ
i
2, · · · ,ξ i

p, the de-
terminants of degree p+1 of tableau

5 Julius Plücker (1801–1868) was a German mathematician and physicist.
6 Hermann Günther Grassmann (1809–1877) was a German polymath, renowned in his day as a
linguist and now also admired as a mathematician.
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u1 u2 · · · un

ξ 1
1 ξ 2

1 · · · ξ n
1

ξ 1
2 ξ 2

2 · · · ξ n
2

...
...

...
ξ 1

p ξ 2
p · · · ξ n

p

(1.61)

are all nule, yet each of these determinants is a linear combination of u1,u2, · · · ,un

one whose coefficients are all determinants ui1i2···ip .

13. That said we propose first to recognize if a Pluckerian coordinates ui1i2···ip of
p−plane nulls a given exterior form of degree p

F =
1
p!

ai1i2···ip ui1 ∧ui2 ∧·· ·∧uip . (1.62)

To introduce this in the p-plane coordinates of v1,v2, · · · ,vp, obtained by putting

ui = vkξ i
k, (i = 1,2, · · · ,n), (1.63)

the summation index k taking the values 1,2, · · · , p. We will

ui1 ∧ui2 ∧·· ·∧uip = ξ i1
k1

ξ i2
k2
· · ·ξ ip

kp
vk1 ∧ vk2 ∧·· ·∧ vkp ; (1.64)

in the second part there is to consider only non-zero monomial terms, that is to say
where the indices k1,k2, · · · ,kp, are separate: the monomial vk1 ∧vk2 ∧·· ·∧vip is not
other than v1 ∧ v2 ∧ ·· ·∧ vp precedes the + or − sign according as the permutation
of p indices k1,k2, · · · ,kp, is even or odd, the coefficient of v1 ∧v2 ∧·· ·∧vp will be,
as is easily seen, the determinant∣∣∣∣∣∣∣∣∣∣

ξ i1
1 ξ i2

1 · · · ξ ip
1

ξ i1
2 ξ i2

2 · · · ξ ip
2

...
...

...
ξ i1

p ξ i2
p · · · ξ ip

p

∣∣∣∣∣∣∣∣∣∣
= ui1i2···ip . (1.65)

The result is

F =
1
p!

ai1i2···ip ui1i2···ip v1 ∧ v2 ∧·· ·∧ vp. (1.66)

The required condition for the p−plane is given exterior solution of the equation
F = 0 is that F is zero when we replace the exterior product uk1 ∧uk2 ∧ ·· ·∧uip by
the coordinate Plückerian ui1i2···ip of p−plane.7

7 We see that it suffices to replace the monomial ui1 ∧ui2 ∧ ·· ·∧uip the p−linear alternating form
associated or p sets of variables ξ i

1, ξ i
2, ..., and ξ i

p.
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1.3 Exterior differential systems 23

Theorem. For a p−plane with Pluckerian coordinates ui1i2···ip be a solution
of the equation

F ≡ 1
p!

ai1i2···ip uk1 ∧uk2 ∧·· ·∧uip = 0. (1.67)

it is necessary and sufficient that

ai1i2···ipui1i2···ip = 0. (1.68)

14. Now looking the conditions for a p−plane given by its Plückerian coordinates
annuls an exterior form Φ of degree q < p.

Start with some geometric remarks. If a p−plane annuls the form Φ , all q−plans
contained in the p−plane (q < p) the form has also cannulsed because the form
Φ is zero when one takes into account the equations of p−plan will be no more
so when you take into account also the additional equations, with the first, define
the q−plane. Conversely, assume that the form Φ is zero for all q−plans con-
tained in the p−given plan. Taking into account the equations of p−plane, for ex-
ample resolved over a up+1, · · · ,un the form Φ becomes a form Ψ with variables
u1,u2, · · · ,up. Say that it vanishes for all q−plans contained in the p−plane given,
that is to say that it vanishes when p binds variables u1,u2, · · · ,up by any p− q
independent linear relations. But if we take the linear relations

uq+1 = uq+2 = · · ·= up = 0, (1.69)

will remain a single term in Ψ , that in u1 ∧u2 ∧·· ·∧uq; the coefficient of the mono-
mial u1 ∧u2 ∧·· ·∧uq in Ψ is zero, it will be the same for all other coefficients.

Theorem. The necessary and sufficient condition for a p−plan vanish an ex-
terior form Φ of degree q < p is any plan contained in the given p−plane
vanish this form.

Analytically we can proceed in the following manner. If the form Φ vanishes for
p−plan gives all forms of degree p

Φ ∧uα1 ∧uα2 ∧·· ·∧uαp−q (α1,α2, · · · ,αp−q = 1,2, · · · ,n) (1.70)

annuls a fortiori for p−plane. These conditions are nessesary and sufficient; Indeed,
suppose that, taking into account, for example, the p−plane equations solved with
respect to up+1, · · · ,un , the form Φ becomes to a form Ψ . If each form Ψ ∧ uα1 ∧
uα2 ∧ ·· ·∧uαp−1 of degree p obtained by taking for uα1 ,uα2 , · · · ,uαp−q any p−q of
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the variables u1,u2, · · · ,up is zero, is that each of the coefficients of the form p is
zero and hence the p−form Φ annuls plan.

Theorem. For a given p−plane annuls an exterior form of degree q < p

Φ =
1
q!

bi1i2···iq ui1 ∧ui2 ∧·· ·∧uiq , (1.71)

it is necessary and sufficient that the Plückerian coordinates of p−plan satis-
fies the

( n
p−q

)
linear equations

bi1i2···iqui1i2···iqα1α2···αp−q = 0 (α1,α2, · · · ,αp−q = 1,2, · · · ,n). (1.72)

For example, if a tri-plane be a solution of equations

aiui = 0, ai j ui ∧u j = 0, ai jk ui ∧u j ∧uk = 0, (1.73)

then, its Plückerian coordinates satisfy the n2+n+2
2 equations

aiuiαβ = 0, (α,β = 1,2, · · · ,n), (1.74)

ai jui jα = 0, (α = 1,2, · · · ,n), (1.75)

ai jkui jk = 0. (1.76)

15. Conditions for the antisymmetric quantity ui1i2···ip are the Plückerian coordi-
nates of p−plan. - If we give a priori a system of numbers ?? antisymmetric with
respect to the p iodises i1, i2, · · · , ip taken from the integers 1,2, · · · ,n, these numbers
will usually contact Plückerian coordinates of a p−plane.

Theorem. For a system of numbers ui1i2···ip antisymmetric with respect to p
indices are the Plückerian coordinates of a p−plane it is necessary and suffi-
cient that the exterior form of degree p

F =
1
p!

ui1i2···ip zi1 ∧ zi2 ∧·· ·∧ zip (1.77)

with n variables z1,z2, · · · ,zn is a monomial form.

Proof. Indeed if ui1i2···ip are the homogeneous coordinates of a p−plane determined
by p independent vectors ξ i

1,ξ
i
2, · · · ,ξ i

p was

F = f1 ∧ f2 ∧·· ·∧ fp, (1.78)
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1.4 Algebraically equivalence of exterior systems of equations 25

by asking

f1 = ξ i
1zi, f2 = ξ i

2zi, · · · , fp = ξ i
pzi. (1.79)

Conversely if F can be written in the previous form, f1, f2, · · · , fp being arbitrarily
given p linear forms, the Plückerian coordinates ui1i2···ip of a p−plane determined
by the vectors ξ i

1,ξ
i
2, · · · ,ξ i

p. 8 □
We can now apply the conditions found at Paragraph No. 10. Especially for a

system of quantities ui jk antisymmetric with respect to the three indices i, j,k, are
the coordinates of a 3−plane, it is necessary and sufficient that we have relations

H i j,klm ≡ ui jkuhlm −ui jhuklm+ui jlukhm −ui jmukhl = 0
(i, j,k,h, l,m = 1,2, · · · ,n). (1.80)

We obtained in previous issues the linear equations to be satisfied by Plückerian
coordinates of a p−plane for this p−plane is a solution of a given exterior system
of equations, must, to be complete, add to these linear relations quadratic relations
which express that these coordinates are those of a p−plane.

1.4 Algebraically equivalence of exterior systems of equations

16. Ring of exterior forms. We call ring determined by a number of h homogeneous
exterior forms in n variables F1,F2, · · · ,Fn all the exterior forms

Φ = F1 ∧ϕ 1 +F2 ∧ϕ 2 + · · ·+Fh ∧ϕ h, (1.81)

where ϕ is are homogeneous exterior forms subject has the sole condition that the
terms [Fiϕ i] of the second member the sum of the degrees, positive or zero, the two
factors is the same for all terms.

It is obvious that any form Φ , the ring determined by given h forms F1,F2, · · · ,Fh
vanishes for any solution of system

F1 = 0, F2 = 0, · · · , Fh = 0. (1.82)

But the converse is not always true. We will give a rather general case in which
the converse is true, and then we will indicate an example that uses the default
reciprocal.

Theorem. For an external form Φ vanishes for any solution of system of linear
equations

8 The linear relations ui1i2···ip−k zk give the necessary and sufficient conditions to be satisfied by so
that the quantities zk hyperplane z1u1 + z2u2 + · · ·+ zkuk = 0 contains considered p−plane.
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F1 = 0, F2 = 0, · · · , Fh = 0, (1.83)

must be independent and sufficient that Φ belongs to the ring determined by
the Fi forms. In addition the necessary and sufficient condition for that Φ
belong to this ring is that the form F1 ∧F2 ∧·· ·∧Fh ∧Φ is zero.

Proof. We have already seen that if Φ belongs to the ring in question, the form
Φ vanishes for any solution of linear equatione (1.83). The condition is necessary;
indeed reduce by a change of variables forms Fi with variables u1,u2, · · · ,uh; to say
that the form Φ , vanishes when one annuls the variables u1,u2, · · · ,uh is to say that
every monomial of Φ contains at least one factor variables u1,u2, · · · ,uh. Denote by
ϕ 1 then the coefficient of u1 in the set of terms of the variable containing u1, once
we have passed u1 first in each of these terms; denote by ϕ 2 the form obtained in a
similar manner compared to the variable u2 starting from the form Φ −u1 ∧ϕ 1 and
so on, we will obviously

Φ = u1 ∧ϕ 1 +u2 ∧ϕ 2 + · · ·+uh ∧ϕ h. (1.84)

The first part of the theorem is thus proved.
Clearly then the form

F1 ∧F2 ∧·· ·∧Fh ∧Φ (1.85)

is identically zero, since by substituting expression (1.85), each term of the product
will contain two identical factors of the first degree and as a result will be zero.

Conversely if the form F1∧F2∧·· ·Fh∧Φ is zero and that we make it again, by a
suitable change of variables in order to have Fi = ui (i = 1,2, · · · ,h) , any monomial
which enters into the expression can be all of different factors of u1,u2, · · · ,uh, and
consequently will vanish with u1,u2, · · · ,uh. □
18. Now consider the following example. Consider non-linear forms

F1 = u1 ∧u3, F2 = u1 ∧u4, F3 = u1 ∧u2 −u3 ∧u4. (1.86)

All 2−plane coordinates ui j annulling these three forms, taking into account the
quadratic relations

u13u24 −u14u23 −u12u34 = 0, (1.87)

will have its coordinated u12 zero, meaning that it will satisfy the equation

Φ ≡ u1 ∧u2 = 0. (1.88)

It will be the same for all p−plane which cancels the same forms F1,F2,F3, because
all biplanes contained in this p-plane to cancel the form Φ is the form Φ to annihilate
the p−plane.
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1.5 Associated system with an exterior system of equations 27

The form Φ , which vanishes for any solution of equations F1 = F2 = F3 = 0, not,
however, of the ring determined by the forms F1,F2,F3.

Definition. We say that exterior system of equations is complete if every form which
vanishes for any solution of this system belongs to the ring determined by the first
members of system of equations.

19. Definition. Two systems of equations are called exterior algebraically equiv-
alent if the first members of equations of any of these systems belong to the ring
determined by the first members of equations of the other system.

It is clear that two algebraically equivalent systems admit the same solutions. If
a system is complete, any other system admitting the same solutions will be alge-
braically equivalent, the converse may not be true.

It is easy to form the most general system algebraically equivalent to a given
system. Consider for example the system of degree three

F1 ≡ A1iui = 0,
F2 ≡ A2iui = 0,

Φ ≡ 1
2 Bi j ui ∧u j = 0,

Ψ ≡ 1
6Ci jk ui ∧u j ∧uk = 0.

(1.89)

Suffice it to form the equations
F̄1 ≡ aF1 +bF2 = 0,
F̄2 ≡ a′F1 +b′F2 = 0,
Φ̄ ≡ cΦ +ω1 ∧F1 +ω2 ∧F2 = 0,
Ψ̄ ≡ hΨ +ω3 ∧Φ +ψ1 ∧F1 +ψ2 ∧F2 = 0,

(1.90)

where a,b,a′,b′,c,h are constants (ab′−ba′ ̸= 0, c ̸= 0, h ̸= 0) and ω1,ω2,ω3 are
of arbitrary linear forms, ψ1,ψ2, exterior arbitrary quadratic forms.

1.5 Associated system with an exterior system of equations

20. We have already considered (Paragraph No. 8) that have so called the associated
system with an exterior form. We now define the associated system associated to an
exterior system of equations.

Definition We say that a straight line ∆ from the origin is a characteristic for a
exterior system of equations Σ if be a solution of this system and moreover, given a
flat variety V , solution of the system Σ , the smallest flat variety containing V and ∆
is also a solution of Σ .

We will seek the necessary and sufficient conditions for a line of parameters is
characteristic for a given exterior system of equations.
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28 1 Exterior Forms

Given an system Σ , we assume, for simplicity, of degree three
Fα ≡ Aαiui = 0, (α = 1,2, · · · ,r1),

Φα ≡ 1
2 Bα i j ui ∧u j = 0, (α = 1,2, · · · ,r2),

Ψα ≡ 1
6Cαi jk ui ∧u j ∧uk = 0. (α = 1,2, · · · ,r3).

(1.91)

For a line (ξ i) is characteristic, it must satisfy three types of conditions (Paragraphs
No. 13 and 14):

1) It must be itself a solution of Σ , that is to say, it annuls the forms Fα :

Aα iξ i = 0 (α = 1,2, · · · ,r1); (1.92)

2) It should be that given any straight line (ui) which is a solution of Σ , the 2−plane
determined by this line (ui) and the line (ξ i) annuls forms Φα , that is to say that
we have

Aα i juiξ j = 0 (α = 1,2, · · · ,r2); (1.93)

whenever components ui satisfy in r1 relations

Aβ iu
i = 0 (β = 1,2, · · · ,r1); (1.94)

3) For any 2−plane with coordinates ui j which is a solution of Σ , the 3−plane deter-
mined by this 2−plane and line (ξ i) must annuls the forms Ψα ; thus, coordinates
of ui jk of this 3−plane must be

ui jk = ui jξ k −uikξ j +u jkξ i; (1.95)

So we must have

Aα i jkui jξ k = 0 (α = 1,2, · · · ,r3); (1.96)

whenever the coordinates given ui j 2−plane satisfy the nr1 + r2 relations{
Aβ iui1 = Aβ iui2 = · · ·= Aβ iuin = 0 (β = 1,2, · · · ,r1);
Aγ i jui j = 0 (γ = 1,2, · · · ,r2).

(1.97)

These necessary conditions are sufficient. V is indeed a p−plane solution of the
system Σ and W be the (p+ 1)−plane determined by V and the line ξ i. For this
(p+1)−plane satisfies the system Σ if and only if every triplane contained in W is
a solution of Σ . But it is indeed the case if it belongs to the triplane V , otherwise it
is determine the line (ξ i) and V contained in a biplane, biplane this is therefore a
solution of Σ , and the conditions for the triplane is a solution of Σ are specifically
provided by the equations (1.92), (1.93) and (1.96) from which we take into account
(1.94) and (1.97).
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1.5 Associated system with an exterior system of equations 29

Conclusion. For a the line (ξ i) is characteristic for system Σ , it is necessary
and sufficient to satisfy the equations (1.92), (1.93) and (1.96), the coefficients
ui which are in equations (20) being subject to the sole condition to annul the
forms Fα , and ui j coefficients which are in equations (1.96) being subject to
the condition to satisfy

1) quadratic equations that express that these coefficients are the coordinates
of a 2−plane ,

2) to equations (1.97) that express this 2−plane is a solution of Σ .

They would see how easy search of characteristic lines would if the system was
to give any degree.

21. Associated system to an exterior system of equations. Suppose to the conditions
(1.97) to be satisfied by quantities ui j which are in equations (1.96) not adding the
quadratic equations that express the uii are the coordinates of a biplane. We will ξ i

for a system of conditions (1.92), (1.93) and (1.96), which may be less restrictive
than those in extracts, which give the lines characteristic. We can demonstrate that
the conditions obtained new exterior forms that express u1,u2, · · · ,un,

ξ i ∂Fα
∂ui , ξ i ∂Φα

∂ui , ξ i ∂Ψα
∂ui , (1.98)

which belong to the ring of forms Fα , Φα , Ψα , that is to say, the ring system Σ .

Definition. We call associated system to an exterior system of equations Σ , the
set of all linear equations ξ 1,ξ 2, · · · ,ξ n, which any exterior form expression
ξ i ∂H

∂ui , where H is an arbitrary first member of Σ , belongs to the ring of given
system.

The system associated to an exterior form F , introduced in No. 8, can also be
defined as the set of linear equations in ξ 1,ξ 2, · · · ,ξ n, that express the considered
form ξ i ∂F

∂ui in exterior form u1,u2, · · · ,un, is identically zero, that is to say up to the
ring F .9

22. We easily see that both systems have the same system algebraically equivalent
associates and also associates the system is intrinsically linked to Σ . We will prove
the following theorem:

9 Examples of cases where the system is less restrictive than associated system that provides the
characteristic lines, let us consider the equations of system Σ (cf. No. 18) u1 ∧ u3 = u1 ∧ u4 =
u1 ∧u2 −u3 ∧u4 = u1 ∧u2 ∧u3 −u3 ∧u4 ∧u6 = 0. Its associated system is ξ 1 = ξ 2 = ξ 3 = ξ 4 =
ξ 5 = ξ 6 = 0, while the its characteristic lines are provided by the equations ξ 1 = ξ 2 = ξ 3 = ξ 4 = 0.
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30 1 Exterior Forms

Theorem. If the system associates has rank p and, by a suitable change of
variables, reduces to the equations ξ 1 = ξ 2 = · · · = ξ p = 0, there is a sys-
tem algebraically equivalent to Σ in the equations which only includes the
variables u1,u2, · · · ,up.

Proof. Let us consider the the line of which all parameters ξ i are zero except ξ p+1 =

1. Forms ∂Fα
∂up+1 which are constants, can not belong to the ring of Σ , if they are null:

the Fα does not contain the variable up+1. Forms

Φ∗
α = Φα −up+1 ∧ ∂Φα

∂up+1 , Ψ ∗
α =Ψα −up+1 ∧ ∂Ψα

∂up+1 , (1.99)

obviously does not contain the variable up+1. Now the form ∂Φα
∂up+1 belonging to the

ring of the form Fα and the form ∂Ψα
∂up+1 to the ring of Fα and Φα , the system

Fα , Φα , Ψα , (1.100)

is algebraically equivalent to Σ : or equations of this system does not contain up+1.
One could also get step by step system algebraically equivalent to Σ and containing
only the variables u1,u2, · · · ,up. □
Remark. The integer p is obviously the minimum number of variables with which
the equations can be written as a system algebraically equivalent to Σ , because if
such a system not involving that q < p variables, its associated system that is the
same as that of Σ is at most rank q. We see more tan the minimum number p vari-
ables involved in a system algebraically equivalent to Σ are determined as a whole.

Particular case. If the system Σ is only of order two, we easily see that the asso-
ciated system is obtained by adding to first-degree equations of Σ , the associated
system of equations r2 forms

F1 ∧F2 ∧·· ·∧Fr1 ∧Φα (α = 1,2, · · · ,r2), (1.101)

equations which are obtained by setting the derivatives of order r1 + 1 of the first
members.
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Chapter 2
Exterior Differential Systems

2.1 Definition. Exterior Differential

23. Consider an n−dimensional space, or at least a certain area D of this space. We
assume that this is the Euclidean space, although this is by no means necessary, but
this hypothesis will at least simplify the language. We denote by x1,x2, · · · ,xn the
current coordinates. We will call exterior differential form of degree p an exterior
form in which the variables will be the differential of dx1,dx2, · · · ,dxn, the coeffi-
cients being functions of the coordinates x1,x2, · · · ,xn defined in the domain D . A
differential form of the first degree, or linear, will thus be written as

ai(x)dxi, (2.1)

a quadratic differential form is written as

1
2

ai j(x)dxi ∧dx j, (ai j =−a ji), (2.2)

and so on.
By abuse of language that will be convenient, we will consider a function of

x1,x2, · · · ,xn, as a differential form of degree zero.
By a change of coordinates, which translates aur variables dxi by linear substitu-

tion of determinant not zero, any form of external differential degrh p changes into
another form of differential same degree. It must be assumed that the new coordi-
nates naturally admit partial derivatives with respect to the former.

24. Exterior differential of a differential form. If the form is of degree zero, that is
to say a function f (x), its exterior differential is by definition its ordinary differential
d f .

The exterior differential of linear differential form

ω = ai dxi (2.3)
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32 2 Exterior Differential Systems

is by convention, the second degree form

dω = dai ∧dxi; (2.4)

same for exterior differential form of degree two

ω = ai j dxi ∧dx j (2.5)

we have

dω = dai j ∧dxi ∧dx j, (2.6)

and so on.
This definition assumes that the coefficients of the forms considered admit partial

derivatives of first order, but we shall see that there are cases where we can define
the exterior differential of a form, even if the coefficients are not derivable.

General Definition. If ω is an exterior differential form of order p

ω =
1
p!

ai1i2···ip dxi1 ∧dxi2 ∧·· ·∧dxip , (2.7)

its exterior differential dω is

ω =
1
p!

dai1i2···ip ∧dxi1 ∧dxi2 ∧·· ·∧dxip . (2.8)

25. The previous definition needs to be legitimized and we will prove the following
theorem.

Theorem. If a differential form ω(x,dx) is transformed by a change of co-
ordinates to the form ω(y,dy), the exterior differential dω of the form ω is
transformed by the same change of coordinates, the exterior differential dm of
the form ω .

Prior to the demonstration, we will demonstrate some lemmas, however impor-
tant by themselves.

Lemma I. The exterior differential of the differential of a function f (x) is zero.

Proof. Indeed, let the exterior differential form ω = ∂ f
∂xi dxi; Its exterior differential

is by definition has the form
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dω = d
( ∂ f

∂xi

)
∧dxi =

∂ 2 f
∂xi∂x j dx j ∧dxi; (2.9)

the second member is zero because of the symmetry of coefficients of dxi ∧ dx j

relative to their indices. □

Lemma II. The exterior differential of the exterior product of two forms ω ,
ϖ respectively of degrees p and q is

d
(
ω ∧ϖ

)
= dω ∧ϖ +(−1)p ω ∧dϖ . (2.10)

Proof. 1 Indeed, let

ω =
1
p!

ai1i2···ip dxi1 ∧dxi2 ∧·· ·∧dxip , ϖ =
1
q!

b j1 j2··· jq dx j1 ∧dx j2 ∧·· ·∧dx jq .

(2.11)

then, we have

ω ∧ϖ =
1

p!q!
ai1i2···ip b j1 j2··· jqdxi1 ∧·· ·∧dxip ∧dx j1 ∧·· ·∧dx jq , (2.12)

and, then

d
(
ω ∧ϖ

)
=

1
p!q!

d
(
ai1i2···ip b j1 j2··· jq

)
∧dxi1 ∧·· ·∧dxip ∧dx j1 ∧·· ·∧dx jq , (2.13)

Now we have d(ab) = bda+adb, from which

d
(
ω ∧ϖ

)
=

1
p!q!

b j1 j2··· jq dai1i2···ip ∧dxi1 ∧·· ·∧dxip ∧dx j1 ∧·· ·∧dx jq

+
1

p!q!
ai1i2···ip db j1 j2··· jq ∧dxi1 ∧·· ·∧dxip ∧dx j1 ∧·· ·∧dx jq (2.14)

The first sum of the second member is none other than the exterior product dω ∧ϖ ;
as to the second sum, it is multiplied by (−1)p if one puts the factor db j1 j2··· jq after
the pth factor dxip , and it becomes equal to ω ∧ϖ ; and, we deduce the formula
(2.10). □

This lemma generalizes to the product of any number of factors. It has for exam-
ple

d
(
ω ∧ϖ ∧χ

)
= dω ∧ϖ ∧χ +(−1)p ω ∧dϖ ∧χ +(−1)p+q ω ∧ϖ ∧dχ, (2.15)

1 In the particular case where one of the forms is of degree 0, that is to say a function a, we have
d
(
aω
)
= da∧ω +adω , and d

(
aω
)
= dω ∧a+(−1)p ω ∧da.
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assuming ω of degree p and ϖ of degree q.

26. Come now to the proof of the theorem. Consider a differential form of the
second degree, and

ω = ai j dxi ∧dx j (2.16)

be one of the terms of this form. Express the variables xi by new variables yi. The
term in question is an exterior product of three factors, the first ai j, is a form of
degree zero, the second and third are linear forms. We will therefore, passing to new
variables yi and calling the resulting form as ϖ , we have

dϖ∧= dai j ∧dxi ∧dx j +ai j ∧ (ddxi)∧dx j −ai j ∧dxi ∧ (ddx j); (2.17)

but by Lemma I, the exterior differential of dxi and dx j are zero and consequently
the form dϖ is obtained by substituting in the expression dai j ∧ dxi ∧ dx j, whose
coordinates xi are functions of yi. □
27. One could, in regard to linear differential forms ω = ai dxi attach the exte-
rior differentiation to the notion of covariant bilinear. Introduce a second symbol
of differentiation δ , we consider the symbols dσxi, as preveusly we can look, and
consider the symbols δdxi, to constitute two new sets of variables; but we can agree
that the variables δdxi identical to variables dδxi: this convention is legitimate in
that it is respected by a change in any variable, as expressing the new variables yi

based on the old ones xi, was

dyi =
∂yi

∂xk dxi, δdyi =
∂ 2yi

∂xh∂xk δxh dxk +
∂yi

∂xk δdxk, (2.18)

and

δyi =
∂yi

∂xk δxi, dδyi =
∂ 2yi

∂xh∂xk dxh δdxk +
∂yi

∂xk dδxk; (2.19)

comparison of δdyi and dδyi shows immediately their equality, taking into account
the properties of symmetry of second derivatives with respect to ∂ 2yi

∂xk∂xh two indices
derivation.

Given this, denote by ω(d) and ω(δ ) the differential form given, depending on
whether one uses the symbol of differentiation d or δ , and take the expression

d(ω(δ ))−ω(d(δ )) = d(aiδxi)−δ (aidxi)

= dai δxi −δai dxi +ai(dδxi −δdxi). (2.20)

We obtain an alternating bilinear form with two sets of variables dxi and δxi. In this
alternating bilinear form, which can be written∣∣∣∣ dai dxi

δai δxi

∣∣∣∣ , (2.21)
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is associated with the exterior form dai ∧dxi, which is nothing other than what we
called the exterior differential of the form aidxi. The intrinsic character (covariant)
clear expression dω(δ )−δω(d) implies immediately the intrinsic character of the
form dai ∧dxi.

One could also associate with the quadratic exterior differential form ω , exterior
alternating 3−linear form

d1ω(d2,d3)−d2ω(d1,d3)+d3ω(d1,d2), (2.22)

where three symbols of differentiation changed between them.

28, Theorem of Poincare. The exterior differential of the exterior differential
of a differential form is zero.

Proof. The proof is simple. Just check the theorem on monomial form ω = adx1 ∧
dx2 ∧ ·· · ∧ dxp; In this case, we have dω = da∧ dx1 ∧ dx2 ∧ ·· · ∧ dxp since each
factor as the second member is an exact differential, the formula for the exterior
differential of a product makes the theorem obvious. □

Take, for example, as verification, the form

ω = Pdx+Qdy+Rdz; (2.23)

then, we have

dω = dP∧dx+dQ∧dy+dR∧dz (2.24)

=
(∂R

∂y
− ∂Q

∂ z

)
dy∧dz+

(∂P
∂ z

− ∂R
∂x

)
dz∧dx+

(∂Q
∂x

− ∂P
∂y

)
dx∧dy.

With exterior differentiating second times, we obtain the cubic form d(dω)

d
(∂R

∂y
− ∂Q

∂ z

)
∧dy∧dz+d

(∂P
∂ z

− ∂R
∂x

)
∧dz∧dx+d

(∂Q
∂x

− ∂P
∂y

)
∧dx∧dy

=

{
∂
∂x

(∂R
∂y

− ∂Q
∂ z

)
+

∂
∂y

(∂P
∂ z

− ∂R
∂x

)
+

∂
∂ z

(∂Q
∂x

− ∂P
∂y

)}
dx∧dy∧dz

= 0. (2.25)

The Theorem of Poincare admits an inverse which we do not have the rest to serve
us, and reads the statement.

Theorem. Given a differential form of degree p whose exterior differential is
zero, defined within a domain D homeomorphic to the interior of a hyper-
sphere, there is a differential form of degree p−1 defined in this field, and is
given the shape of which the exterior differential.
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Suffice it to verify the theorem for p = 1. The form (2.23) for example has its
exterior differential zero if we have, from (2.24),

∂R
∂y

− ∂Q
∂ z

= 0,
∂P
∂ z

− ∂R
∂x

= 0,
∂Q
∂x

− ∂P
∂y

= 0; (2.26)

or are the necessary and sufficient conditions for the form Pdx+Qdy+Rdz is an
exact differential, that is to say the exterior differential of a form of degree zero or a
function f (x,y,z).

2.2 The exterior differentiation and generalized Stokes formula

29. The classical formulas of Cauchy-Green, Stokes and Ostrogradsky show a re-
markable link between the operation of exterior differentiation and integral calculus
operation which consists in passing an integral calculated on boundary of one do-
main of (p+ 1)-dimensional space equal to an integral calculated on this domain.
For example, consider the formula Cauchy-Green∮

C
Pdx+Qdy =

∫∫
A

(∂Q
∂x

− ∂P
∂y

)
dxdy, (2.27)

in which the first member is a line integral calculated on a closed contour C of the
plan and the second member is an integral double-calculated on the area A bounded
by the contour. As the differential of exterior form ω = Pdx+Qdy is seen that the
Cauchy formula can be written as

dω = dP∧dx+dQ∧dy =
(∂Q

∂x
− ∂P

∂y

)
dx∧dy, (2.28)

we see then, that the Cauchy formula can be written as∮
C

Pω =
∫∫

A
dω. (2.29)

Note however that for this formula has a sense, we must orient line C and the
area A in a consistent manner, the sign of each the integrals being defined only by
specifying the direct on line and on the area which are applied. In fact here the
rule is as follows: It first directs the area A willingness to agreeing that the area of
the parallelogram constructed on two vectors e1,e2, arranged in the order e1,e2 is
positive; the direction for the line C is as follows: there is a vector e1 at each point
of C leads outside the area and it then leads the vector e2, tangential to the contour
C so that the (e1,e2) is positively oriented system.

The Stokes formula starts also in the form (2.29) for taking the form ω (2.23)
and dω for the form (2.24), the first integral is extended to a contour C bounding
a surface portion A, the second integral is extended to the surface portion; there
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also to the choice of consistent guidelines for the contour and the area, which is,
by changing those things which need to be changed, one that was suitable for the
Cauchy formula.

Finally Ostrogradsky formula has the same form (2.29) by setting

ω = Pdy∧dz+Qdz∧dx+Rdx∧dy,

dω = dP∧dy∧dz+dQ∧dz∧dx+dR∧dx∧dy, (2.30)

=
(∂P

∂x
+

∂Q
∂y

+
∂R
∂ z

)
dx∧dy∧dz;

the integral
∫

ω is extended to a closed surface S limiting volume V and the integral∫
dω is calculated on this volume. The guiding question is resolved as follows: It

directs the volume by building a trihedron e1,e2,e3 we should call the right handed
trihedral, and the volume of the parallelepiped oriented built on the three vectors
e1,e2,e3 will be measured positively. To orient the surface S, will be conducted by
a point M on this surface e1,e2,e3 have three vectors form a right handed trihedral,
the first being outside the volume V , the two other tangent to the surface S, then it
must be admitted that the area of a parallelogram oriented constructed on e2 and e3,
is as positive, which orients the surface.

It shows that, with similar orientation conventions, we have a most general form
of Stokes formula ∫

ω =
∫

dω ; (2.31)

the first integral is calculated on the boundary ∂Ω of a (p+1)−dimensional domain
Ω , and second integral calculated on that domain Ω , in other words, this domain
covers the domain of the second integral.

30. If the exterior of a differential form ω of degree p is zero (we will say with
de Rham that this form is closed), the integral

∫
ω calculated on the boundary of

any (p+ 1)−dimensional domain is zero. When the conditions that we have im-
plicitly allowed to form the exterior differential are not realized (differentiable co-
efficients), it may happen as the integral

∫
ω calculated on the boundary of any

(p+1)−dimensional domain is zero. More generally, given a form ω of degree p,
if there is a form dω of degree p+1, such that the generalized Stokes formula (2.29)
is valid for any (p+1)−dimensional domain A, we can say that dω is the exterior
differential of the given form ω , even if the coefficients of ω are simply continuous
functions.

31. One can easily demonstrate the Poincare theorem in a case where the coef-
ficients of the exterior differential dω of a form are not differentiable: it suffices
to assume the existence of this differential. Indeed suppose a form ω of degree
p; the generalized Stokes formula tells us that the integral

∫
ω calculated on any

(p+1)−dimensional domain is equal to the integral
∫

dω calculated on the bound-
ary of this area. Thus, let Σ be a closed (p+1)−dimensions variety; divide it in two
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parts Σ1 and Σ2 by a closed p−dimensional variety boundary C; the integral
∫

dω
calculated on the Σ1

and the integral
∫

dω calculated on the Σ2 are equals, and equal to the integral∫
dω calculated on C, but the first one with a certain orientation of C, and the second

one with the opposite orientation. The total integral
∫

ω calculated on Σ is zero: the
form dω is closed, which expresses the same theorem of Poincare.

32. It can be shown as the converse of the Theorem of Poincare stated in No. 22.
We will limit ourselves to the case p = 2, which will be enough to understand how
the demonstration can be done in the general case.2
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Chapter 3
Exterior differential systems, Characteristic
system

3.1 General facts. Completely integrable systems

35. Differential systems we propose to study are obtained by annulling a number
of functions of n variables x1,x2, · · · ,xn, which we always consider the coordinates
of a point in n−dimensional space or an domain D of this space, and a number of
exterior differential forms defined in this area and may have any degrees. We will be
forced, in the general case, to assume that essentially functions that are introduced
are analytic, and we also assume in the real domain (See for details in relation the
analytical functions of real variables, G. Valiron [26]). The problems which we will
ask knots and theorems which we will always have to demonstrate to local character.
Clearly tied will reserve the right to make changes of coordinates, but in problems
where analytical data is assumed, the new variables will necessarily be analytic
functions of the former.

36. The differential systems of linear equations have been studied extensively. Let

θα ≡ Aα i dxi = 0, (α = 1,2, · · · ,r) (3.1)

are the equations of such a system, we assume that the linear forms θα are linearly
independent, whenever the variables xi in the coefficients Aαi has generic values.
We say in general that the point (xi) of space is generic if the rank of the tableau of
coefficients Aαi at this point is equal to r.

We call integral manifold of system (3.1) a variety defined by a number of re-
lationships between variables and such that the relations between the variables and
relations that deduced by differentiation forms θα vanish identically. This naturally
assumes that the first members of equations of the manifold are differentiable.

In particular, consider the integral manifolds with dimension n− r. If there seek
an integral manifold of this species passing through a point M0 given generic coor-
dinate (xi). Suppose that at this point the determinant of degree r built with r rows
and r last columns of tableau Aα i is different from zero. Near this point the equa-
tions (3.1) can be solved with respect to differential coordinates r, which we call,
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40 3 Exterior differential systems, Characteristic system

for convenience, z1,z2, · · · ,zr. We see that the integral manifold, if it exists, may be
defined by giving the functions z1,z2, · · · ,zr of x1,x2, · · · ,xn−r, in a suitable manner.

37. Theorem I. If there is an integral manifold passing through a given
generic point , it can be obtained by integrating a system of ordinary differen-
tial equations and integral this variety is unique.

Proof. Let x1, · · · ,xh (h = n−r) be the coordinates of a point of a h−dimensional
Euclidean space and denote by O, a point of this space with coordinate x1

0,x
2
0, · · · ,xh

0.

We put inside of the hypersphere Σ with center O and radius R of this space and con-
struct some different rays of the hypersphere from point O, each being determined
by the parameters a1,a2, · · · ,ah the unit vector carries with him. Integral required
for any variety, the zα (α = 1,2, · · · ,r) are functions of the coordinates of the stream
interior of Σ , these coordinates can be written as

x1 = a1t, x2 = a2t, · · · ,xh = aht, (0 ≤ t ≤ R). (3.2)

By moving along a radius, the unknown functions satisfy the equations zal pha ob-
tained by replacing, in the forms θα , xi by ait and dxi by aidt. This will provide a
system of ordinary differential equations

dzα

dt
= ϕ α(a1,a2, · · · ,ah, t), (α = 1,2, · · · ,r), (3.3)

that will integrate with the initial conditions

zα = (xn−r+α)0 for xi = (xi)0. (3.4)

For each ray we are sure that the integration can be done for a certain interval
(0, t0), t0 is a continuous function of a1,a2, · · · ,ah; t0 admit therefore a lower bound
will be reached: this is the lower bound that we take the value of R.

Thus we see that if there is an integral manifold for (n− r)−dimensional passing
through the M0, it is given, within the hypersphere Σ , by integrating a system of
differential equations ordinary and it is unique. □

36. Definition. Completely integrable differential systems. - The system (3.1)
is called completely integrable if it goes an (n− r)dimensional integral man-
ifold, through each generic point of space and a sufficiently small neighbour-
hood of this point.

We, in the preceding number, saw how one could find this integral manifold in
case it exists. To find the conditions for complete integrability of system (3.1) make
the following remark, which will play a fundamental role in the general theory of
differential systems, which could not be easily shown that any variety that annuals
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3.1 General facts. Completely integrable systems 41

a differential form exterior, at the same time annuls the resulting form by exterior
differentiation. Any integral manifold of system (3.1) must annihilate the r forms
θα . But if we calculate these forms we can, instead of expressing them as quadratic
forms of dx1,dx2, · · · ,dxh,dz1,dz2, · · · ,dzr, be expressed as quadratic forms of the
following r independent forms on a neighbourhood of M0,

dx1,dx2, · · · ,dxh,θ1,θ2, · · · ,θr. (3.5)

Therefore, we have formula

dθα =
1
2

Cα i jdxi ∧dx j +Dλ
αidxi ∧θλ +

1
2

Eλ µ
α θλ ∧θµ , (3.6)

where in summation indices i and j vary from 1 to h and the indices of summation
λ and µ of 1 to r. Any integral manifold through M0, which annihilate the forms θα ,
must annihilate the forms 1

2Cα i jdxi ∧ dx j and hence, for any point of the manifold
in the neighbourhood of M0, the coefficients Cα i j will be zero. As will be void
as whatever the initial values of the functions zα of xi = xi

0, we can conclude the
functions Cαi j must be zero in a sufficiently small neighbourhood of M0; hence, we
have

Theorem. For the system (3.1) is completely integrable, it is necessary that
near any generic point of space, forms dθα , exterior differential forms θα ,
belong to the ideal forms of θα . We can express this condition by writing the
congruency

dθα ≡ 0 mod (θ1,θ2, · · · ,θr). (3.7)

This can also be expressed in a more accurate, as we have already seen, by the
existence of linear forms ϖ i

α regular near the point considered generic space and
such that we have

dθα = θ1 ∧ϖ1
α +θ2 ∧ϖ2

α + · · ·+θr ∧ϖ r
α . (3.8)

39. Now prove the converse. Returning to the (n− r)−dimensional manifold de-
fined by the differential system (3.3) and passing through the point M0, of coor-
dinates x1 − 0,zα

0 . If we replace the functions zal pha by their values based on the
arguments ai, t, we shall have, after the way in which it was obtained

θα = Pαk(a, t)dak (α = 1,2, · · · ,r); (3.9)

and also

ϖ i
α = Qi

α(a, t)dt +Qi
αk(a, t)dak (α = 1,2, · · · ,r). (3.10)
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42 3 Exterior differential systems, Characteristic system

Relations (4) give us, in leaving to the two members that the terms containing dt,

∂Pαk

∂ t
dt ∧dak = PλkQk

α dak ∧dt, (3.11)

or

∂Pαk

∂ t
+Qk

α Pλk = 0. (3.12)

For each value of index i, the r functions Pαi(a, t), considered as functions of t,
satisfy a system of linear and homogeneous equations (which is the system remains
the same for all values of i); for t = 0 functions Pαi are all zero since, for t = 0,
the functions xi and zα are fixed and independent of ak, their differentials do not
contain, when we make t = 0 in the coefficients, the term in da1,da2, · · · ,dah.

The initial values of unknown functions Pαi system (3.6) being zero, these func-
tions are identically zero and therefore the variety determined by integrating the
equations (3.3) vanishes identically forms θα , so it is an integral manifold.

We will express this result as follows:

Theorem. For the system (3.1) is completely integrable, it is necessary and
sufficient that near any generic point of space, forms dθα , exterior differential
forms θα , belong to the ideal generated by these forms θα .

41 Note I. The condition of complete integrability only requires the existence of
an integral manifold for (n− r)−dimensions through a generic point of any space,
and it was only in the neighbourhood of a generic point that the forms dθα , must
belong to the ring of forms θα . It may be not the same in the neighbourhood of a
point non-generic. Thus equation θ ≡ xdy− ydx = 0 is completely integrable, as
any ordinary differential equation. But we can not confirm the existence of a form
linear ϖ = Adx+Bdy, regular and continuous in the vicinity of any point gives the
plan and such that dθ = θ ∧ϖ , or

2dx∧dy =−(Ax+By)dx∧dy; (3.13)

in effect for x = y = 0, we can not have 2 =−(Ax+By).

Note II. You can put the completely integrability condition in a general form which
does not require specially consider the case of each generic point. Indeed equations
(3.8) result relations

θ1 ∧θ2 ∧·· ·∧θr ∧dθα = 0 (α = 1,2, · · · ,r); (3.14)

vice versa, from these relations it follows that, on a generic neighbourhood of each
point, for which the linear forms θ1,θ2, · · · ,θα are independent, the exist forms
ϖα

b eta satisfying the relationships (3.8). As any point. non-generic can be regarded
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3.2 Closed differential systems. Characteristic system 43

as the limit of a sequence of generic points, the relations (3.14), being true for any
generic point, by continuity will be true also for any point other than generic.

Relations (3.14) therefore give the necessary and sufficient conditions of com-
plete integrability of system (3.1), and in a form generally more convenient than
those initially indicated.

Note III. If the system is completely integrable, there are r independent functions
ϕi(x1,x2, · · · ,xn) defined on a neighbourhood of a generic point of space and which
remain constant on any integral manifold (first integrals of the system), so that the
given system is equivalent to the system dϕ1 == dϕ2 = · · ·= dϕr = 0. The converse
is obvious.

Note IV. Everything that has been said does not imply the analyticity of the coeffi-
cients Aαi given equations, but only the existence of these coefficients for continuous
partial derivatives of first order;1 the reason is that the search of integral manifolds
is reduced to the integration of ordinary differential equations.

3.2 Closed differential systems. Characteristic system

42. Let us take a differential system obtained by annulling a number of exterior
differential forms, some of which may be of degree zero, i.e. some functions of the
variables. A solution of such a system may be regarded as representing analytically
a variety of n−dimensional space, which we call integral manifold; it will be defined
by a number of relationships between variables so that these relations, together with
the linear relationships between the differential dx1,dx2, · · · ,dxr we deduce by dif-
ferentiation, vanish identically differential forms which are the first members of the
given system of equations. It is clear that any solution of the integral manifold is
given system, which would be added all of the equations obtained by differentiating
of the equations exterior system, because if a differential form is zero, its exterior
differential is zero by itself. The new differential system obtained can obviously be
extended by the same process, after the theorem of Poincaré.

42. Definition. A differential system is said to be closed with respect to
the operation of the exterior differentiation, or, more simply, closed, if the
exterior differential equations of the first members of system belong to the
ideal determined by these first members.

Clearly, if we extend a system by adding the equations obtained by exterior dif-
ferentiation, we obtain a closed system, since the exterior differential of the first
member of an equation of the new system is zero or is a first member of the system.
This derived system from the given system is called closure of that system.

1 The existence of these partial derivatives is necessary to ensure the existence of forms θα .
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44 3 Exterior differential systems, Characteristic system

We see easily that if two differential systems are algebraically equivalent systems
that come from their closure are algebraically equivalent. Based on considerations
of No. 41, we see that the system derived from the closure of a given system ad-
mits the same solutions that this system, whatever the size of the integral manifolds
considered . As a result:

Principle. The search for solutions of a differential system can always be
reduced to finding solutions of a closed differential system.

43. Characteristic system of a differential system. We saw in Chapter 1 that a
system of equations can always be expressed outside, making necessary a change of
variables and replacing as necessary the system given by an algebraically equivalent
system, using a minimum number of variables; this number is well defined and is
given by the rank of the associated system; on the variables, are linear combinations
of original variables, which equalled to zero, provided the associated system.

When there is an exterior system of differential equations, one can equally won-
der if we can not make a change of variables and replace the system by an alge-
braically equivalent system so that the new system does involved in both its coeffi-
cients in the differential therein, a minimum number of variables. We will see that
this is possible and the solution of the problem is provided by the consideration of
the system characteristic.

42. Definition. Characteristic system of a given differential system is the
differential system associated with the closure of system.

We will demonstrate the following theorem:

44. Theorem. The characteristic system of a system Σ is completely inte-
grable differential. If in addition y1,y2, · · · ,yp be a system of independent first
integrals, then there is a system algebraically equivalent to Σ , constructed
by the differentials dy1,dy2, · · · ,dyp, where the coefficients being functions
y1,y2, · · · ,yp.

Proof. We assume for simplicity, which essentially does not restrict the generality,
that the system Σ contains no ordinary function of x1,x2, · · · ,xn. It is enough to
demonstrate the theorem in case the system Σ is closed. System is therefore defined
by the following equations, we assume the degree ≤ 3, such as
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θα ≡ Aαi dxi = 0, (α = 1,2, · · · ,r1),

ϕα ≡ 1
2

Aα i j dxi ∧dx j = 0, (α = 1,2, · · · ,r2),

ψα ≡ 1
6

Aαi jk dxi ∧dx j ∧dxk = 0, (α = 1,2, · · · ,r3).

(3.15)

If the rank of the system characteristic is equal to n, the theorem becomes trivial.
If this rank is an integer p< n, add to the system characteristic equation, if p< n−1,
other linear equations number n−1− p are mutually independent and independent
of the first. We obtain a system of ordinary differential equations which we can
assume, with a change of coordinates, if necessary, the variables dx1,dx2, · · · ,dxn−1

can be integrated first.
First we know that we can find a algebraically equivalent system to Σ and do not

include the differential dxn (No. 22).
Suppose this result already reached, the first members of equations (3.15) not

involving dxn. We notice then that the derivative with respect to xn any of these
early members, ϕα for example, is simply the derivative of the form dϕ n, compared
to dxn, and hence belongs to the ring system. We thus have the congruencies

∂
∂xn θα ≡ 0, mod (θ1,θ2, · · · ,θr1),

∂
∂xn ϕα ≡ 0, mod (ϕ1, · · · ,ϕr2 ,θ1, · · · ,θr1),

∂
∂xn ψα ≡ 0, mod (ψ1, · · · ,ψr3 ,ϕ1, · · · ,ϕr2 ,θ1, · · · ,θr1).

(3.16)

The first congruency (3.16) can be written as

∂
∂xn θα = Hβ

α θβ . (3.17)

Consider then the system of ordinary differential equations

∂ zα

∂xn = Hβ
α zβ , (3.18)

the coefficients Hβ
α are functions dx1,dx2, · · · ,dxn. Let z̄(1)α , z̄(2)α , · · · , z̄(r1)

α be r1 in-
dependent solutions of this system. There are independent linear forms of xn, for
example θ̄1, θ̄2, · · · , θ̄r1 , such that we have

θα = θ̄1z̄(1)α + θ̄2z̄(2)α + · · · , θ̄r1 z̄(r1)
α ; (3.19)

but the system of equations θ = 0 is equivalent to the system of equations θ̄ = 0
whose first members do not involved xn or dxn. As a result, we can assume, replacing
a system by Σ algebraically equivalent, that forms θα . do not contain xn nor dxn.

Pass to the form ϕα . We have
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46 3 Exterior differential systems, Characteristic system

∂ϕα
∂xn = Kβ

α ϕβ +ϖ γ
α ∧θγ , (3.20)

where ϖ γ
α is the linear forms not containing dxn and θγ , not dependent to xn or dxn.

Consider this time the system of differential equations

∂uα
∂xn = Kβ

α uβ , (α = 1,2, · · · ,r2) (3.21)

and a system of r2 independent solutions ũ(i)α (i = 1,2, · · · ,r2). Let

ϕα = ϕ ∗
β ū(β )α , (3.22)

where ϕ ∗
β is new exterior quadratic forms. The system (3.20) take the form

∂
∂xn ϕα = (ϖβ )

∗∧θβ . (3.23)

If we denote by χβ
α a primitive function of (ϖβ )

∗, considered as a function of xn,
see that the form knotted

ϕ ∗
α −χβ

α ∧θα (3.24)

not depend on xn or dxn. But the system θα = ϕal pha∗ is algebraically equivalent
to the system θα = ϕal pha = 0. We can therefore suppose, substituting Σ with an
algebraically equivalent system, that the first members of equations of the first and
second degree system (3.15) does not depend on xn or dxn.

We will continue in the same manner for the first members of equations of the
third degree and step by step we will thus show the existence of a system alge-
braically equivalent to the given system and whose equations do not involve xn or
dxn.

If p < n− 1, should be repeated on this system on the same reasoning as Σ has
wide algebraically equivalent system in which only appear as n−2 variables and so
on, until we come to a system in which p variables and their differentials does not
appear.

The theorem is then shown. For if the p variables are y1,y2, · · · ,yp, then the
characteristic system is

y1 = 0, y2 = 0 , · · · , yp = 0; (3.25)

it is completely integrable and its most general integral manifold is obtained by
matching y1,y2, · · · ,yp to arbitrary constants.
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3.2 Closed differential systems. Characteristic system 47

It is also obvious that you can not find system algebraically equivalent to the
given system and involving less than p variables and their differentials.2 □

We will call class of a given exterior system of differential, the rank of the char-
acteristic system.

45. Definition. Characteristic variety is called any (n− p)−dimensional so-
lution manifold of the characteristic system.

The following property is obvious.

Theorem. Given an integral manifold V of any Σ system, the manifold ob-
tained by drawing through each point of the characteristic variety V which
passes through this point is also an integral manifold.

It follows in particular3

Theorem. If the integral manifold V system Σ is contained in any integral
manifold to a larger number of dimensions, it is generated by the characteris-
tic varieties.

Indeed if it were not so, the characteristic manifolds conducted by the different
points of an integral manifold V would generate a larger number of dimensions as
V .

46. If system Σ is not complete (No. 18) and we can complete it, it will feature the
system to a new characteristic system of Σ whose rank can only be reduced; if the
rank remains the same, the system characteristic is not changed.

Take as an example the system

dx1 ∧dx3 = dx1 ∧dx4 = dx3 ∧dx4 − x5 dx1 ∧dx2 = 0, (3.26)

which is closed by the new equation

dx1 ∧dx2 ∧dx5 = 0; (3.27)

Its characteristic system is

2 Applying the theorem of No. 38 to show that the system is completely integrable characteristic
is an exercise in calculation is quite simple if the given system is linear. We leave this calculation
aside.
3 There would be exceptions to this theorem if, at all points of the integral manifold V , the rank
was characteristic of the system decreases. We would be dealing with a singular integral manifold.
An example is the singular solutions of partial differential equation of first order.
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dx1 = dx2 = dx3 = dx4 = dx5 = 0. (3.28)

The system (3.26) is not complete, a complete system assuming the same solutions
as the system (3.26) was provided by the equations

dx1 ∧dx3 = dx1 ∧dx4 = dx3 ∧dx4 = dx1 ∧dx2 = 0, (3.29)

Its characteristic system is

dx1 = dx2 = dx3 = dx4 = 0. (3.30)

3.3 Applications of Pfaff’s problem

47. Let us apply the above considerations to the case of a linear differential equation
(a Pfaff’s equation)

θ ≡ Ai dxi. (3.31)

The system consists of the characteristic equation (3.31) can be reached at which
the associated system of exterior differential dxi, where we have replaced one of
its differentials have value of (3.31). This system is associated with even rank, it
follows the (3.31).

Theorem. The class of any linear differential equation is an odd number.

If this class is equal to 1, that is characteristic that the system reduces to equa-
tion (3.31), which is completely integrable. If Z is a first integral, the equation is
equivalent to dZ = 0.

Assume the general case, the class being 2p+ 1. Let X , a special first integral
feature of the system. If we binding the variable n by the relation X1 = C1, which
C1 is an arbitrary constant: it reduces at least one unit of the characteristic equations
of the system and as the class is always odd is that this class is reduced to less two
units. Next, let X2 be a first integral of the new characteristic system, X2 is a function
of xi and C1 is a function of xi also (if we replace C1 by X1).

By linking the two variables by the relations

X1 =C1, X2 =C2, (3.32)

that is to say, the differential dxi by both the class of relations

dX1 = 0, dX2 = 0, (3.33)
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system will be further reduced by at least two new units. We will continue step
by step, there will exist p independent first integrals X1,X2, · · · ,X p as if it binding
variables by the relations

X1 =C1, X2 =C2, · · · , X p =Cp, (3.34)

the equation θ = 0 becomes completely integrable reducible due to the form dZ = 0.
This reduction is valid only because we assumed constant functions X i. If we do

suppose most consistent is that the equation θ = 0 is reducible to form

dZ −Y1 dX1 −Y2 dX2 −·· ·−Yp dX p = 0, (3.35)

the coefficients Yi being conveniently chosen functions of p given variables.
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Chapter 4
Integral elements, Character, Type, and
Existence theorems

4.1 Integral elements of a differential system

51. We propose in this chapter to indicate some existence theorems for integral
manifolds of a closed exterior differential system (we base that could always be
reduced to this case). These existence theorems solve in some cases what is called
the Cauchy problems, which we will clarify the statement. From this chapter we
will be forced to assume, as we have already noted, that the functions entering the
equations of the given system are analytic, while in the preceding chapter, it was
enough to admit the existence continuous partial derivatives up to a low order (1 or
2).

The theory we will develop was first created by E. Cartan for linear differential
equations, corresponding to closed systems containing differential equations of the
at most second degree. It has been extended, especially by E. Kaehler, to systems of
any degree.

52. The exterior differential systems that we have to consider are of the form1

fα(x1,x2, · · · ,xn) = 0 (α = 1,2, · · · ,r0),

θα ≡ Aαidxi = 0 (α = 1,2, · · · ,r1),

ϕα ≡ 1
2

Aα i j dxi ∧dx j = 0 (α = 1,2, · · · ,r2),

ψα ≡ 1
6

Aαi jk dxi ∧dx j ∧dxk = 0 (α = 1,2, · · · ,r3),

· · · · · · · · · · · ·

(4.1)

The system being closed, linear equations d fα = 0 must be among the equations
(4.1), or better the form d fα must belong to the ring of forms θα ; as the same, the
exterior differentials dθα must belong to the ring of forms θα and ϕα , and so on.

1 As in the preceding chapters, the coefficients Aα i j,Aα i jk, · · · , are assumed antisymmetric with
respect to their Latin indices i, j,k, · · ·
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52 4 Integral elements, Character, Type, and Existence theorems

53. A key observation to make is about the equations fα = 0 contained in the
system (4.1). They define an analytical manifold V whit a certain dimension ρ of
the n−dimensional space . We suppose, in a simple point of V , the rank of the matrix
of partial derivatives fα is equal to ρ (notice in passing that ρ can be less than the
number r0 of equations fα = 0, certain algebraic manifolds with n−ρ dimensions
front, for example, be defined by algebraic equations over ρ entries, if we do not
want to miss any of their points). The condition we have to impose the equations
fα = 0 would not be achieved if for example we had the single equation

f ≡
(
(x1)2 +(x2)2 + · · ·+(xn)2 −1

)2
= 0. (4.2)

In this case the reasoning we have to fall into default later.
If the above condition is realized and if we place ourselves in a simple point xi

0
of manifold V , each equation d fα = 0 must appears among the equations θα = 0,
which are ρ linearly independent equations, for example those corresponding to
rows of the matrix ∂ fα/∂xi = 0 of that enter the main determinant for xi = xi

0. Any
manifold satisfying these ρ equations d fα = 0 and containing the point xi

0 of V , is
completely contained in V , at least in the neighbourhood of this point.

54. Integral plane elements.
We will call p−dimensional plane element the set of a point (x1,x2, · · · ,xn) and
a p−plane passing through that point. This point is called the origin point of the
element. A p−dimensional plane element with a given origin, can be set through
a system of n− p independent linear relations between x1,x2, · · · ,xn, regarded as
coordinates in a common Cartesian frame of reference that would have the point
(xi) as origin can also define by p linearly independent vectors from the point (xi)
or by its Plückerian coordinates ui1i2···ip (No. 12).

A p−dimensional plane element is said integral if it satisfies the following two
conditions:

1) Its origin point belongs to the manifold V (we can say that this is an integral
point);

2) The exterior forms which are in the first members of equations of the system are
annihilated by the considered plane element.

It is clear that, if a manifold is integral, each points of that is also integral and,
furthermore all its tangent planes elements are integrals. The converse is obvious.

It is natural to say that:

instead of study integrals manifolds, we can study integral plane elements.

55. When a p−dimensional plane element is integral?
This is a problem that we solved in Chapter 1 (No. 12-14). Let us briefly recall the
results therein.

An linear element with origin (xi) and parameters ui is integral if the origin point
is integral and if the linear element (ui) annihilates forms θα , the first degree of
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4.1 Integral elements of a differential system 53

system (4.1):

Aαiui = 0. (4.3)

A two-dimensional plane element is integral if its origin is an integral if its Plückerian
coordinates ui j annihilate quadratic exterior forms θα ∧dx1, · · · ,θα ∧dxn and that is
if the Plückerian coordinates ui j annihilate all exterior quadratic forms that belong
the ring of the system (4.1).2 More generally:

A p−dimensional plane element is integral if its origin is an integral point,
and its Plückerian coordinates ui1i2···ip annihilate all forms of degree p be-
longing to the ring of the given system.

56. Regular integral point, ordinary linear integral element.
Let (xi) be a simple generic point of V . The linear integral elements having this
point as origin are defined by the condition that their parameters ui satisfy the equa-
tions

Aα iui = 0, (α = 1,2, · · · ,r1). (4.4)

Let s0 be the number of those of these equations are linearly independent or the rank
of the matrix Aαi, when simple point (xi) is generic. Point (xi) will be called regular
if for this point the number of equations (4.4) independent does not less than of s0.
An integral linear element called ordinary, if its point of origin is a regular point of
V .

The integer s0 is called the zero-order character of the system.3

Any regular point is necessarily a simple point of the variety V , but the converse
may not be true. As the condition for a point of not being regular results in additional
equations for the coordinates of this point, any sufficiently small neighbourhood of
a regular point within the manifold V contains only regular points. One can also
say that if a point of V is not regular, every neighbourhood of this point inside of V
contains an infinite number of points regular, since every point non-regular is limit
of an infinite sequence of regular points.

Note again that the number of equations that define a linear integral with a given
origin can never exceed s0. Finally, for any point in space, integral or not sufficiently
close to a regular point, the rank of equations (4.4) is at least equal to s0 and may be
higher.

2 Recall that the coordinates ui j annihilate a quadratic exterior form Hi j dxi∧dx j if one has Hi jui j =
0. The ring of the system (4.1) is determined by the ring forms θα ,ϕα ,ψα , · · · which appear as the
first members of equations (4.1).
3 If we solve the equations fα = 0 over a number of variables xi manner as to leave in equations
(4.1) as n−ρ variables and their differentials, s0 character would naturally be decreased accord-
ingly.
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54 4 Integral elements, Character, Type, and Existence theorems

57 Regular integral linear element, two-dimensional ordinary integral element.
Let (E1) be an ordinary integral part with parameters ui. To get some information
on two-dimensional integral elements containing (E1), we will form what is called
the polar element of (E1): this is the place of linear elements (dxi) such that the
element plane determined by (ui) and (dxi) is integral. The conditions with which
the parameters dxi are

Aαidxi = 0 (α = 1,2, · · · ,r1), (4.5)

Aαi j dx j = 0 (α = 1,2, · · · ,r2); (4.6)

these equations are what we call the polar system of (E1).
Let s0 + s1 the rank of the polar system of a generic ordinary integral element

(E1). This means that r1 and r2 equations (4.5) and (4.6) reduce to s0 + s1 indepen-
dent if one takes into account that the ui satisfy the equations

Aαiui = 0. (4.7)

The ordinary integral element (E1) will be called regular if the rank of the
polar system does not drop below its normal value s0+ s1. A two-dimensional
integral element will be called ordinary if it contains at least one regular lin-
ear integral.

The integer s1 is said first order character of a the given differential system.

Note that if s0 + s1 is greater than or equal to n − 1, the pole element of the
regular linear integral element (E1) reduces to that element itself. There is therefore
no evidence in this case two-dimensional ordinary integral.

It can be observed as in the preceding number that any sufficiently small neigh-
bourhood of a regular linear integral element within the range of linear integral
contains only regular elements.

58 Generalization.
Suppose s0 + s1 < n−1. Let (E2) be an ordinary two-dimensional integral element,
defined for example by two linear integral elements (ui) and (vi). The polar system
of (E2) is formed of equations that express that the linear integral element (dxi)
determines (E2) a three-dimensional integral element. The polar equations of the
system are 

Aα idxi = 0 (α = 1,2, · · · ,r1),
Aα i j ui dx j = 0, Aα i j vi dx j = 0 (α = 1,2, · · · ,r2),
Aα i jk ui v j dxk = 0 (α = 1,2, · · · ,r3).

(4.8)

Let s0 + s1 + s2 be the rank of this system for an generic ordinary integral element
(E2). The ordinary integral element (E2) will be called regular if the rank of the
polar system does not drop dessourr of s0+s1+s2, and all three dimensiona integral
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element will be called ordinary if it contains at least one element integral regular
two-dimensional.

The integer s2 is the character of order 2 for the given differential system.
If s0 + s1 + s2 is superior or equal to n−2, the polar element (E2) is two dimen-

sional and there is no integral three-dimensional element which is ordinary.
Final element in a integral p−dimensional (Ep) is ordinary if it contains at least

one regular integral element (Ep−1), it at least one regular integral element (Ep−2)
and so on, until to a linear regular (E1) to be regular for a point origin.

There is element of ordinary p-dimensional integral if one has

s0 + s1 + · · ·+ sp−1 < n− p+1. (4.9)

59 Genus of a differential system closed.
There will come a when will exist no ordinary integral element of a certain dimen-
sion, h+ 1. The integer h is called the genus of differential system and is the first
integer for which

s0 + s1 + · · ·+ sh = n−h. (4.10)

There are regular integral elements in h dimensions, but there is no element at
integral ordinary h+1 dimensions.

Integers s0,s1,s2, · · · ,sh are the characters of the differential system.
As mentioned, liver than in the manifold of integral elements p < h dimensions,

any sufficiently small neighborhood of a regular integral element contains only reg-
ular integral elements. An integral element (Ep) can be analytically defined by the
coordinates of its point of origin x1,x2, · · · ,xn and coordinates Plückerian ui1i1···ip

subject the rest to satisfy a system of quadratic relations we have formed in Chap-
ter 1; every neighborhood of an element (Ep) can be defined by the condition that
the coordinates xi,ui1i1···ip of an element (Ep) in the neighborhood do not deviate a
certain value of the coordinates of the same name of the element (Ep) gives.

4.2 Two existence theorems

60. We intend to demonstrate, given a system of differential Σ genus h, the ex-
istence of integral manifolds for any number p ≤ h dimensions. It does not mean
that there is no integral manifold more than h dimensions; it does not mean that
the p−dimensional integral manifolds which we will demonstrate use of all avail-
able varieties p−dimensional integrals. This is an application of Cauchy-Kowalmski
theorem, which we state earlier, the existence theorems in question will be demon-
strated.

Consider then a closed differential system Σ with genus h, and let p ≤ h, we have

s0 + s1 + · · ·+ sp−1 ≤ n− p. (4.11)
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Consider a p−dimensional integral element (Ep)0 which is ordinary. We can
assume that his equations implies no linear relationship dx1,dx2, · · · ,dxp. Then
change the notations and denote by zλ (λ = 1,2,3, · · · ,n − p = ν) the variables
xp+1, · · · ,xn; the element (Ep)0 is defined by equations of the form

dzλ = aλ
i , (λ = 1,2,3, · · · ,ν), (4.12)

the summation index i varying from 1 to p.
There is a chain of elements regular integrals (Ep−1)0,(Ep−2)0, · · · ,(E1)0 each

of which is contained in the prhcdent and (Ep)0 and whose origin is a regular point
of V , and we can assume, for simplicity of exposition, that the first p coordinates xi

of this point are zero, the others being zλ = aλ . Finally we can assume, if necessary
by a linear transformation with constant coefficients effected on p coordinates xi,
the equations of linear (Ep−1)0,(Ep−2)0, · · · , are obtained by adding the equations
(4.12) successively the equations

dxp = 0, dxp−1 = 0, · · · , dx2 = 0; (4.13)

paramhtres of the (E1)0 are then

1, 0, · · · , 0, a1
1, a2

1, · · · , aν
1 . (4.14)

These conventions are made, any p−dimensional integral manifold V tangent
to the element (Ep)0 will elements tangent planes near the origin point (xi = 0,
aλ = zλ ) of (Ep)0, ordinary integral elements. The integral manifold can be defined
by ν equations

zλ = ϕ λ (x1,x2, · · · ,xp), (λ = 1,2,3, · · · ,ν), (4.15)

where ϕ λ are holomorphic fonotions in the neiboorhood of the xi values xi = 0, and
taking the values aλ = zλ .

Theorem. There are at least one analytic integral manifold tangent to any
given p−dimensional ordinary integral element (Ep)0 and containing an (p−
1)− dimensionl integral manifold Vp−1 tangent to any given regular (p −
1)−dimensional integral element (Ep−1)0.

62. The Cauchy-Kowalewski theorem.
We will build, to demonstrate, on a classical theorem, which we state as follows,
which will suffice (See, for the general statement, E. Goursat [15]).

Theorem. Given a system of q partial differential equations of first order be-
tween q unknown functions zλ of p independent variables xi, solved with re-

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



4.2 Two existence theorems 57

spect to derivatives ∂ zλ/∂xp, the second members are functions of the argu-
ments xi,zλ ,∂ zλ/∂x1, · · · ,∂ zλ/∂xp−1 holomorphic near values xi = 0,zλ =
aλ ,∂ zλ/∂xi = aλ

i , this system admits an analytical solution and one for which
the unknown functions are holomorphic fontions x1,x2, · · · ,xp near xi = 0,
reducing themselves to zλ = χλ (x1,x2, · · · ,xp−1) to holomorphic functions
x1 = x2 = · · ·= xp−1 = 0 data, taking the values for aλ , drivdcs ∂ zλ/∂xi tak-
ing their values aλ

i .

63. We start with donations prove the following theorem, which is a special case
of the theorem stated in No. 61.

First Existance Theorem. Let gives a closed differential system Σ for which

s0 + s1 + · · ·+ sp−1 = n− p. (4.16)

Let (Ep)0 an element intdgral ordinary p− 1 dimensin Vp and an integral
manifold for a p−dimensional plane tangent to an integral regular (Ep−1)0
contained in (Ep)0. There are a variety p−dimensional integral and one con-
taining Vp−1 and this variety is tangent to the element (Ep)0.

Let us point out immediately that the latter part of the statement is obvious, since
the regular integral element (Ep)0 it does not pass, because the value of n− p of
sum s0 + s1 + · · ·+ sp−1, one p−dimensional integral element, which is (Ep)0.

We will demonstrate for p = 3, enough to give an idea of the proof in the general
case.

64. Opening remarks at the demonstration. We suppose, as has been said in No.
61, that the element (E3)0 has its origin in the coordinates xi = 0, zλ = aλ (λ =
1,2, · · · ,n−3) and defined by the equations

dzλ = aλ
1 dx1 +aλ

2 dx2 +aλ
3 dx3, (λ = 1,2, · · · ,ν), (4.17)

The regular integral element (E2)0 is obtained by adding the equations (4.17) the
equation dx3 = 0, and regular element (E1)0 by adding the equation dx2 = 0 to it.
Let

x3 = 0, zλ = Φλ (x1,x2), (λ = 1,2, · · · ,ν), (4.18)

are equations of the two-dimensional integral manifold V2; for x1 = x2 = 0 functions
Φλ and their partial derivatives ∂Φλ/∂x1,∂Φλ/∂x2 take the values aλ ,aλ

1 ,a
λ
2 , re-

spectively.
Let now zλ = Fλ (x1,x2,x3) the equations of the unknown three-dimensional

manifold V3, for x3 = 0, the functions Fλ are reduced to functions Φλ data; more
for x1 = x2 = x3 = 0 we must have value ∂Fλ/∂x3 = aλ

3 .

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



58 4 Integral elements, Character, Type, and Existence theorems

The equations to be fulfilled are the functions Fλ , from equations (4.1) of system
Σ , 

fα(x,z) = 0 (α = 1,2, · · · ,r0),

Hαi ≡ Aαi +Aαλ
∂ zλ

∂xi = 0
(i = 1,2,3,
α = 1,2, · · · ,r1),

Hαi j ≡ Aαi j +Aα iλ
∂ zλ

∂x j +Aαλ µ
∂ zλ

∂xi
∂ zµ

∂x j = 0
(i = 1,2,3,
α = 1,2, · · · ,r2),

Hα123 ≡ Aα123 +Aαi jλ
∂ zλ

∂xk +Aαiλ µ
∂ zλ

∂x j
∂ zµ

∂xk

+Aαλ µν
∂ zλ

∂x1
∂ zµ

∂x2
∂ zν

∂x3 = 0.

(4.19)

In the expression of Hα123, the indices i, j,k appearing in the second and third
terms are in turn the three permutations of indices 1,2,3, that is 123, 231, and 312.

In the neighbourhood of of point M0 origin of (E3)0 we can keep only ρ equations
Fα(x,z) = 0, subject to the sole condition that the coefficient matrix of dzλ in ρ
differential d fα , has rank ρ; we will assume that it is the first ρ .

Equations (4.19) can be split into three groups

fα(x,z) = 0 (α = 1,2, · · · ,ρ); (A)
Hα1 = 0, Hα2 = 0, Hα12 = 0; (B)
Hα3 = 0, Hα13 = 0, Hα23 = 0, Hα123 = 0. (C)

The variety V2 satisfies the equations (A) and (B). The variety V3 must also satisfy
the equations (C).

65. If the coefficients in equations (C) are given respectively to the arguments
x1,zλ ,∂ zλ/∂x1,∂ zλ/∂x2 values 0,aλ ,aλ

1 ,a
λ
2 one obtains a system of linear equa-

tions with respect to ∂ zλ/∂x3, and is well easy to see that this syetem (C) is deduced
from the polar system of (E2)0 by replacing dx1 and dx2 by 0 and dx3 by 1 and dzλ

by ∂ zλ/∂x3.
The polar equations of this system are by hypothesis the number of s0 + s1 + s2

independent with respect to dxi and dzλ , but these equations do not involve any
linear relation between dx1,dx2,dx3, otherwise this relation would be one of those
that define the element (E3)0 which is not. The equations (C), considered as lin-
ear equations in ∂ zλ/∂x3, are the number of s0 + s1 + s2 independent when, in the
coefficients of these equations is replaced respectively x1,zλ ,∂ zλ/∂x1,∂ zλ/∂x2 by
0,aλ ,aλ

1 ,a
λ
2 . We will make a choice among these equations, s0 + s1 + s2 indepen-

dent, which we call principal.
If these in principal equations, arguments x1,zλ ,∂ zλ/∂x1,∂ zλ/∂x2 are given val-

ues sufficiently close to 0,aλ ,aλ
1 ,a

λ
2 , they will not cease to be linearly independent.

Three cases are possibles:
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1) The given values of arguments define a two-dimensional integral element; this
element is necessarily regular if the argument values of arguments differ suffi-
ciently near the values of 0,aλ ,aλ

1 ,a
λ
2 . In this case the non-principal equations of

(C) are consequences of principal equations of (C).
2) The values given only to the arguments xi,zλ , define an integral point, without

the values given to the other arguments define a 2−dimensinal integral element.
The non-principal equations of (C) are not consequences of principal equations
of (C) and equations (B). In a more accurate non-principal equations of Hα3 = 0,
attached not to ∂ zλ/∂x1 or ∂ zλ/∂x2 are consequences of principal equations
of Hα3 = 0. The non-principal equations of equations Hα13 = 0, not depending
on the zλ/x1 nor zλ/x2 are consequences of the principal equations Hα13 = 0
and Hα3 = 0, and also equations Hα1 = 0, expressing that the zλ/x1 define an
linear integral element. Finally the non-principal equations of equations Hα23 =
0, Hα123 = 0 are consequences of non-principal of equations (C) and the set of
equations (B). These results can be expressed in the following formulas, where
α ′ is the index of non-principal equations of the equations (C), and α is the index
of principal equation of equation (C) or one of the equations (B):

Hα ′3 =
{

Hα3
}

Hα ′13 =
{

Hα3,Hα13,Hα1
}

Hα ′23 =
{

Hα3,Hα13,Hα23,Hα123,Hα1,Hα2,Hα12
}

Hα ′123 =
{

Hα3,Hα13,Hα23,Hα123,Hα1,Hα2,Hα12
} (4.20)

the braces are linear combinations of expressions therein, the coefficients are ho-
momorphic functions x1,zλ ,∂ zλ/∂x1,∂ zλ/∂x2 in the neighbourhood of values
0,aλ ,aλ

1 ,a
λ
2 of these arguments.

3) The given values of arguments xi,zλ do not define a integral point. The non-
principal equations of the equations (C) are consequences of principal equations
of the equations (C), equations (B) and equations (A).

We should add two remarks. The first one is that we can assume that the equations
d fα = 0 are some of the equations θα = 0, that equations dθα = 0 are some of the
ϕα = 0 and dϕα = 0 equations are some of the equations ψα = 0. The second is that
we can assume that among the equations (C) of the principal form Hα3 = 0 are the
first ρ equations from d fα = 0, that is to say

∂ fα
∂x3 +

∂ fα

∂ zλ
∂ zλ

∂x3 = 0, (α = 1,2, · · · ,ρ). (4.21)

66. Demonstration of the first existence theorem. Consider the s0+s1+s2 principal
equations (C) . As s0 + s1 + s2 = n−3, number of unknown functions zλ , they give
them two other derivatives ∂ zλ/∂x3 based on ∂ zλ/∂x1 and ∂ zλ/∂x2. They form a
system of Cauchy-Kowalewski. So they admit a homomorphic solution

zλ = Fλ (x1,x2,x3), (4.22)
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and one for which Fλ is reduced when there is x3 = 0, for given functions Φλ (x1,x2).
WE will show that the manifold V3 defined by equations (it) is integral.

Firstly, among the equations of the system of Cauchy-Kowalewski include ρ
equations (4.21), which express that the manifold V2 functions fα(x,z) are indepen-
dent of x3 or, for x3 = 0, they are null because the manifold V2 is integral, so they
are identically zero. The manifold V3 therefore satisfies the equations (A).

Secondly, the manifold V3 satisfying equations (A), all its points are integral
points and consequently, after the part 2 of No. 65, all expressions Hα3, even non-
principal ones, are identically zero on the manifold V3; respect to expressions Hα13,
Hα23, Hα123, those are principal void in the same conditions, those that do non-
principal satisfy according to (4.23) to equations of the form

Hα ′3 =
{

Hα1
}

Hα ′23 =
{

Hα1,Hα2,Hα12
}

Hα ′123 =
{

Hα1,Hα2,Hα12
}
.

(4.23)

A sufficient condition for the manifold V3 be integral, is that it satisfies the equa-
tions (B).

Third, the quantities Hα1, Hα2, Hα12 are zero for x3 = 0. Consider a form θα ; on
the manifold ⊑3 were

θα = Hα1 dx1 +Hα2 dx2, (4.24)

from which

dθα =−∂Hα1

∂x3 dx1 ∧dx3 − ∂Hα2

∂x3 dx2 ∧dx3 +
(∂Hα2

∂x1 − ∂Hα1

∂x2

)
dx1 ∧dx2.

(4.25)

As the equation dθα = 0 is one of the equations ϕα = 0, the coefficient is a
∂Hα1/∂x3 combination linear with coefficients homomorphic expressions Hα13 and
result of after (4.22) expressions Hα1. The r1 quantities Hα1 thus satisfy a system
of linear differential equations with homomorphic coefficients, variable being in-
dependent of x3; like functions Hα1 are zero for x3 = 0, they are identically zero.
The variety V3 therefore satisfies Hal equations Hα1 = 0 and hence the equations
Hα13 = 0.

Fourthly the expression ∂Hα2/∂x3 is from (4.25), a linear combination of coef-
ficients homomorphic Hα23, that is to say, according to (4.22) of Hα2 and Hα12.

On the other hand as we have dϕα = Hα12 dx1 ∧dx2 +Hα23 dx2 ∧dx3, we will

dϕα =
(∂Hα12

∂x3 +
∂Hα23

∂x1

)
dx1 ∧dx2 ∧dx3, (4.26)

and as dϕα is a linear combination of ψα , the expression ∂Hα12
∂x3 + ∂Hα23

∂x1 will be a
linear combination of Hα123, that is to say, according to (4.22), of Hα2 ,and Hα12.
As finally ∂Hα23/∂x1, according to (4.22) is a linear combination of Hα2, Hα12,
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∂Hα2/∂x1, ∂Hα12/∂x1, we see that ∂Hα12/∂x3 are linear combinations of coeffi-
cients homomorphic function Hα2 and Hα12 and their partial derivatives with respect
to x1. They therefore satisfy a system of Cauchy-Kowalewski and, as had vanish for
x3 = 0, they are identically zero, and, from (4.22) that the Hα23 and Hα123.

The variety V3 therefore satisfies all the equations (A), (B) and (C). □

Second Existance Theorem. Let given a closed differential system Σ for
which

s0 + s1 + · · ·+ sp−1 < n− p. (4.27)

Let (Ep)0 be an n−dimensional linear integral element and Vp−1 be an
(p−1)−dimensions integral manifold tangent to an element (Ep−1) contained
in integral regular (Ep)0. There are an infinite number of p−dimensional in-
tegral manifolds containing Vp−1, and tangent to the element (Ep)0. Each
is uniquely determined if we choose an arbitrary s0 + s1 + · · ·+ sp−1 un-
known functions on the sole condition of being reduced corresponding func-
tions Φλ (x1,x2), for x3 = 0.

Proof. The proof is easy and reduces to that of the first theorem. Indeed resume the
hypothesis p = 3 and consider the system of equations (C) principal, and they are
solvable with respect to s0 + s1 + s2 derivatives ∂ zλ/∂x3. It remains in the second
members n− 3− (s0 + s1 + s2) derived ∂ zλ/∂x3; impute to n− 3− (s0 + s1 + s2)
functions zλ values corresponding functions x1,x2,x3 homomorphic in a neighbour-
hood of xi = 0 and subject to the sole condition that they reduce to x3 = 0 func-
tions Φλ (x1,x2) of the same index. We obtain a Cauchy-Kowalewski system with a
unique solution corresponding to given initial conditions zλ = Φλ (x1,x2). □
68. We say that the integral manifolds whose existence is demonstrated by the
two theorems of existence are ordinary integral manifolds. All the ordinary integral
manifolds is what we call the general solution of the given differential system. The
integral manifolds which are not normal at any point have a common tangent integral
element. regular integral manifold are those that admit of elements integral regular
tangent.

We can evaluate the degree of generality of ordinary integral manifold Vp admit-
ting an given p−dimensional ordinary tangent integral element.

Indeed, maintaining the previous notations, section V1 of Vp by the planar man-
ifold xp = xp−1 = · · · = x2 = 0 depends on n − p − s0 arbitrary functions of x1

subject to the sole condition that for x1 = 0 values of their derivatives are given
aλ

1 . The integral manifold being chosen V1, section Vp by the planar manifold
xp = xp−1 = · · · = x2 = 0 depends on n− p− s0 − s1 arbitrary functions of x1, x2,
subject to the unique condition of being reduced to x2 = 0 to known functions of x1.
And so on. The variety V itself depends on n− p− s0 − s1 −·· ·− sp, arbitrary func-
tions of x1,x2, · · · ,xp the single subject requirement be reduced to xp = 0 functions
to data of x1,x2, · · · ,xp−1.
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Introduce, for reasons of symmetry, has an integer, (which is not a character) by
the relation

s0 + s1 + · · ·+ sp−1 + sp +σp = n− p. (4.28)

We can then say, roughly, that the p−dimensional ordinary integral manifold
tangent to (Ep)0 depends

s1 + s2 + · · ·+ sp−1 +σp arbitrary functions of x1,

s2 + · · ·+ sp−1 +σp arbitrary functions of x1,x2,

...
sp−1 +σp arbitrary functions of x1,x2, · · · ,xp−1,

σp arbitrary functions of x1,x2, · · · ,xp−1,xp.

69. Remark.
It is inappropriate to make sense of the preceding statement too absolute, which
simply restates numerically all arbitrary functions that can be given to get the most
p−dimensional general integral manifold of by successive applications of Cauchy-
Kowalewski Theorem.

In reality, the only one of these, whole that makes sense is the absolute number
of arbitrary functions at maximum number of variables (σp if σp ̸= 0, sp−1 = 0,
σp = 0, sp−1 ̸= 0 etc.). Without wanting to justify this assertion, which makes sense
for the rest for the differential system for analytical integrals analytic manifolds be
content-tied systems to report on a simple example, how cautiously it should come
forward in matters of this kind.

Let the equation

∂ 2z
∂y2 =

∂ z
∂x

; (4.29)

from our point of view, the general solution of this equation depends on two arbi-
trary functions of one variable, for example, homomorphic functions of x, such that
z and ∂ z/∂y are reduced for x = 0. But it could also be tempted to say that this
general solution depends on a sense arbitrary function, namely the function Φ(y)
which reduces to z for x = 0. Unfortunately if we are given for Φ(y) a homomor-
phic function of y in the vicinity of y = 0 for example, the equation can not admit
any homomorphic solution around the point x = 0, y = 0: it suffices to take that
Φ(y) = 1/(1− y), which leads for z to the series

z =
1

1− y
+

2
1

x
(1− y)2 +

4!
2!

x2

(1− y)5 + · · ·++
(2n)!

n!
xn

(1− y)2n+1 + · · · . (4.30)

But this series in x is convergent for x = 0. We show that this negative result is found
as the function Φ(y) is not entire, and the same for some entire functions Φ(y).
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70. Degree of generality of Ep ordinary integral elements have origin in a given
regular integral point.
If we make the same assumption as above with respect to integral elements (Ep−1)0,
· · · ,(E1)0 contained in the ordinary regular element (Ep)0, ordinary element (Ep)
near the (Ep)0 and with the same origin as (Ep)0 will be obtained in a way and
using a single p linear integral elements whose ith its p components dxk will all zero
except for dxi = 1, the other ν components being dzλ = tλ

1 . But the components tλ
1

of the first linear element (E1) are subject to satisfy equations s0, components tλ
2 of

the second, forming with the first integral one element (E2) are subject to satisfy the
s0 + s1 equations of polar system (E1); components tλ

3 forming with the third (E2)
an linear integral element (E3) are subject to satisfy the s0 + s1 + s2 equations of
polar system (E2) and so on. All these equations are independent and are among

s0 +(s0 + s1)+(s0 + s1 + s2)+ · · ·+(s0 + s1 + · · ·+ sp−1) = (4.31)
= ps0 +(p−1)s1 + · · ·+ sp−1.

By introducing the number σp, we see that the number of arbitrary parameters
sought is equal to

p(n−p)−
[
ps0 +(p−1)s1 + · · ·+2sp−2 + sp−1

]
=

= p
(
s0 + s1 + · · ·+ sp−1 +σp

)
−
[
ps0 +(p−1)s1 + · · ·+ sp−1

]
(4.32)

= s1 +2s2 +3s3 + · · ·+(p−1)sp−1 + pσp.

Theorem. In a closed system of genus greater than or equal to p, any the
p−dimensional ordinary integral element originating in a given regular inte-
gral point depends to s1+2s2+ · · ·+(p−1)sp−1+ pσp arbitrary parameters.

71. Particular case.
If all integers s based on a certain rank q < p are zero, we have the following im-
portant theorem:

Theorem. If sq = sq+1 = · · ·= sp−1 = σp = 0, it passes an integral manifold
Vp ordinary only one by any regular integral manifold with p - 1 dimensions.

This theorem is applicable for example to a completely integrable system of n− p
total differential equations in n variables. For then the closed system includes only
equations θα = 0 and we have

s0 = n− p, s1 = s2 = · · ·= sp = 0; (4.33)

it effectively passes an integral manifold Vp and only one by any regular point of
space.
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In the general case, the method indicated above would result, the integral mani-
fold Vq−1 being given, to include successive Cauchy-Kowalewski system with p−q.
But we can limit ourselves with only one integer: simply assuming that Vq−1 is lo-
cated in the manifold

xq = xq+1 = · · ·= xp = 0, (4.34)

to ask

xq = aqt, xq+1 = aq+1t, · · · , xp = apt, (4.35)

looking aq,aq+1, · · · ,ap as arbitrary parameters and then to integrate the system,
where zp are regarded as unknown functions of q independent variables x1,x2, · · · ,
xq−1, t. It shall be reduced to a single system of Cauchy-Kowalewski with n− p
unknown functions of q independent variables. This integrated system will replace
in the resulting expression of unknown function, t by 1, and aq,aq+1, · · · ,ap, by
xq,xq+1, · · · ,xp.

The preceding process is basically the same as that indicated for the integration
of a completely integrable system.

Remark.If the system (4.1) contains no exterior differential equation of degree
greater than 2, the number series s0,s1,s2, · · · is increasing, and if a sq be zero, then
all next srs are zero. About the whole σp, which is not a character, it must assume
that we have

s0 + s1 + · · ·+ sq−1 = n− p. (4.36)

4.3 General solution and singular solutions, Characteristic

72. We say that a p−dimensional integral manifold is part of the general solu-
tion of a differential system, considered as p independent variables, if its generic
p−dimensional tangent element is an ordinary integral element; it is an integral
manifold which the fundamental theorem of existence (No. 67) proves its existence,
at least locally, as a consequence of Cauchy-Kowalewski theorem.

An integral manifold which is not part of the general solution is called singular. A
solution may be singular or general, because none of the points of the integral mani-
fold is regular or integral elements because no one-dimensional or two-dimensional,
or ets, or (p− 1)−dimensional, is a regular integral element. So there can be dif-
ferent classes of singular integral varieties, decreasing the degree of singularity in
some way when moving from one class to the next.

73. We have already introduced the concept of characteristic of a differential system
, these characteristics entering into the generating of integral manifolds which are
not contained in any integral manifold to a larger number of dimensions. These
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features do exist, moreover, that for some differential systems. We will refer to as
the Cauchy characteristic.

There are other types of characteristics, usually in any given p−dimensional in-
tegral manifold there are some p−dimensional characteristics which are part of the
general solution of the system. These are the manifolds with q < p dimensions con-
tained in the integral manifold Vp considered, and possessing the property that their
elements tangent to q dimensions are not regular. Their importance stems from the
remark that the Cauchy-Kowalewski theorem falls into default if one seeks to deter-
mine the integral manifolds of q+ 1 dimensions that contain them. Their research
is linked to the problem of preliminary research integral elements Vp of dimensions
q, which are not regular. The existence of such elements does not ipso facto (by
the fact itself) remains of the existence of characteristic manifolds with dimensions
q, except if q = 1, and this because of compatibility conditions which necessarily
introduce for q > 1.

We will clarify these concepts by some examples from classical problems.

74. Example I. Partial differential equations of first order.
Let with the classical notations, the equation first order partial derivative

F(x,y, p,q) = 0 (4.37)

for an unknown function two independent variables. Following the design of S. Lie,
extend this problem to find solutions for two-dimensional closed differential system

F(x,y, p,q) = 0,
Fx dx+Fy dy+Fz dz+Fp d p+Fq dq = 0,
dz− pdx−qdy = 0,
dx∧d p+dy∧dq = 0.

(4.38)

The character s0 is equal to the rank of the system{
Fx dx+Fy dy+Fz dz+Fp d p+Fq dq = 0,
dz− pdx−qdy = 0. (4.39)

This rank is equal to 2; a point of an integral manifold is singular (that is to say
non-regular) if the rank of the system (4.39) is less than 2, this is the case if one has

Fx + pFz = 0, Fy +qFz = 0, Fp = 0, Fq = 0. (4.40)

The singular solutions are those that satisfy the equations (4.40).
There is none else. Indeed suppose the regular generic point of the integral man-

ifold. The pole piece of an integral linear components δx,δy,δ z,δ p,δq is given by
equations (4.39) which must be added the equation

δ pdx+δqdy−δxd p−δydq = 0. (4.41)
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Thus, the character s1 is 1. A singular integral manifold in principle could arise
if all elements linear tangent, the rank of systems (4.39) and (4.41) was reduces by
one; it happens if one has

δx
Fp

=
δy
Fq

=
−δ p

Fx + pFz
=

−δq
Fy +qFz

=
δ z

pFp +qFq
; (4.42)

but the relations (4.42) show that a given point on the integral manifold there is only
one singular linear element tangent. There is therefore singular solutions other than
those, if any, that satisfy the equations (4.40).

The characteristics of an integral manifold V2 are, according to the definition
given in No. 73, lines whose elements satisfy equations (4.42): what are the charac-
teristics already encountered (No. 59). They depend in general arbitrary constants.

75. Example II. Partial differential equations of second order.
Any partial differential equation of second order F(x,y, p,q,r,s, t) = 0 for an un-
known function z of two independent variables x, y, can be represented by the closed
differential system

F(x,y, p,q,r,s, t) = 0,
(Fx + pFz + rFp + sFq)dx+(Fy +qFz + sFp + tFq)dy

+Fr dr+Fs ds+Ft dt = 0,
dz− pdx−qdy = 0,
d p− r dx− sdy = 0,
dq− sdx− t dy = 0,
dx∧dr+dy∧ds = 0,
dx∧ds+dy∧dt = 0.

(4.43)

The character s0 is 4, in place of the linear system dx,dy, , · · · ,dt shaped by the
four equations (4.43) after the first. This rank is reduced by one at the points where
one has

Fx + pFz + rFp + sFq = 0, Fy +qFz + sFp + tFq = 0, Fr = Fs = Ft = 0. (4.44)

Were a first class of singular solutions, those that satisfy equations (4.44).
Let now characteristic of a regular point. The polar system of an integral linear

ordinary components (δx,δy,δ z,δ p,δq,δ r,δ s,δ t) is given by the four equations
(4.43) that follow the first one, which we add the two equations{

δxdr+δyds−δ r dx−δ sdy = 0,
δxds+δydt −δ sdx−δ t dy = 0. (4.45)

We have s0 + s1 = 6, hence s1 = 2, and rank 6 of polar system reduces by one if
the rank of the matrix
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−δ r −δ s δx δy 0
−δ s −δ t 0 δx δy

 (4.46)

is equal to 2. This can not occur for all two-dimensional tangent linear integral
manifold, at least if there is such manifold no relation between x and y.4 Indeed
from the hypothesis result in particular the relation

Ft δx2 −Fs δxδy+Fr δy2 = 0, (4.47)

where the consequence of

Ft = Fs = Fr = 0 (4.48)

and, according to the first equation (4.43), the relation

Fx + pFz + rFp + sFq = 0, Fy +qFz + sFp + tFq = 0; (4.49)

no point of the integral manifold would be regular. It is therefore no other singular
integral manifold as those that satisfy the equations (4.44).

On an integral manifold part of the solution, the characteristics are the one-
dimensional manifolds for which the rank of the matrix (4.46) is equal to 2; it was
particularly while moving along such a characteristic, the relation

Ft δx2 −Fs δxδy+Fr δy2 = 0. (4.50)

For every point of the variety he spends two, if FrFt > 0 satisfied. The rest is
verified that if one moves over the integral manifold in order to satisfy the relation
(??), the rank of the matrix (4.46) automatically becomes equal to 2.

Unlike what happens for partial differential equations of first order, the charac-
teristics of a partial differential equation of second order in general dependent on an
infinite number of arbitrary parameters (in fact, arbitrary function), it characteristics
are not Cauchy.

75. Example III. System of two partial differential equations of first order with
two unknown functions z1, z2, of two independent variables x, y.
This system can be represented by the closed differential system

4 Cases where such a relation would exist are without interest: either there have a relation between
x and y, for example y be a function of x, so, according to the three equations (4.43) that follow the
second, z, p, q are also functions of x and we have the equations the variety in the form

r+2sy′+ ty′2 = z′′−qy′′, F(x,y,z, p,q,r,s, t) = 0;

either x and y are constants and consequently also z, p,q; the equation the variety is F(x,y,z, p,
q,r,s, t) = 0.
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F(x,y,z1,z2, p1,q1, p2,q2) = 0,
Φ(x,y,z1,z2, p1,q1, p2,q2) = 0,
(Fx + p1Fz1 + p2Fz2)dx+(Fy +q1Fz1 +q2Fz2)dy

+Fp1 d p1 +Fq1 dq1 +Fp2 d p2 +Fq2 dq2 = 0,
(Φx + p1Φz1 + p2Φz2)dx+(Φy +q1Φz1 +q2Φz2)dy

+Φp1 d p1 +Φq1 dq1 +Φp2 d p2 +Φq2 dq2 = 0,
dz1 − p1 dx−q1 dy = 0,
dz2 − p2 dx−q2 dy = 0,
dx∧d p1 +dy∧dq1 = 0,
dx∧d p2 +dy∧dq2 = 0.

(4.51)

The character s0 is equal to 4; is the rank of the linear system of four equations
formed (4.51) following the second. This rank can not be reduced if whether one
has

Fx + p1Fz1 + p2Fz2 = 0, Φx + p1Φz1 + p2Φz2 = 0,
Fx +q1Fz1 +q2Fz2 = 0, Φx +q1Φz1 +q2Φz2 = 0, (4.52)

Fp1 = Fq1 = Fp2 = Fq2 = 0, Φp1 = Φq1 = Φp2 = Φq2 = 0,

or whether

Fx + p1Fz1 + p2Fz2

Φx + p1Φz1 + p2Φz2
=

Fx +q1Fz1 +q2Fz2

Φx +q1Φz1 +q2Φz2

=
Fp1

Φp1

=
Fq1

Φq1

=
Fp2

Φp2

=
Fq2

Φq2

(4.53)

So there is possibility of two kinds of singular integral varieties, the according to
equations (4.52) or equations (4.53) are verified.

Now calculate the character s1. For the equations of the polar component of the
full linear element components δx,δy,δ z1,δ z2,δ p1,δq1,δ p2,δq2, must be added
to the four linear equations that appear in the system (4.51), equations

δxd p1 +δydq1 −δ p1 dx−δq1 dy = 0, (4.54)
δxd p2 +δydq2 −δ p2 dx−δq2 dy = 0,

We deduce s1 = 2. The integral linear element is considered singular if the six
equations that define the polar element of this linear integral element are reduced
to five. But on a two-dimensional integral manifold not involving any relations be-
tween x and y, these equations not involve any linear relation between dx and dy
as the polar element contains all the elements considered linear tangent to the man-
ifold. It is therefore necessary and sufficient for the linear element is considered
singular, the equations
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Fp1 d p1 +Fq1 dq1 +Fp2)d p2 +Fq2 dq2 = 0,
Φp1 d p1 +Φq1 dq1 +Φp2)d p2 +Φq2 dq2 = 0,
δxd p1 +δydq1 = 0,
δxd p2 +δydq2 = 0,

(4.55)

are reduced to three, which gives immediately

D(F,Φ)

D(q1,q2)
δx2 −

( D(F,Φ)

D(p1,q2)
− D(F,Φ)

D(p2,q1)

)
δxδy+

D(F,Φ)

D(p1, p2)
δy2 = 0. (4.56)

We deduce from this result two conclusions:

1) One can have a second class of singular integral varieties, those that satisfy the
three equations

D(F,Φ)

D(q1,q2)
=

D(F,Φ)

D(p1,q2)
− D(F,Φ)

D(p2,q1)
=

D(F,Φ)

D(p1, p2)
= 0. (4.57)

2) On a regular integral manifold, that is to say part of the general solution, there are
generally two families of characteristic lines defined by the differential equation
(4.56).

Theorem. Given a system of two partial differential equations of first order
with two unknown functions z1, z2 of two independent variables x, y, there
can be three classes of singular solutions, they satisfy the following equations
(4.52), with equations (4.53) or to equations (4.57). In addition, each inte-
gral manifold admits two general families of characteristic lines of the finite
differential equation (4.56).

77. Partial differential equations of second order in an unknown function z of three
independent variables x1, x2, x3.
We denote by pi and pii j = Pji the partial derivatives of first and second order of z,
indicating the indices by reference to which the variables take place derivations. If
F(xi,z, pi, pi j) = 0 is the given equation, we will put

Ai =
∂F
∂xi + pi

∂F
∂ z

+ pik
∂F
∂ pk

,

Ai j = m
∂F
∂ pi j

, (m = 1 if i = j, m =
1
2

if i ̸= j).
(4.58)

The given equation is represented by the closed differential system of 9 equations
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F = 0,
Ai dxi +Ai j d pi j = 0,

dz− pi dxi = 0,

d pi − pi j dxk = 0, (i = 1,2,3),

dxk ∧d pik = 0, (i = 1,2,3).

(4.59)

The character s0 is equal to 5, rank of the system formed by the linear equations
(4.59) which follow the equation F = 0. Non-regular integral point is characterized
by the relations

Ai = 0, Ai j = 0, (4.60)

It was a first class possible to singular integrals, i.e. integrals which satisfy equations
(4.61).

The polar system of a regular linear integral element contains s0 + s1 = 8 equa-
tions, namely the five equations that define the linear integral and in addition the
three equations

δxk d pik −δ pik dxk = 0, (i = 1,2,3). (4.61)

The integral element (δxk,δ z, · · ·) will be singular if the four equations

Ai dxi +Ai j d pi j = 0, δxk d pik −δ pik dxk = 0, (4.62)

are reduced to three. As a three-dimensional integral manifold for which the in-
dependent variables are x1,x2,x3, equations (4.62) not involve any linear relation
between dxi, a linear singular integral element will be characterized by the property
that the four equations

Ai j d pi j = 0, δxk d pik = 0, (4.63)

reduced to three. If δxi = ai be such a singular integral element, assuming it exists.
If, in equations (4.63), d pi j is replaced by the product ξiξ j two new variables ξ we
see that the equation aiξi = 0 will result in Ai jξiξ j = 0. As a result the quadratic form
Ai jξiξ j must be decomposed into a product of two linear factors: Ai jξiξ j = akbhξkξh,
hence

Ai j =
1
2
(aib j −bia j). (4.64)

Conversely if the quantities Ai j are of the form (4.63), we easily verify that there
are two elements at each point linear singular integral, of respective components and
have δxi = ai and δxi = bi.

We see that if an integral manifold does not annihilate all Ai j, it is impossible that
all its linear tangent elements are singular.
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We see further that if the discriminant of the quadratic form Ai jξiξ j is zero, any
non-singular integral manifold admits two families of characteristic lines separate
or combined, formed one of the trajectories of the vector field ai have the other in-
volving trajectories of the vector field bi. If instead the discriminant of the quadratic
form Ai jξiξ j is not zero, there is no characteristic lines.

Turning finally to the character s2. The polar element of a two-dimensional in-
tegral element is given by the regular five equations that define the linear integral,
which must be added six more equations that are written, omitting the terms in
dx1,dx2,dx3,

δ1xk d pik = 0,δ2xk d pik = 0, (4.65)

δ1xk and δ2xk denoting by the two components of linear integral demented that
determine the considered two-dimensional integral element. These equations can be
written as

d pi1

c1
=

d pi2

c2
=

d pi3

c3
, (i = 1,2,3), (4.66)

denoting by ci dxi = 0 the equation of the considered planar integral element. It
follows that the d pi j are proportional to the product cic j. The integral element in
two dimensions will be singular if one has

Ai jcic j = 0. (4.67)

This equation expresses that the three-dimensional space formed by the integral
manifold considered, the elements derived from singular tangent planes of a point
are tangent to a cone having second class for this vertex.

There are therefore two-dimensional characteristics manifold: what are the solu-
tions in the range reported to the coordinates x1,x2,x3, a partial differential equa-
tion of first order ordinary. The bi-characteristics of J. Hadamard are the characteris-
tics of this equation, it is not properly speaking the characteristics of the differential
system (4.59), unless the equation (4.67) consists of two linear equations, in which
case the partial differential equation of the characteristics consists of two linear
equations whose surfaces are the integrals of surfaces generated by characteristic
lines of the first family or of the characteristic lines of the second family.

Theorem. A partial differential equation of second order has an unknown
function z of three independent variables can not admit singular solutions than
those, if any, that annihilate the partial derivatives of the first member relative
to the second order partial derivatives of z. The solutions always admit non-
singular two-dimensional characteristics manifolds given by the integration
of a partial differential equation of first order, the cone envelope of tangent
planes at a given point with characteristic manifolds passing through that
point are the second class. If the cone is divided into two straight lines ∆1,∆2,
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there are two families of two-dimensional characteristic manifolds: one con-
stituted by the surfaces of the trajectories of locations lines ∆1, and the other
by the surfaces of the trajectories of locations ∆2 lines, and these trajectories
are the characteristic lines of general integral manifolds of the given equation.
Conversely, if the cone is not degenerate, there are no characteristic lines, that
is to say, lines in which all elements are singular tangent; bi-characteristics
of the J. Hadamard, that is to say the characteristics the partial differential
equation of first order which gives the characteristic surfaces, are not strictly
characteristic lines, in the sense that the varieties of two-dimensional inte-
grals of the system (30) passing through a bi-characteristic are provided by
the theorem of Cauchy-Kowdewski.
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Chapter 5
Differential system in involution

5.1 General facts. Systems in involution

78. In many applications the differential systems we have to regard of the indepen-
dent variables given x1,x2, · · · ,xp. The differential system being set in the form (4.1)
of No. 52, it is only interested in p−dimensional integral manifolds and, among
these, those which not introduce any relation between the variables x1,x2, · · · ,xp.

Definition. A differential system Σ with n − p unknown functions zλ of p
independent variables xi is said it is in involution if its genus is greater
than or equal to p and if the equations defining the generic p−dimensional
ordinary integral element do not introduce no any linear relation between
dx1,dx2, · · · ,dxp.

It is clear that the ordinary p−dimensional integral manifolds, with independent
variables x1,x2, · · · ,xp, can be obtained by applying the existence theorems stated
and proved in the preceding chapter.

79. Systems of partial differential equations
Any system of differential equations with external independent variables imposed
can obviously be written as a system of partial differential equations with n− p
unknown functions of p independent variables. The converse is true. Let us suppose,
to fix our ideas, a system consisting of a number of relations between the partial
derivatives of the three first orders of q unknown functions zλ . Denoting by tλ

i , t
λ
i j , t

λ
i jk

this partial derivative, the system will consist of data relationships between variables

xi, zλ , tλ
i , tλ

i j , tλ
i jk, (i, j,k = 1,2, · · · , p; λ = 1,2, · · · ,q), (5.1)

which we shall associate the Pfaffian equations.

dzλ − tλ
i dxi = 0, dtλ

i − tλ
i j dx j = 0, dtλ

i j − tλ
i jk dxk. (5.2)
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We then add the equations which are deduced from the previous by exterior
differentiation. The Σ system thus obtained will not contain differential equa-
tion actually exterior of degree greater than 2. We will have that to look for the
p−dimensional integral manifolds of this system, and among them, those with no
relationship between x1,x2, · · · ,xp.

We know, moreover, that in the theory of partial differential equations of first
order, S. Lie showed that there was interest to remove such latter restriction.

80. We will immediately indicate the condition for a differential system Σ is in
involution.

Theorem. For a closed differential system with n− p unknown functions zλ

of p independent variables x1,x2, · · · ,xp, is in involution, it is necessary and
sufficient for polar systems of a generic integral point, of a generic inte-
gral element with dimension q ≤ p− 1, involve no linear relation between
dx1,dx2, · · · ,dxp.

Proof. The condition is clearly necessary. It is sufficient because if satisfied, the
equations of ordinary integral element generic p−dimensional result in no relation-
ship between dx1,dx2, · · · ,dxp. The regular integral elements of q < p dimensions
contained in an ordinary p−dimensional integral can then lead to more than p− q
independent relations between dx1,dx2, · · · ,dxp. □

5.2 Reduced characters

81. We will indicate test for involution based on the consideration of what we call
reduced characters.

First determine the p−dimensional integral elements (no linear relation between
dxi, we always assume in the sequel) starting from a generic integral point. If we
exclude the existence of such an integral element would require new relations be-
tween the dependent and independent variables, in which case the rest of the system
would not be in involution. We will assume then the family F integral elements
of dimensions 1,2, · · · , p− 1 that may be contained in an p−dimensional integral
element.

Definition. We will call polar system reduced by one point integral, or an
integral element, the polar system of this or that element, in the equations
which we suppress the terms in dx1,dx2, · · · ,dxp, keeping only the terms
dz1,dz2, · · · ,dzq.

We shall call
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5.3 Necessary and sufficient test of involution 75

s′0, s′0 + s′1, s′0 + s′1 + s′2, · · · , s′0 + s′1 + s′2 + · · ·+ s′p−1, (5.3)

the rank of the reduced polar system of a generic integral point, of an 1−dimensional
integral element of the family F , of a 2−dimensional integral element of family F
and so on, respectively.

The non-negative integers s′0,s
′
1,s

′
2, · · · ,s′p−1, will be called the reduced char-

acters of order 0,1, · · · , p− 1. It is clear that the equations are different systems
reduced with only polar variables dzλ , we have

s′0 + s′1 + s′2 + · · ·+ s′p−1 ≤ n− p. (5.4)

Finally, we introduce the reduced character s′p by the relation

s′0 + s′1 + s′2 + · · ·+ s′p−1 + s′p = n− p. (5.5)

82. Remark. It may happen that the p−dimensional integral elements of a point
from integral generic form several distinct continuous families. At each of these
families is a reduced set of characters. The problem of whether the differential sys-
tem is given in involution arises differently for these different families, because the
p−dimensional integral manifolds sought are not the same in different cases, since
their p−dimensional tangent elements vary from one family to another. It is there-
fore possible that the given system is in involution for a family of p−dimensional
integral manifolds and is not in involution for another.

5.3 Necessary and sufficient test of involution

83. We will now give a test of involution.

Necessary and sufficient test of involution. Let Σ be a closed differential sys-
tem of n− p unknown functions of p independent variables; Let s′0,s

′
1, · · · ,s′p−1

are reduced characters of the system corresponding to the family [or one of
the families] of p−dimensional integral elements of the system Σ . For this
system to be in involution it is necessary and sufficient that the number of
independent equations linking the parameters tλ

i of a p-dimensional generic
integral family is equal to

sp′0 +(p−1)s′1 + · · ·+ s′p−1. (5.6)

If the system is not in involution, the number of these equations is higher.

84. Let’s start with a remark, however important. We can assume, if necessary by
a linear transformation with constant coefficients performed on x1,x2, · · · ,xp, the
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reduced rank of the polar system of generic linear integral element of the family F
for which dx1 = dx2d · · · = dxp = 0 is equal to the number normal s′0 + s′1, that the
rank of the system polar reduced the integral element and two dimensions of the
generic family F for which dx1 = dx2d · · · = dxp = 0 is equal to s′0 + s′1 + s′2, and
so on.

If we denote then by

dzλ = tλ
1 dx1 + tλ

2 dx2 + · · ·+ tλ
p dxp, (5.7)

the equations of the generic element of p dimensions of the given family, we see
that tλ

1 are subject to satisfy in s0 linear independent equations, namely s0 reduced
polar equations of generic integral point where dzλ is replaced by tλ

1 therein. The tλ
1

satisfy these equations, tλ
2 is subject to satisfy s′0 + s′1 independent linear equations,

namely the s′0+s′1 polar equations reduced to linear integral element (δx1 = 1,δx2 =

· · ·= δxp = 0,δ zλ = tλ
1 ) where dzλ is replaced by tλ

2 .
And so on. This shows that there are at least

ps′0 +(p−1)s′1 + · · ·+ s′p−1, (5.8)

independent equations to be satisfied by the parameters tλ
i . This justifies the last part

of the statement of the test. We say that these equations, which are well defined, the
system is in involution or not, are the equations to the parameters tλ

i usually satisfied.

85. Proof of the test.
Come now to the proof of the main part of the test. Suppose first system in involu-
tion. Then all the elements for which the linear integral dxi are not all zero belong to
the family F and they are subject only to satisfy s′0 equations involving the remains
of any relation between the two; consequently s0 = s′0.1 The polar system of reg-
ular linear integral element generic is then defined by s′0 + s′1 linearly independent
equations is causing no relation between dxi; consequently s′0 + s′1 = s0 + s1, where
s′1 = s1, and all 2−dimensional ordinary integral elements which exist only p− 2
relations between dxi belong to the family F . We can continue the argument to the
extreme and show that s′h = sh for h = 0,1,2, . · · · , p− 1. But then we know (No.
70) that the number of independent equations which satisfied the parameters tλ

i an
ordinary p−dimensional integral element is equal to

ps0 +(p−1)s1 + · · ·+ sp−1 = ps′0 +(p−1)s′1 + · · ·+ s′p−1 (5.9)

The condition of involution set is required.
Conversely, suppose the system not in involution. The parameters s′i satisfy in

ps′0 +(p− 1)s′1 + · · ·+ s′p−1 normal equations. But these are not the only ones. In-
deed, if all linear integral for which there are only p−1 relations between dxi belong
to the family F is s′0 = s0, and if all integral elements in two dimensions for which
exists p−2 relations between dxi belong to the family F , we have s′1 = s1, but we

1 Remember that if si are the characters defined in No. 56 and 57, the s′i are reduced characters.
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can not continue this hypotheses to the end, otherwise the system would be in invo-
lution. Therefore assume for example that the three-dimensional integrals elements
for which there are only p− 3 relations between dxi are not all the family {, this
means that tλ

1 , tλ
2 and tλ

3 satisfy with other equations that 3s′0 +2s′1 + s′2, the normal
equations that connect them. As a result the number of independent equations which
satisfied the parameters tλ

i is greater than ps′0 +(p−1)s′1 + · · ·+ s′p−1. □

Remark. Introducing the highest character as s′p we can say that the necessary and
sufficient condition of involution is the p−dimensional integral element in the most
general family considered depends on

s′1 +2s′1 + · · ·+(p−1)s′p−1 + ps′p, (5.10)

independent parameters.

86. Example I. Consider the system with two independent variables and three
unknown functions, defined by the four equations

dx1 ∧dz1 = 0, dx2 ∧dz1 = 0, dx1 ∧dz2 = 0, dx1 ∧dz3 = 0. (5.11)

The two-dimensional integral elements form a single irreducible family defined
by equations

dz1 = 0, dz2 = adx1 +bdx2, dz3 = a′ dx1 +b′ dx2. (5.12)

with four arbitrary parameters: there are two relations between the six quantities tλ
1 ,

tλ
2 . Here we have s0 = 0, and secondly we can take for generic linear element family
F member

δx1 = α , δx2 = β , δ z1 = aα +bβ , δ z2 = a′α +b′β ; (5.13)

its polar system is reduced

α dz1 = 0, β dz1 = 0, (aα +bβ )dz1 = 0, (a′α +b′β )dz1 = 0; (5.14)

we therefore s′1 = 1, where s′2 = 2 (for s′1 + s′2 is equal to 3, number unknown func-
tions). But the number of four independent parameters which depends the two di-
mensional generic integral element is less than of s′1 +2s′2 = 5. The system is not in
involution. one would arrive at the same conclusion if we removed the last equation
of the system, would contain more then two unknown functions.

87. Example II. Let the following system, with four unknown functions zλ of two
independent variables x1,x2,

dx1 ∧dz1 +dx2 ∧dz2 = 0, dx2 ∧dz1 = 0, dx2 ∧dz3 = 0, dx3 ∧dz4 = 0. (5.15)

The two-dimensional integral elements are given by
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dz1 = adx2, dz2 = adx1 +bdx2, dz3 = cdx2, cdx2 ∧dz4 = 0. (5.16)

Two cases are distinguished:

1) c ̸= 0. We then have the family irreducible

dz1 = adx2, dz2 = adx1 +bdx2, dz3 = cdx2, dz4 = hdx2, (5.17)

with four parameters a,b,c,h. The polar system reduces the linear element ele-
ment (δx1 = α,δx2 = β ,δ z1 = aβ ,δ z2 = aα +bβ ,δ z3 = cβ ,δ z4 = hβ ) is

α dz1 +β dz2 = 0, β dz1 = 0, β dz3 = 0, cβ dz4 −hβ dz3 = 0; (5.18)

therefore we have s′1 = 4, s′2 = 0. The 4 number of independent parameters of
the two-dimensional integral element is equal to s′1 + 2s′2, and the system is in
involution.

2) c = 0. We then have the family irreducible

dz1 = adx2, dz2 = adx1 +bdx2, dz3 = 0, dz4 = hdx1 + k dx2, (5.19)

with 4 independent parameters a,b,h,k. The polar system reduces the linear el-
ement (δx1 = α ,δx2 = β ,δ z1 = aβ ,δ z2 = aα + bβ ,δ z3 = 0,δ z4 = hα + kβ )
is

α dz1 +β dz2 = 0, β dz1 = 0, β dz3 = 0, (hα + kβ )dz3 = 0; (5.20)

we have s′1 = 3, s′2 = 1, as 4 < s′1 +2s′2 = 5, the system is not year involution.
One can notice that if we did not impose the choice of independent variables,

we would have had a system in involution with one family of 2−dimensional
ordinary integral elements, namely the first family considered.

Remark. One might be tempted to extend the test if the s′i would be defined by
means of polar systems reduced integral elements of generic successive dimensions
belonging or not belonging to the family F . But the test could fall into default.

This can be seen by the example of No. 86. If we take into fact the system

dx1 ∧dz1 = 0, dx2 ∧dz1 = 0, dz1 ∧dz2 = 0, dz1 ∧dz3 = 0, (5.21)

and they form the polar system reduces the linear integral element element (δx1 =
α ,δx2 = β ,δ z1 = t1,δ z2 = t2,δ z3 = t3), we obtain

α dz1 = 0, β dz1 = 0, t1 dz2 − t2 dz1 = 0, t1 dz3 − t3 dz1 = 0, (5.22)

whose rank is s′1 = 3. On the other hand the number of equations to be satisfied by
two-dimensional integral elements was seen equal to 2, yet this number is less than
with 2s0+s′1 = 3, one arrives at a result in contradiction with the last part of the test.

If we now take the system in involution
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dx1 ∧dz1 = 0, dx2 ∧dz1 = 0, dz1 ∧dz2 = 0, (5.23)

the non-polar system reduces the linear integral (δx1 = α,δx2 = β ,δ z1 = t1,δ z2 =
t2) is

α dz1 = 0, β dz1 = 0, t1 dz2 − t2 dz1 = 0; (5.24)

Its rank is s′1 = 2. On the other hand the number of equations to be satisfied settings
for the integral two-dimensional is still equal to 2, this time in equal number 2s′1+s′1,
nevertheless the system is not in involution.

5.4 A sufficient test of involution

89. We will now establish a second test just enough of involution, usually useful
for applications.

Let a differential system closes at n− p unknown functions of p independent vari-
ables. Let a family of irreducible p−dimensional integral elements and the family
elements of three integrals corresponding to q = 1,2, · · · , p−1 dimensions.

Second sufficient test of involution. Denote by σ0 = s′0 the rank of the sys-
tem polar reduced by one point integral generic σ0 +σ1, the rank of the po-
lar system of the linear element reduces generic family F to which δx2 =
δx3 = · · ·= δxp = 0, by σ0 +σ1 +σ2, the rank of the polar system of the ele-
ment reduces with two dimensions the most general the family F of for which
δx3 = · · · = δxp = 0, and so on. The system is in involution if the number of
independent equations that govern the parameters of the considered family of
p−dimensional integral elements is equal to pσ0 +(p−1)σ1 + · · ·+σp−1.

Proof. We know by the first test that the total number of independent equations
which satisfied the parameters of the element integral generic p−dimensional family
is considered at least equal to ps′0 +(p−1)s′1 + · · ·+ s′p−1. We therefore

pσ0 +(p−1)σ1 + · · ·+σp−1 ≥ ps′0 +(p−1)s′1 + · · ·+ s′p−1. (5.25)

Now we have the obvious inequality (which is actually the first equality)

σ0 ≤ s′0,

σ0 +σ1 ≤ s′0 + s′1,

σ0 +σ1 +σ2 ≤ s′0 + s′1 + s′2, (5.26)
...

σ0 +σ1 + · · ·+σp−2 +σp−1 ≤ s′0 + s′1 + · · ·+ s′p−2 + s′p−1,
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that result by the addition

pσ0 +(p−1)σ1 + · · ·+σp−1 ≤ ps′0 +(p−1)s′1 + · · ·+ s′p−1. (5.27)

It follows that:

1) that the two members of the last inequality are equal and that consequently all
the above inequalities reduce to equalities (σi = s′i);

2) the system is in involution.

We may add that the elements integral to q dimensions of the family F for whom
δxq+1 = δxq+2 = · · ·= δxp = 0 are regular. □
91. Additional remark.
The second test would continue to be valid if the whole were calculated SIGMAI
leaving aside one or more differential equations of the system gives, this could in
effect lower the numerical value of integers σ0, σ0 + σ1, σ0 +σ1 + σ2 etc.., and
given the proof of the test would not cease to be valid. It goes without saying that
if we wish to take advantage of this remark, it is essential to take into account all;
system of equations to determine the p−dimensional integral elements.

A particularly interesting case, because it occurs quite usually in applications, or
dzλ is not included in the first degree differential equations in the external tender-
ing system gives firm. Indeed in this case the reduced characters can be computed
without knowing previously the elements p−dimensional integrals. This is what the
systems can be reduced polar forms directly without this prior knowledge.

Let for example

fα(x,z) = 0 (α = 1,2, · · · ,r0),

θα ≡ Aαidxi +Aαλ dzλ = 0 (α = 1,2, · · · ,r1),

ϕα ≡ 1
2

Aαi j dxi ∧dx j +Aα iλ dxi ∧dzλ = 0, (α = 1,2, · · · ,r2)

ψα ≡ 1
6

Aα i jk dxi ∧dx j ∧dxk ,

+
1
2

Aα i jλ dxi ∧dx j ∧dzλ = 0, (α = 1,2, · · · ,r3)

· · · · · · · · · · · ·

(5.28)

the equations of the system. The reduced character s′0 + s′1, is the rank of the system

Aαλ dzλ = 0, (5.29)

if the sum s +, is the ranking system

Aαλ dzλ = 0, Aαiλ δ1xidzλ = 0, (5.30)

where δ1xi are arbitrary parameters. The reduced character s′0 + s′1 + s′2, is the rank
of the system
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Aαλ dzλ = 0, Aαiλ δ1xidzλ = 0,

Aαiλ δ2xidzλ = 0, Aαi jλ δ1xiδ2x jdzλ = 0, (5.31)

where δ1xi and δ2xiare arbitrary parameters, and so on.
Note, moreover, that in this case there is one family of irreducible p−dimensional

integral elements, defined by relations

Aαi+Aαλ tλ
i = 0,

(α = 1,2, · · · ,r1; i = 1,2, · · · , p),

Aαi j +Aα iλ tλ
j −Aα jλ tλ

i = 0, (5.32)

(α = 1,2, · · · ,r2; i, j = 1,2, · · · , p),

Aα i jk +Aαi jλ tλ
k −Aαikλ tλ

j +Aα jλ tλ
i = 0,

(α = 1,2, · · · ,r3; i, j,k = 1,2, · · · , p).

5.5 Case of two independent variables

93. If a closed differential system has only two independent variables, it will not
appear in this system no exterior differential equation of degree greater than 2. It
is therefore not necessary to deal with equations from the exterior differentiation of
quadratic equations that the system may contain, for they are always satisfied by any
two-dimensional plane element

We assume for simplicity, which essentially does not restrict the generality, the
system has no finite equation. We will write s0 independent linear equations as

θα = 0, (α = 1,2, · · · ,s0). (5.33)

We then introduce with the differentials dx, dy independent variables, n− s0 − 2
linear differential forms (λ = 1,2, · · · ,n− s0 −2) are mutually independent and in-
dependent of s0 + 2 forms, θα , dx, dy. There. They thus form, with the θα , n− 2
independent forms over differential unknown functions. Finally we can take, in-
stead of dx, dy, two independent linear combinations of these ω1,ω2 differential,
which can be convenient in applications.

This granted the given system will be in the form
θα = 0, (α = 1,2, · · · ,s0),

ϕα ≡Cα ω1 ∧ω2 +Aαλ ω1 ∧ϖλ

+Bαλ ω2 ∧ϖλ +
1
2

Dαλ µ ϖλ ∧ϖ µ , (α = 1,2, · · · ,r).
(5.34)

We only concern ourselves with the case or there are integral elements in two
dimensions, which would, moreover, by replacing ωλ less by ϖλ a linear combi-
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nation of ω1, ω2, to assume the all coefficients Cα are zero. We therefore exclude
systems that are not in involution.

If we know the general equations

θα = 0, ϖλ = tλ
1 ω2 + tλ

2 ω2, (5.35)

integral components in two dimensions, we know the family of nine linear inte-
gral elements contained in an integral element in two dimensions. This granted, the
polar system reduces an integral linear (ω i

δ ,ϖ
i
δ ) of the family F consists of eight

equations θα = 0 and equations

(Aαλ ω1
δ +Bαλ ω1

δ )ϖ
λ +Dαλ µ ϖλ

δ ϖ µ = 0. (5.36)

The coefficient matrix of the polar system, or polar matrix, is none other than
the matrix of partial derivatives ∂ϕα/∂ϖλ

δ , when we replace ω i
δ , ϖ i

δ by ω i, ϖ i, the
matrix with r rows and ν = n− s0 columns(

∂ϕα/∂
ϖλ

δ

)
. (5.37)

The reduced character s′1, we now write s1, so that there will be no confusion to
worry about, is the rank of the matrix polar linear elements not regular, or singular,
are those who annihilate all determinants with s1 row and s− 1 columns of this
matrix.

94. Test of involution.
We obtain immediately a sufficient test of involution by noting that if the reduced s1
character, is equal to the number r of linearly independent forms ϕα the conditions
with which the coefficients tλ

1 , tλ
2 general equations (5.36) of the two-dimensional

elements integral are reduced to s1 conditions

(Aαλ t1
2 −Bαλ tλ

1 +Dαλ µ tλ
1 tµ

2 = 0,(α = 1,2, · · · ,s1). (5.38)

These conditions are necessarily independent, since the number of independent re-
lations between tλ

1 and tλ
2 is at least equal to s1.

On the other hand it is a case where this sufficient test is also necessary is the
one where ϖλ come linearly in the forms ϕα . Indeed in this case the equations to be
satisfied by tλ

1 and tλ
2 are

Cα +Aαλ t1
2 −Bαλ tλ

1 = 0, (5.39)

and it is clear that there are as many equations of this system there are linearly in-
dependent forms ϕα linearly independent (taking into account the assumption made
once and for all that these equations are compatible).

We thus arrive to the following theorem.
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Theorem. The sufficient condition for a differential system closed two inde-
pendent variables is in involution is reduced as the character s, equals the
number of quadratic forms p linearly independent. This condition is also nec-
essary if the forms ϕα contain the first level forms ϖλ (if Dαλ µ coefficients
are all zero).

The following example shows that the condition is not always necessary. Con-
sider the system of three exterior differential equations quadratic form

ϖ2 ∧ϖ3 = 0, ϖ3 ∧ϖ1 = 0, ϖ1 ∧ϖ2 = 0. (5.40)

The integral elements in two dimensions are given by the equations

ϖ1 = a1 ω1 +b1 ω2, ϖ2 = a2 ω1 +b2 ω2, ϖ3 = a3 ω1 +b3 ω2, (5.41)

with

a2b3 −b2a3 = 0, a3b1 −b3a1 = 0, a1b2 −b1a2 = 0; (5.42)

the number of independent parameters on which they depend is 4 (a1,a2,a3 are
arbitrary and b1,b2,b3 they are proportional). On the other hand the matrix is polar 0 ϖ3 −ϖ2

−ϖ3 0 ϖ1

ϖ2 −ϖ1 0

 ; (5.43)

its rank is equal to 2: s1 = 2 and s2 = 1. It has s1 + 2s2 = 2+ 2 = 4, number of
parameters independent of the integral element generic two-dimensional. However
the number of linearly independent forms ϕα is 3 > s1.

Case s2 = 0. Characteristics. - In the case s2 = 0, that is, say s0 = n− s1 − 2,
the number of forms ϖλ is equal to s1 if the system is in involution. For any one-
dimensional integral manifold uncharacteristic he spent a two-dimensional integral
manifold and a single. The characteristic lines of a variety ordinary integral cancel
all determinants s1 row and s1 columns of the matrix polar. In the case where s is
equal to the number of linearly independent ϕα forms, the polar matrix has exactly
s1 row and s1 columns, so that the characteristic lines given of an integral manifold
is provided by an homogeneous equation of degree s1 of ω1, ω2, that is to say, dx,
dy.

In particular, take a case where the coefficients Dαλ µ equations (5.36) are zero,
that is to say, ϖλ come linearly in the ϕα . In this case lea matrix elements are polar
Aαλ ω1+Bαλ ω2. You can put quadratic equations ϕα = 0 in a form highlighting the
remarkable s1 family of characteristics, at least when these families are distinct.

Let indeed = 0 equation of one of these families. The coefficient m is the root of
the equation
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|Aαλ +mBαω2−mωλ |= 0, (α,λ = 1,2, · · · ,s1). (5.44)

Looking for a linear combination of equations ϕα = 0 which, the first member
contains factor ω2 −mω1. If kα ϕα = 0 is such a combination is that we will, what-
ever λ = 1,2, · · · ,s1,

kα(Aαλ +mBαω2−mωλ
)
= 0. (5.45)

It is possible to find values for kα not all zero satisfying in these s1 homogeneous
equations as the determinant of the coefficients of the unknowns is zero. A quadratic
equations of the exterior differential system will be given in the form

(ω2 −mω1)∧ (cλ ϖλ ) = 0. (5.46)

Result if s1 families of characteristics are distinct and are given by equations
ω2 −miω1 = 0 (i = 1,2, · · · ,s1), quadratic equations of the system may be placed
under a form2

(ω2 −mω1)∧ (ciλ ϖλ ) = 0, (i = 1,2, · · · ,s1). (5.47)

These equations show a very interesting fact. When one gives to determine an in-
tegral manifold ordinary solution a characteristic dimension, the problem is usually
impossible. This result is obvious from equations (5.47), because if one ω2 = miω1

bones along the curve given, it is necessary that along this curve we have also

ciλ ϖλ = 0, (5.48)

since the two-dimensional integral manifold of unknown form ω2 −mω1 must be
a multiple of ω2 −miω1. The question of whether this necessary condition is also
sufficient remains outstanding; may the rest if it is sufficient, the problem has infinite
solutions. This is a point of the theory which has been little studied and on which
we know little.

5.6 Systems in involution whose general solution depends only on
an arbitrary function of one variable

We can assume, without loss of generality, that the system has no finite equations. If
it is p independent variables, we denote by ω1,ω2, · · · ,ω p a system of independent
linear combinations of p their differential. are respectively

2 We assumed the coefficients Cα zero, which is always feasible to ϖλ adding suitable linear
combinations of ω1, ω2.
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θα = 0, (α = 1,2, · · · ,s0),

ϕα ≡ Aα iλ ω i ∧ϖλ = 0, (α = 1,2, · · · ,r).
(5.49)

those of the system of equations which are the first and second degree. We are doing
the hypothesis that in the forms ϕα the ϖλ not included in the first degree. We
have not written in terms of ω i ∧ω j because the system is in involution, admits
integral components of p dimensions, and that consequently, by adding them ϖλ

linear combinations of ω i can arrange to cancel coefficients of the products ω i∧ω j.
The system may contain equations of degree greater than 2, but there is no need

to write them.
We intend to indicate a remarkable form of the equations ϕα = 0 and deduce

important consequences in relation to characteristics of given differential system.

Aα iλ ϖλ = 0, (5.50)

Let s1 is the character of the reduced first order and following characters are all zero
by hypothesis. The number of forms ϖλ independent of each other and independent
of θα and ω i is equal to s1. It may be presumed, if necessary by a suitable linear
transformation of the half, the rank of the system

is equal to s1 and even, by a linear transformation on the forms ϕα , that we have{
Aα1λ ϖλ ≡ ϖα , (α = 1,2, · · · ,s1),

Aβ1λ ϖλ = 0, (α = s1 +1, · · · ,r).
(5.51)

This granted, saying that the system is in involution with s3 = s2 = · · · = sp =
0, this means that there are exactly (p− 1)s1 relations between the coefficients of
equations

ϖα = tα
i ω i, (5.52)

that give the p−dimensional generic integral element. These relations are necessar-
ily

tα
i = Aα itα

i , (α = 1,2, · · · ,s1; i = 2,3, · · · , p). (5.53)

This results in particular there’s no more than s1 forms ϕ α linearly indenpedent
(r = s1), because the consideration of the form ϕs1+1, in which ω1 not listed, give

As1+1,i,λ tλ
1 = 0, (i = 2,2, · · · , p), (5.54)

which would introduce relations between tλ
1 that can not be deduced from (5.53).

Now form the determinant of the matrix polar linear element (ω i
δ ), which is a

homogeneous form of degree s1 of ω1,ω2, · · · ,ω p. Assume, to stay in the general
case, as for ω3 = · · · = ω p = 0, the determinant decomposes into a product of s1
distinct linear forms in ω1,ω2. On the reasoning after the No. 96, we see that we
can, if necessary by a suitable linear substitution on the ϕα and ϖα , assuming

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



86 5 Differential system in involution

ϕα ≡ (ω1 −mα ωα)∧ϖα +Aαiβ ω i ∧ϖβ ),

(α = 1,2, · · · ,s1; i = 1,2, · · · , p). (5.55)

Is deduced by expressing that the two forms ϖα = tα
i ω i annihilate the forms ϕα

especially in the forms ϕα of coefficient the ω2 ∧ω i is zero,

mα tα
i = Aαiβ tβ

2 , (5.56)

whence, taking into account the values (5.53) of tβ
3 and tα

i ,

mα Aαiβ tβ
1 = Aαiβ mβ tβ

2 , (5.57)

and at last, we have

Aαiβ = 0 for α ̸= β . (5.58)

By asking Aαiα = miα , and, for reasons of symmetry, mα = m2α , we have finally

ϕα ≡ (ω1 −miα ω i)∧ϖα = 0. (5.59)

This is the remarkable form which are capable of reaching the exterior quadratic
equations given differential system.

99. The characteristic lines of integral manifolds are those which in each of their
points are tangential to one of the s1 (p−1)−dimensional planar elements defined
by the equations

ω1 −miα ω i = 0, (α = 1,2, · · · ,s1). (5.60)

These (p−1)−dimensional elements to have a remarkable property, according the
following theorem:

Theorem. Considered a manifold on integral given, set of all equations

ω1 −miα ω i = 0, (5.61)

is completely integrable.

Proof. Before to the proof, we will put for short writing,

ω1 −miα ω i = ω̄α , (α = 1,2, · · · ,s1); (5.62)

ω̄α are s1 the distinct forms of ω1,ω2, · · · ,ω p that can naturally not be linearly
independent.

This note first that put on an integral manifold we have relations of the form
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ϖα = tα ω̄α , (5.63)

consequences of equations (5.59). On the other hand the equation dϕα = 0 is a
consequence differential equations of the given system, which is closed, the exterior
differential dϕ al pha is identically zero when accounting equations θβ = 0 and when
we replace ϖλ by tλ ω̄λ (the system of equations which are of degree greater than 2
are indeed identically verified under the above conditions).

Now fix the index α . We have, by ϕα = ω̄α ∧ϖα ,

dϕα = dω̄α ∧ϖα − ω̄α ∧dϖα . (5.64)

Suppose we have, taking into account the equations θ +β = 0,3
dω̄α =

1
2

ai j ω i ∧ω j +aiλ ω i ∧ωλ ,

dϖα =
1
2

ci j ω i ∧ω j + ciλ ω i ∧ϖλ +
1
2

cλ µ ϖλ ∧ϖ µ ;
(5.65)

the exterior differential dω̄α does not contain the term in the equations ϖλ ∧ϖ µ

because ω1 = ω2 = · · ·= ω p = 0 form a completely integrable system.4

We have, according to (5.64) and (5.65),

dϖα =
1
2

ai j ω i ∧ω j ∧ϖα +aiλ ω i ∧ϖλ ∧ϖα − 1
2

ci j ω i ∧ω j ∧ ω̄α

+ ciλ ω i ∧ ω̄α ∧ϖλ − 1
2

cλ µ ω̄α ∧ϖλ ∧ϖ µ ; (5.66)

we must have, whatever arbitrary parameters tλ ,

1
2

tα ai j ω i ∧ω j ∧ ω̄α + tα tλ aiλ ω i ∧ ω̄λ ∧ ω̄α

− 1
2

ci j ω i ∧ω j ∧ ω̄α − 1
2

tλ tµ cλ µ ω̄α ∧ ω̄λ ∧ ω̄µ = 0. (5.67)

Equating to zero the coefficient of tα and also tα tβ , where we assume β ̸= α , we
obtain

ai j ω i ∧ω j ∧ ω̄α = 0, aiβ ω i ∧ ω̄β ∧ ω̄α = 0, (5.68)

equations in the second of which should not summon from β . These equations ex-
press that any integral manifold on the form vanishes dω̄α considering ω̄α = 0. This
equation is completely integrable. □
100. The previous theorem can be stated as follows:

3 Of course the coefficients ai j,aiλ , · · · , equations (5.65) vary with the fixed index α .
4 The forms ω i are independent linear combinations of dx1,dx2, · · · ,dxp
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Theorem. Any differential system in involution with p independent variables
whose general solution depends only on s1 arbitrary functions of one variable
s1 is generally accepted families of characteristics varieties with p− 1 di-
mensions such that it passes one and only one variety of each family through
a point of an integral manifold, all the curves plotted on a variety of these
characteristics are themselves characteristics.

Remark. If s1 families of linear characteristics were not distinct, the reduced form
(5.59) quadratic equations, exterior differential of the system would be less easy.
One can show that the polar matrix with s1 columns and s1 rows could be reduced so
that all elements above the main diagonal are zero, this means that the determinant
of the matrix is composed of a polar product of s1 forms linear ω1,ω2, · · · ,ω p.

We will finish this chapter with an application of theory of systems in involution
in properties of Pfaffian systems.5

5.7 A theorem of J. A. Schouten and W. Van der Kulk

101. This theorem relates a generic system of linear equations to total differential
(Pfaffian system). Let

θα = 0, (α = 0,1,2, · · · ,q) (5.69)

a system of q+1 linearly independent equations of n variables x1,x2, · · · ,xn as de-
pendent than independent. F. Engle has focused attention on a new invariant of a
digital Pfaffian system, namely, in the present case, the largest integer m such that
the exterior form

θ0 ∧θ1 ∧·· ·∧θq ∧ (λ0 θ0 +λ1 θ1 + · · ·+λq θq). (5.70)

of degree 2m+q+1, is not identically zero; where λ0,λ1, · · · ,λq, are arbitrary pa-
rameters.

The theorem in question is stated in the following manner:

5 Once we returned the forms Aα1λ ϖλ to ϖα , we can look at the s2
1 coefficients Aα1λ , where i is

set greater than 1, as elements of a matrix Si The condition of involution of the system, which is
expressed by the fact that relations Aαiλ tλ

i = Aα jλ tλ
i , are consequences of equations (5.53), where

tλ
1 , are bound by any relation, is simply equivalent to the property of p−1 matrices S2, · · · ,Sp, to

be exchangeable between them. It follows from matrix theory Exchangeable that the characteristic
equation of matrix u1S1 + u2S2 + · · ·+ upSp, where ui are parameters, has all its roots linear in
u2,u3, · · · ,up. As the matrix S1 is unit matrix, this means that the determinant of the matrix u2S2 +
u3S3 + · · ·+upSp is the product of linear forms in u1,u2, · · · ,up. By replacing the ui by ω i, we get
the result of the text.
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5.7 A theorem of J. A. Schouten and W. Van der Kulk 89

Theorem. If m is the invariant of the system of E. Engel (5.69), it is possible
to find an algebraically equivalent system whose members are all first class
2m+1.

It is clear that if 2m+q is at least equal to n, the form (5.70) is identically zero,
we therefore surely 2m < n−q.

102. To equations the problem of determining the system algebraically equivalent
to the given system possessing the property specified, assume it is always possible
that the form

θ0 ∧θ1 ∧·· ·∧θq ∧ (dθ0)
m, (5.71)

is not identically zero, and let

Θ = θ0 +u1 θ1 +u2 θ2 + · · ·+uq λq, (5.72)

where u1,u2, · · · ,uq denote unknown functions of the variables x1,x2, · · · ,xn.
We will determine these unknown functions so that the form Θ of class or 2m+1.

This condition is expressed by the equation of degree 2m+3

θ ∧ (dθ0)
m+1 = 0, (5.73)

which should be added that thus obtained by exterior differentiation, i.e.

(dθ0)
m+2 = 0. (5.74)

Hypothetically, if you look u1,u2, · · · ,up as constants, the exterior differential dΘ
is reducible ( mod θ0,θ1, · · · ,θq) to

ω1 ∧ω2 +ω3 ∧ω4 + · · ·+ω2m−1 ∧ω2m, (5.75)

where ω i are 2m linearly independent differential forms built with xi variables and
their differential coefficients may depend naturally u1,u2, · · · ,uq.

We consequently looking now ui as variables,

dΘ ≡ ω1 ∧ω2 + · · ·+ω2m−1 ∧ω2m +θ1 ∧ϖ1 + · · ·+θq ∧ϖq mod Θ , (5.76)

where ϖ i +dui is a linear form in dx1,dx2, · · · ,dxn.

103. We will first look for the integral elements of the generic n-dimensional sys-
tem (5.73), (5.74). Equation (5.73) expresses that is due ( mod Θ ) reducible to a
quadratic form built with 2m independent linear exterior forms, i.e. that the second
member of the congruence (5.76) is, when we replace ω i by their values , reducible
( mod Θ ) to
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ϖ1 ∧ϖ2 +ϖ3 ∧ϖ4 + · · ·+ϖ2m−1 ∧ϖ2m, (5.77)

where ϖ i is the sum of and a linear combination of forms θ0,θ1, · · · ,θq and
n−2m−q−1 other independent forms ω i and θα , or ω2m+1, · · · ,ωn−q−1. But we
immediately see that second member of (5.76) is incompatible with the presence of
these n−q−1 recent forms. It was therefore finally congruence

dΘ ≡ (ω1+a1α θα)∧ (ω2 +a2α θα)+ · · ·
· · ·+(ω2m−1 +a2m−1,α θα)∧ (ω2m +a2m,α θα) mod Θ , (5.78)

The result, taking the coefficients of theta0,θ1, · · · ,θq, developed in the second
member,

ϖα = a1α ω2 −a2α ω1 + · · ·+a2m−1,α ω2m

−a2m,α ω2m−1 +bαλ θλ + cα Θ (α = 1,2, · · · ,q). (5.79)

Identification with (5.76) gives

bαβ −bβα =a1α a2β −a1β a2α + · · · (5.80)

· · ·+a2m−1,α a2m,β −a2m,α a2m−1,β (α ,β = 1,2, ·s,q).

The element of n dimensions defined by the equations (5.79) where the coeffi-
cients satisfy the relations (5.80), satisfies the equation (5.73). It is automatically
satisfied with the equation (5.74), because the shape dΘ being, according to (5.73),
the sum of m+1 independent quadratic monomials at most power (m+2)th is iden-
tically zero.

The number of independent parameters on which the full element most general
n-dimensional system of the form (5.73), (5.74) is then equal to the number of pa-
rameters has 2mq, increases the number q(q+1)/2 of independent parameters bαβ

[q2 parameters with lids the q(q11)/2 relations (5.80)] increased the number finally
q parameters cα , giving a total number of independent parameters equal to

2mq+
q(q+3)

2
. (5.81)

104 Now come to the determination of the reduced system of differential char-
acters. Equation (5.73) is of degree 2m+ 3, all elements to 2m+ 1 dimensions are
integral. We therefore have

s0 = s1 = s2 = · · ·= s2m+1 = 0. (5.82)

We now consider the following string of elements integral E2m+2, · · · ,En−1,
which introduce successively the following relations between the differentials of
n independent variables:
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E2m+2 : ω2m+1 = · · ·= ωn−q−1 = 0, θ2 = θ3 = · · ·= θq = 0;

E2m+3 : ω2m+1 = · · ·= ωn−q−1 = 0, θ3 = · · ·= θq = 0;
...

...
...

E2m+q : ω2m+1 = · · ·= ωn−q−1 = 0, θq = 0; (5.83)

E2m+q+1 : ω2m+1 = · · ·= ωn−q−1 = 0,
...

...

E2m+q+1 : ωn−q−1 = 0,

To form the polar system reduces each of these integrals, we’ll use that from
equation (5.73), we then obtain the rank σ2m+2,σ2m+2+σ2m+3, · · · . Which will be at
most to the ranks σ2m+2,σ2m+2 +σ2m+3, · · · . According to the sufficient test of No.
29, the differential system in involution will certainly be given if the number (5.80)
independent parameters of the generic integral element is equal to n dimensions

(2m+2)σ2m+2 +(2m+3)σ2m+3 + · · ·+nσn. (5.84)

105. To form the polar system of reduced E2m+2 for which we

ω2m+1 = ω2m+2 = · · ·= ωn−q−1 = 0, θ2 = θ3 = · · ·= θq = 0, (5.85)

simply, in the calculation of (dΘ)m+1 to take into account only in terms of ω1,
ω2, · · · , ω2m, θ1, which reduces to (dΘ)m+1 a numerical factor meadows ω1 ∧ω2 ∧
·· · ∧ω2m ∧θ1 mod Θ and hence Θ(dΘ)m+1 to ω1 ∧ω2 ∧ ·· · ∧ω2m ∧θ1 mod Θ ,
and we have σ2m+2 = 1.

The calculation of the polar system is reduced by reducing dΘ mod Θ to

ω1 ∧ω2 + · · ·+ω2m−1 ∧ω2m + · · ·+θ1 ∧ϖ1 +θ2 ∧ϖ2, (5.86)

from which equations

ϖ1 = 0, ϖ2 = 0; (5.87)

was therefore σ2m+2 +σ2m+3 = 2, thus σ2m+3 = 1.
We will continue and step by step and you will find

σ2m+4 = · · ·= σ2m+q+1 = 1. (5.88)

As the sum of σ has already calculated is equal to q, the number of unknown func-
tions, all σ are zero.

An immediate calculation gives now
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(2m+2)σ2m+2 + · · ·+nσn = 2mq+(2+3+ · · ·+q+1)

= 2mq+
q(q+3)

2
. (5.89)

This result shows that the system is in involution and its general solution depends
on an arbitrary function of 2m+q+1 variables.

As there is always a solution (and even infinite) for which the unknown functions
u1,u2, · · · ,uq are, for numerical data (xi)0 of variables xi arbitrarily given numerical
values, we can find q+ 1 particular solutions such that for xi = (xi)0, of q+ 1 the
corresponding theta forms are linearly independent dx1,dx2, · · · ,dxn. The theorem
is proved. □
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Chapter 6
Prolongation of a differential system

6.1 A fundamental problem

106. We have shown in the preceding chapters the existence theorems for certain
differential systems imposed on independent variables, which we called systems in
involution. Solutions of these systems we demonstrated by applying the Cauchy-
Kowalewski theorem are those which constitute the general solution of the consid-
ered system. But we know it can exist in any other, it is the singular solutions, given
by new differential systems each of which is obtained by adding to the equations of
the given system of new relations between the dependent and independent variables,
and these new systems are not generally in involution. A fundamental problem is to
ascertain what information we have on the solutions of a system that is not in invo-
lution, especially given a particular solution of a differential system given, Can be
obtained as the solution non-singular involution of a system can be deduced from
the system given by a method regular?

This is the answer to that question what the focus of this Chapter. The regular
process which is alluded to based on the notion of prolongation of a differential
system, we introduce in the next section.

107. Reduction in the case of linear Pfaffian system. We can always, for the con-
venience of exposition, assume that the given system contains only finite equations
between the independent and dependent variables and equations linear in the differ-
ential variables, both dependent or independent. Indeed (No. 79) while differential
system can be regarded as a system of partial differential equations of first order
in n− p unknown functions zλ of p independent variables x1,x2, · · · ,xp. From this
point of view it can be written{

Fα(xi,zλ , tλ
i ) = 0, (i = 1, · · · , p; λ = 1, · · · ,n− p; α = 1, · · · ,r0),

dzλ − tλ
i dxi = 0, (λ = 1, · · · ,n− p);

(6.1)

should be added those and these equations are deduced by exterior differentiation,
i.e.
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∂Fα
∂xi dxi +

∂Fα

∂ zλ dzλ +
∂Fα

∂ tλ
i

dtλ
i = 0, (α = 1,2, · · · ,r0),

dxi ∧dx j = 0, (λ = 1,2, · · · ,n− p);
(6.2)

Change of notations: denote by ν the total number of dependent variables zλ , tλ
i

involved in equations (6.1) and (6.2), the closed system (6.1), (6.2) with ν unknown
functions, we denote now all the general notation zλ (λ = 1,2, · · · ,ν) can describe
the form

Fα(x,z) = 0, (α = 1,2, · · · ,r0),

θα = 0, (α = 1,2, · · · ,r1),

ϕα ≡Cαi j dxi ∧dx j +Aαiλ dxi ∧ϖλ = 0, (λ = 1,2, · · · ,r2).

(6.3)

The θal pha are linear forms in dx1,dx2, · · · ,dxp,dz1,dz2, · · · ,dzλ , consisting of
the first members of the last equations (6.1) and first equations (6.2) or by indepen-
dent linear combinations of these first members. The ϕα are the first members of
last equations (6.2) or independent linear combinations of these first members. The
ϖλ are linear differential forms with θα constituting a system of Pfaffian forms ν
independent from dz1,dz2, · · · ,dzλ . There may be remains of interest to replace the
differential dx1,dx2, · · · ,dxp a system of p independent linear combinations of these
differentials, then we denote by ω1,ω2, · · · ,ω p, of the coefficients will depend of
both dependent variables as independent variables.

108. Remark.
We can assume the r1 form θα independent, that is to say that the rank of the linear
system θα = 0 equal to r1. Of course this assumes that fits in a generic point (x,z),
the xi and zλ satisfy the equations of the finite system (6.3); such a point is a regular
integral point. We will care as integral manifolds of system (6.3) whose generic
points are regular. Other solutions would be another system that they deduce the
system (6.3) adding the this finite relations that express the rank of the system θα = 0
has a given value less than r1.

6.2 Prolongation of a differential system

The operation of the extension of a differential system is basically identical to that
which is, given a system (the partial differential equations, in addition to those equa-
tions of this system we deduce by deriving all or in part, with respect to one or more
of independent variables. Consider the system (6.3) and form the general equations
which give the p−dimensional integral elements

ωλ = tλ
i dxi, (λ = 1,2, · · · ,ν − r1); (6.4)

these equations are
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6.2 Prolongation of a differential system 95

Hαi j ≡Cα i j +Aαiλ tλ
j −Aα jλ tλ

i = 0, (α = 1,2, · · · ,r2; i, j = 1,2, · · · , p). (6.5)

We can look at tλ
i as new unknown functions subject to satisfy equations (6.5).

There will be a prolongation of the system (6.3) by adding the finite equations (6.5),
the linear equations (6.4) and the equations are deduced from (6.5) and (6.4) by
exterior differentiation. Note that in the new system thus obtained can be removed
outside quadratic equations ϕα i.e. contained in the original system (6.3), since they
are algebraic consequences of equations (6.4).

We can also perform a partial extension without adding that some of the equa-
tions (6.4).

It can be shown that if the system (6.3) is in involution, it is (the same system
fully extended following the previous scheme (E. Cartan [4], Chapter I, pp. 154-175,
especially pp. 166-171, No. 7-9), but we will not need this theorem. It could be the
remains in default if it was only a partial extension.

110. Suppose that the given system (6.3) is not in involution. Several cases are
possible.

First case. The equations (6.5) that provide the p−dimensional integral elements of
a point from full credits are incompatible. In this case, the compatibility equations
(6.5) leads to relations between the coordinates xi, zα of the origin point of the
integral element.

If these equations lead to relations between the independent variables, or if they
entail the consequence that the ranking system θal pha = 0 is less than r1, the prob-
lem proposed admits no solution.

If neither of these cases is impossible happens, it will add to the equations (6.3)
the finite relations between dependent and independent variables that express the
compatibility of equations (6.5), and the equations which are deduced by exterior
differentiation, the numbers r0 and r1 are thereby increased, quadratic equations
θal pha = 0 does not change. This will provide a new system with the same depen-
dent and independent variables as the first, with increasing integers r0 and r1: in
particular the integer ν − r1 decreased.

Second case. The equations (6.5) are compatible in all respects regular integral
of space, but the system is not in involution. In this case we extend the system as
explained in No. 109, we thus obtain a new system with new dependent variables.
Compared to the old system, there will be increased over r0 because we will add
to the finite relations (6.5) between the independent and dependent variables, re-
lations that express the p−dimensional element (6.4) is integral, the entire r1 will
also be increased by the addition of equations (6.4) and equations that result from
differentiation of equations (6.5). As for the quadratic equations of the new system,
they no longer contain the equations ϕal pha = 0 of the former, if we did a complete
extension of the system, but it will add equations resulting from the exterior differ-
entiation of equations (6.4). If the prolongation is only partial, some of the equations
ϕal pha = 0 should be maintained.

111. We see that after the above if the given system is not in involution, we have
a regular means to deduce a result of new systems admit the same solutions as the
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given system. It can be shown, under certain conditions it is in any case not easy to
specify, they will eventually come to a system in involution.

We will not stop the general case and we are just going to show how one can
demonstrate in the simplest case, or that there are only two independent variables.
The proof we give will not extend to the rest of the case of any number of indepen-
dent variables.

6.3 Case of two independent variables

112. We denote by x and y the independent variables. We will retain the previ-
ous notations. We assume for simplicity that the presentation in quadratic equations
ϕal pha = 0, which we write

ϕα ≡Cα dx∧dy+Aαλ dx∧ϖλ +Bαλ dy∧ϖλ = 0, (6.6)

we have got rid the forms θα , if necessary by adding to θal pha, a quadratic form
congruent to zero mod (θ1,θ2, · · · ,θr1). We call ρ the difference ν − r1, so that
the forms ϕα does appear that forms ϖ1,ϖ2, · · · ,ϖρ independent of each other and
independent of θα .

We will state how we’ll do the extension of the system, when the equations (6.5)
will be compatible, the system is not in involution. As we indicated, we will only
the partial prolongations.

113. Recall the test of involution statement at number 94 in the event by a generic
point integral passes at least one two-dimensional integral element. The necessary
and sufficient condition of involution is the reduced s character, equals the number
of linearly independent quadratic forms ϕα . If we put ourselves and we can assume
zero coefficients Cα formulas (6.6). Substituting the differentials dx, dy two inde-
pendent linear combinations ω1, ω2 and then by writing

ϕα ≡ Aαλ ω1 ∧ϖλ +Bαλ ω2 ∧ϖλ , (6.7)

we can assume that the linear integral ω2 = 0 is regular, so that s is the number the
forms Aαλ ϖλ which are independent. One can, for a change of writing, we assume
Aαλ ϖλ ≡ ϖα , so we will have

ϕα ≡ ω1 ∧ϖα +Bαλ ω2 ∧ϖλ , (α = 1,2, · · · ,s1). (6.8)

If the system is not in involution, there exist forms independent of s1 previ-
ous forms ϕα , but there coefficients of these forms are linear combinations of
ϖ1,ϖ2, · · · ,ϖ s1 . We can therefore assume that the form ϕs1+1 is devoid of such
term ω1. We will show that the coefficient of bone is a linear combination the s1
forms . ϖ1,ϖ2, · · · ,ϖ s1 Suppose that we have for example ϕs1+1 ≡ ω2∧ϖ s1+1; it is
easy to see that then the first character would be reduced at higher s1, because s1+1
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first equations reduced to the pole piece of the linear integral (ω1 = 1,ω2 = m) are

ϖα +mBαλ ϖλ = 0, (α = 1,2, · · · ,s1),

mϖ s1+1 = 0; (6.9)

but if m is given a sufficiently small value the rank of this system is s1 + 1, so that
character would be the first year less than s1 +1.

114. This being established we can assume, if necessary by performing a linear
substitution on s1 forms ϕ1,ϕ2, · · · ,ϕs1 that is a non-zero multiple of ϕs1+1 so that
we can write

ϕs1+1 ≡ ω2 ∧ϖ1. (6.10)

We will show that the coefficient of ω1 in ϕ1 depends only on ϖ1,ϖ2, · · · ,ϖ s1 .
Indeed, the polar system reduces the integral linear element (ω1 = 1,ω2 = m) con-
tains the equations

ϖ1 +mB1λ ϖλ = 0,

ϖα +mBαλ ϖλ = 0, (α = 2, · · · ,s1). (6.11)

this system, when m tends to zero, tends to the system

B1λ ϖλ = 0, ϖ2 = 0, · · · , ϖ s1 = 0, ϖ1 = 0; (6.12)

like its rank must be equal to s1 is that in form Bαλ ϖλ may appear only ϖ1,ϖ2, · · · ,ϖ s1 .
We can assume, if necessary by a linear transformation on my ϖα (α < s1) that

the coefficient of bone is equal to ϖ1:

ϕ1 ≡ ω1 ∧ϖ1 +ω2 ∧ϖ2. (6.13)

We continue the reasoning. The coefficient of ω2 in there must be a linear com-
bination of s1 forms ϖ1,ϖ2, · · · ,ϖ s1 . If this combination is independent of ϖ1 and
ϖ2 we can assume that it is equal to ϖ3 and so on. There will come a time when the
coefficient of ω2 in the successive forms
phi1,ϕ2, · · · we have to consider not only depend on forms previously encountered:
for example we will

ϕ1 ≡ ω1 ∧ϖ1 +ω2 ∧ϖ2,

ϕ2 ≡ ω1 ∧ϖ2 +ω2 ∧ϖ3,

· · · · · · · · · · · · · · · (6.14)

ϕh−1 ≡ ω1 ∧ϖh−1 +ω2 ∧ϖh,

ϕh ≡ ω1 ∧ϖh +B1 ω2 ∧ϖ1 +B2 ω2 ∧ϖ2 + · · ·+Bh ω2 ∧ϖh,

ϕs1+1 ≡ ω2 ∧ϖ1.
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This granted we deduce, for any two-dimensional integral element
ϖ1 = t1 ω2,
ϖ2 = t1 ω1 + t2 ω2,
ϖ3 = t2 ω2 + t3 ω2,

· · · · · · · · · · · · · · ·
ϖh = th−1 ω1 + th ω2,

(6.15)

with the relation

th = B1 t1 +B2 t2 + · · ·+Bh th. (6.16)

115. The first result obtained, perform a partial extension of the differential system
given extension that will introduce h − 1 new unknown functions t1, t2, · · · , th−1.
We will then add to linear differential equations θα = 0 system given to the new
independent linear equations

ϖ1 − t1 ω2 = 0,
ϖ2 − t1 ω1 − t2 ω2 = 0,
ϖ3 − t2 ω2 − t3 ω2 = 0,
· · · · · · · · · · · · · · ·
ϖh − th−1 ω1 − (B1 t1 +B2 t2 + · · ·+Bh th) ω2 = 0.

(6.17)

Quadratic equations to former, whose number will be reduced from the rest of h,
will be added h the quadratic equations resulting from the exterior differentiation
of equations (6.17). The fundamental result obtained by this extension is that the
whole pa decreased: indeed the entire r1 was increased by h units, while the number
of dependent variable ν was increased only h− 1 units, the integer ρ = ν − r1 has
actually decreased by one.

116. Analysis of past issues resulting in a regular method to obtain, starting from
a non-differential system in involution, a result of differential system admitting the
same solutions as the initial system. If at some point the resulting system is in-
consistent, it is the same initial system, if the resulting system does not allow two-
dimensional integral elements originating from a generic point of the space of de-
pendent and independent variables , we deduce a new system for which the integer
r decreased, obtained if the system admits of two-dimensional integral elements
originating from a generic point, but the system is in involution, we deduce a new
system for which the integer ρ declined further. As the integer ρ can not decrease
indefinitely, so we arrive at some point either to a system incompatible either with a
system in involution

Definition. Theorem. Any solution of a differential system closed two inde-
pendent variables can be regarded as part of the general solution of a system
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in involution that can be formed on a regular basis after a finite number of
operations.

117. Remark. In reality we have limited ourselves to solutions of the initial sys-
tem (6.3) for which the rank of the system formed by the differential equations of
first degree has its maximum value, and the same restrictions were implicitly made
in respect of successive differential systems obtained. Especially if the original dif-
ferential system of singular solutions, these solutions were left to side. If we wanted
to give the theorem stated in the previous issue any validity, it should therefore fo-
cus attention on a particular solution of the initial system and for each successive
system, start by adding, where appropriate, the relations between the dependent and
independent variables that express the ring system of linear differential equations
has the value corresponding to the proposed solution. Unfortunately it is not clear
that the rank of the new system of linear differential equations has increased, that
is to say that the entire ρ has decreased, although the number of independent rela-
tions between dependent and independent variables has increased . Thus it can one,
strictly speaking, say that the theorem is demonstrated. Nevertheless, considerations
of this Section provide a convenient method to obtain all solutions of a given sys-
tem, so that each is part of the general solution of a system in involution formed
without prior integration.
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Chapter 7
Differential system, Theory of surfaces

7.1 Summary of the principles of the theory of moving trihedrals

1. Consider in ordinary space a family F of orthogonal trihedral depending on
any number of parameters. We denote by A the origin of one of those trihedrals and
by e1,e2,e3, the unit vectors inclined on the axes. The infinitesimal displacement
that brings the trihedral family F in an infinitely near trihedral F ′ is defined if we
know the infinitesimal vectors de1,de2,de3. The decomposition of these vectors by
projection on the axes of F leads the relations

dA = ω i ei, dei = ω j
i e j, (7.1)

where ω i and ω j
i are linear differential forms with respect to differential parameters

of the family F . These are the relative components of infinitesimal displacement of
the trihedral. They are, however, not independent, because the vectors ei are subject
to satisfy the relations

(e1)
2 = (e2)

2 = (e3)
2 = 1, e1 · e2 = e2 · e3 = e3 · e1 = 0. (7.2)

These relations gives the following differential relations

ω1
1 = ω2

2 = ω3
3 = 0, ω3

2 +ω2
3 = ω3

1 +ω1
3 = ω1

2 +ω2
1 = 0. (7.3)

We write now either o: or ω i
j or ωi j outside the three forms ω1,ω2,ω3 that deter-

mine components the axes of the F of the translation that brings into coincidence
A with A+dA, there are three other forms

ω12 =−ω21, ω13 =−ω31, ω23 =−ω32, (7.4)

that define the components of the rotation which brings the trihedral F to be
equipollent to near infinitesimally trihedral.
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104 7 Differential system, Theory of surfaces

2. The six forms ω1,ω2,ω3,ω23,ω31,ω12 satisfy relations G. Darboux used sys-
tematically in the theories that involve movements of two parameters. These rela-
tions result from the exterior differentiation equations (7.1). It has in fact

dω i ei −ω i ∧dei = 0, or dω i −ωk ∧ω i
k = 0,

dω j
i e j −ω j

i ∧de j = 0, or dω j
i −ωk

i ∧ω j
k = 0, (7.5)

which leads the structure equations{
dω i = ωk ∧ωki = ωik ∧ωk,

dω j
i = ωk

i ∧ω j
k .

(7.6)

The last equations (7.6) can be rewritten as

dωi j =−ωk
i ∧ω jk. (7.7)

3. Conversely suppose we are given six differential forms ω i, ωi j = −ω ji con-
structed with q variables uk and their differentials and satisfying equations (7.6).
There is a family of orthogonal trihedral depending on q parameters u1,u2, · · · ,uk ,
such that forms ω i, ωi j are related components of their infinitesimal displacement.
Indeed, consider the family the most general possible orthogonal trihedral, depend-
ing on six parameters v1,v2, · · · ,v6, and also ω̄ i(v,dv), ω̄i j(v,dv) components of
their corresponding relative infinitesimal displacement. The equations{

ω̄ i(v,dv) = ω i(u,du),
ω̄i j(v,dv) = ω̄i j(u,du),

(7.8)

where vi are regarded as unknown functions of the variables u1,u2, · · · ,uq, is a com-
pletely integrable system, because the exterior differentiation applied to these equa-
tions gives, by virtue relations (7.6), verified by hypothesis by the forms ω̄ i, ω̄i j as
well as done by the forms, ω i, ωi j, relations which are consequences of (7.8). So
we can match to each system of values ui one and only one orthogonal trihedral
with parameters vi, if one imposes the condition that the given values (ui)0 corre-
sponds to a given trihedral of parameters (vi)0. It is clear that all the families of
trihedrals searched are deducible from one of them by an arbitrary displacement,
with or without symmetry (a real displacement if we rely on the orientation of the
trihedrals searched).

7.2 The fundamental theorems of the theory of surfaces

4. To any given surface S can be attached a family of positively oriented orthogonal
trihedral which based on the surface and whose vector e3 is normal to the surface.
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7.2 The fundamental theorems of the theory of surfaces 105

This family depends on two parameters, if one attaches to each point A of the
surface a trihedral F as the following law, for example by taking e1 and e2 the unit
vectors carried by the principal tangents at A,1 still we assume that A remains in a
region of the surface of privately umbilics. But the family may also depend on three
parameters, if one attaches to each point A all rectangular frames whose vector e3
is normal to the surface A.

In each case, the vector dA is tangent to the surface, thus, we have

ω3 = 0, (7.9)

where, by virtue of structure of equations (7.6) and the expression of dω3, we have

ω1 ∧ω13 +ω2 ∧ω23 = 0. (7.10)

Conversely, whenever we have a family of rectangular trihedral such as the form
ω3 is identically zero, the origin of these trihedral A will describe a surface which
the vectors e3 will be normal to it. Indeed, the equations of e1 = e2 = 0 form a
completely integrable system, by virtue of structure equations

dω1 = ω2 ∧ω21, ω2 = ω1 ∧ω12. (7.11)

Let u and v be two independent first integrals of this system, the equation

dA = ω1 e1 +ω2 e2, (7.12)

then shows that the point A depends only on u and v. Therefore the point A describes
a surface with a tangent plane contains each of the vectors e1 and e2 and as a result
is normal to e3. We have implicitly assumed that ω1 and ω2 forms are linearly
independent, otherwise the point A would describe a line and not a surface.

5. Consider a curve on the surface of this curve define a positive direction and
denote by T, N, B the unit vectors of the Frenet trihedral attached to a point A of
the curve. Let θ be the angle (e1,T), the positive direction of rotation in the tangent
plane, which brings e1 to e2 by a rotation of +π/2. Let ε be the unit vector which
is derived from T by a rotation of +π/2 in the tangent plane. Finally, let ϖ be the
angle (N,e3), the positive direction of rotation in the plane perpendicular to T which
brings ε to e3 by a rotation of +π/2. We have

T = cosθ e1 +sinθ e2,

ε = −sinθ e1 +cosθ e2,

N = cosθ e3 +sinθ ε,
B = sinθ e3 −cosθ ε.

(7.13)

Finally recall the formulas of Frenet

1 We refer to these trihedral under the name Darboux trihedral
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T =

ds
ρ

N,

ε = −ds
ρ

T +
ds
τ

B,

N = −ds
τ

N,

(7.14)

where the element of arclength denoted by ds, the curvature and torsion by 1/ρ and
1/τ .

Differentiating the first equation (7.13) leads

ds
ρ

N = (dθ +ω12)ε +(ω13 cosθ +ω12 sinθ)e3, (7.15)

the coefficient of ε is the projection onto the tangent plane of the vector ds/ρ carried
by the principal normal; the coefficient e3 is its projection on the normal to the
surface. We can deduce

dθ +ω12 =
sinϖ ds

ρ
=

ds
Rg

,

ω13 cosθ +ω23 sinθ =
cosϖ ds

ρ
=

ds
Rn

, (7.16)

1/Rg and 1/Rn are the geodesic curvature and normal curvature, respectively. We
have

ds2

Rn
= ω13 cosθ ds+ω23 sinθ ds

= ω1.ω13 +ω2.ω23, (7.17)

the form ω1 ⊙ω13 +ω2 ⊙ω23 is the second fundamental form Φ of F. Gauss, it is
also equal to

−de3 ·dA =−(ω31 e1 +ω32 e2) · (ω1 e1 +ω2 e2)

= (ω13 e1 +ω23 e2) · (ω1 e1 +ω2 e2). (7.18)

Thus, we have

Φ = ω1.ω13 +ω2.ω23 =
ds2

Rn
. (7.19)

The first fundamental form F of the surface is ds2, because

F = (ω1)2 +(ω2)2 = ds2. (7.20)

A third form also plays an important role. Differentiating the equation
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e3 = cosϖ N+ sinϖ B, (7.21)

which is easily deduced from equations (7.13). It was, only taking into account
(7.13) and (7.14),

de3 = ω1
3 e1 +ω2

3 e2

=−dϖ ε −ds
cosϖ

ρ
T− ds

τ
ε (7.22)

=− ds
Rn

T+
(

dϖ +
ds
τ

)
ε,

hence, by projecting on T and ε , we have

−T ·de3 =
ds
Rn

= ω13 cosθ +ω23 sinθ ,

−ε ·de3 = dϖ +
ds
τ

=−ω13 sinθ +ω23 cosθ . (7.23)

We find the expression of ds/Rn previously provided by the second formula
(7.16). Regarding the quantity dϖ/ds+ 1/τ is the geodesic torsion 1/Tg and we
have, by replacing cosθ by ω1/ds and sinθ by ω2/ds, the relation

ds2

Tg
=
(dϖ

ds
+

1
τ

)
ds = ω1.ω23 −ω2.ω13. (7.24)

Formula

Ψ = ω1 ⊙ω23 −ω2 ⊙ω13, (7.25)

is the third fundamental form of the surface.
Note that the second fundamental form depends on the chosen positive direction

normal to the surface, but not the orientation of trihedral. The third fundamental
form on the contrary changes sign with the orientation of the trihedral, but not de-
pendent on the chosen positive direction on normal.

6. The formulas of the preceding section are valid even if one attaches to each point
on the surface of an infinite rectangular trihedral, provided you have the same vector
e3 normal to the surface. Now suppose we attach to each point A of S a determined
trihedral. The relation (7.10) allows to write{

ω13 = aω1 +bω2,
ω13 = bω1 + cω2.

(7.26)

The three fundamental forms can be written as
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F = (ω1)2 +(ω2)2,

Φ = a(ω1)2 +2bω1ω2 + c(ω2)2,

Ψ = b(ω1)2 +(c−a)ω1ω2 −b(ω2)2.

(7.27)

Note that the form Ψ is the Jacobian forms F and Φ , that is to say the determinant
of the half-partial derivatives of these forms from ω1 and ω2.

The lines of curvature are given by the equation Ψ = 0, the asymptotic lines by
the equation Φ = 0. As for the principal curvatures, they are given by the system of
equations

aω1 +bω2

ω1 =
bω1 + cω2

ω2 =
1
R
, (7.28)

where one draws the equation of the second degree in 1/R(
a− 1

R

)(
c− 1

R

)
−b2 = 0, (7.29)

then, we have

1
R1

+
1

R2
= a+ c,

1
R1R2

= ac−b2. (7.30)

In the case where the vectors e1 and e2 are carried by the tangents principal we
have 1/R1 = a, 1/R2 = c, b = 0 and

Φ =
1

R1
(ω1)2 +

1
R2

(ω2)2,

Ψ =
( 1

R2
− 1

R1

)
ω1.ω2.

(7.31)

If θ is the angle made with the first principal tangent to the positive tangent of an
oriented curve, then for this curve, we have

1
Rn

=
cos2 θ

R1
+

sin2 θ
R2

,

1
Tg

=
( 1

R2
− 1

R1

)
sin2 θ cos2 θ ,

1
Rg

=
dθ +ω12

ds
.

(7.32)

Finally, note that if we take vector e1 the unit tangent vector to a given curve C
drawn on the surface. we have for each point in this curve

1
Rn

= a,
1
Tg

= b,
1

Rg
=

dθ +ω12

ds
. (7.33)
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It follows in particular that if C is an asymptotic line of the surface, then at each
such point we have a = 0, whence, from equation (7.30),

b2 =
−1

R1R2
, (7.34)

it leads that the torsion of the curve is equal to ±
√

−1/R1R2 (Theorem of Enneper).

7. We will now discuss various problems related to the classical theory of surfaces.
These problems have mainly focused on research areas of certain properties or en-
joying the search for pairs of surfaces admitting a point correspondence enjoying
the given properties. We will bring the problems of the first category in search of
a family of trihdrals rectangular attached to different points on the surface sought
and whose vector e3 is normal to the surface. In many cases it will be shown to
attach to each point of the triad Darboux whose vectors e1, e2 are carried by the
principal tangents, which, indeed, the drawback of being restricted to a region of
the surface where only is no umbilic, an umbilical since the Darboux trihedral is not
determined. But often it may be desirable to attach to each point on the surface any
rectangular trihedral whose vector e3 is normal to the surface, removing the restric-
tion in question just been. It is true that the latter way to proceed seems to introduce
unknown parasites, but, as we shall see, this is only an appearance. In the second
category of problems, we bring back from even looking for a family of rectangular
trihedral attached to both surfaces searched, each trihdral attaches to a point A of
the first surface corresponding to a specific attachment to the trihedral correspond-
ing point A′ of the second surface, the point correspondence between two surfaces
in fact establishes a correspondence determined between tangents AT and AT′ from
two corresponding points A and A′.

Problem 1. Surfaces which has all the points are umbilics

8. The second fundamental form being proportional to the first, thus, we have, in
equations (7.26) (No. 6),

a = c, b = 0. (7.35)

The family of rectangular trihedral attached to different points on the surface can
therefore be regarded as constituting an integral manifold of the equations

ω3 = 0, ω13 = aω1, ω23 = aω2, (7.36)

which, closed by exterior differentiation, provide the system

ω3 = 0, ω13 = aω1, ω23 = aω2, ω1 ∧da = 0, ω2 ∧da = 0. (7.37)

This system is not in involution, it leads da = 0, where the new system
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ω3 = 0, ω13 = aω1, ω23 = aω2, da = 0, (7.38)

one seen easily be completely integrable, the exterior differentiation involving no
new equation.

If the constant a is zero, we see that de3 = 0, the surface normal is fixed direction:
the surface is a plane. If the constant a is not zero, the point P = A+(1/a)e3, is
fixed as

dP =
(

ω1 +
1
a

ω31

)
e1 +

(
ω2 +

1
a

ω32

)
e2 = 0. (7.39)

We have has a sphere of center P and radius 1/a. All surfaces are then searched and
obtained, which depend on four arbitrary constants.

But the family of trihedrals that we have taken as unknown auxiliary only not
only depend on arbitrary constants, because at each point of the spheres that con-
stitute the family of surfaces searched, one can arbitrarily choose the rectangular
trihedrals attached to it under the only on condition that its vector e3 is normal to
the surface, these trihedrals therefore depend on an arbitrary function of two vari-
ables. But this function is parasitic and does not involve the initial problem. It is
notified by the differential system itself (17.38) that states the conditions of the prob-
lem. Indeed this system does not involve the six forms ω1,ω2,ω3,ω23,ω31,ω12; it
does intervene only five ω1,ω2,ω3,ω23,ω31. Equating to zero we obtain the five
forms a completely integrable system [that is characteristic of the system (7.38)]
whose solution depends on five arbitrary constants u1,u2, · · · ,u5, each defining a
particular solution one parameter family of rectangular trihedral. The geometrical
meaning of such a family is easy to obtain, because if we stay within the family,
forms, ω1,ω2,ω3,ω23,ω31 remain at zero; originally of the trihedral remains fixed
(ω1 = 0, ω2 = 0, ω3 = 0) and the vector e3 also remains fixed (ω23 = 0, ω31 = 0).
The family is formed of a trihedrals with origin A and given a vector e3 given and is
geometrically equivalent to an element of contact Lie (point and plane through this
point). The differential system closes (17.38) which involves the independent and
dependent variables u1,u2, · · · ,u5,a, has simply expresses a property of elements of
contact with the surface sought, precisely that which characterizes the elements of
contact with a surface, every point are umbilics, and in the differential system to
which we got involved only the components ω i,ωi j that play a role in the actual
problem proposed.

Problem 2. Establish between two given surfaces
conformally point correspondence

9. Let S and S̄ are both given surfaces: it there between these two surfaces a point
correspondence such that a relation of the form

ds̄2 = u2 ds2, (7.40)
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is between their linear elements ds2 and ds̄2?
Attach to every point of each of the two surfaces the most general right-handed

rectangular trihedron having this point as origin, and which the vector e3 is normal
to the surface. We have the relation

(ω̄1)2 +(ω̄2)2 = u2
(
(ω1)2 +(ω2)2

)
, (7.41)

therefore

ω̄1 = u
(
ω1 cosθ +ω2 sinθ

)
,

ω̄2 = u
(
−ω1 sinθ +ω2 cosθ

)
,

(7.42)

or

ω̄1 = u
(
ω1 cosθ +ω2 sinθ

)
,

ω̄2 = u
(
ω1 sinθ −ω2 cosθ

)
,

(7.43)

One can always reduce to the first case, because if one is in the second case, we
replace the vectors e2 and e3 of the trihedral attached to the second surface by −e2
and −e3, which will give a new direct trihdral lead to the first formulas.

By then turn this trihedral angle θ about its third axis, there will be finally maps
each trihedral attached to the first surface attached to a trihedral determined the
second surface so that one has the relation

ω̄1 = uω1, ω̄2 = uω2. (7.44)

This system is closed by exterior differentiation and gives the new system
ω̄1 = uω1,

ω̄2 = uω2,

ω1 ∧du−uω2 ∧ (ω̄12 −ω12) = 0,
ω2 ∧du+uω1 ∧ (ω̄12 −ω12) = 0.

(7.45)

Forms ω1 and ω2 are linear combinations of the differentials of parameters
needed for the current position of a point of the surface S, the number of unknown
functions is equal to four, namely the two parameters needed for the position of the
point A of S which corresponds to point A to S, the ratio of local similarity of he
tangent plane at A to the tangent of S corresponding to a given tangent to S at point
A. In the system (7.45) are effectively four distinct forms of ω1, ω2, namely ω̄1,
ω̄2, du, and ω̄12 −ω12. One can notice than annihilate these four forms, is to let
the fixed point Ā and the function u, and also express the corresponding trihedral of
origin A and Ā turning by the same angle around the third axis, that is to say, the
vectors e1 of the two trihedrals correspond consistently.

The polar matrix (No. 93) of the system (7.45) is, assuming that the columns
correspond to the forms du and ω̄12 −ω12 is
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ω1 −uω2

ω2 uω1

]
= u

(
(ω1)2 +(ω2)2

)
. (7.46)

Its rank s1 = 2 is equal to the number of quadratic forms appearing in the equa-
tions (7.45). The system is in involution (No. 94) and its general solution depends
on two arbitrary functions of one argument. The function u is essentially zero, there
is no singular solution, there is also no real characteristics.

10. Cauchy problem.
Any solution is completely determined by a one-dimensional solution of the equa-
tions

ω̄1 = uω1, ω̄2 = uω2. (7.47)

We will give this to an arbitrary curve C on the surface S and an arbitrary curve C
on the surface S. Given the arbitrary choice of the trihedral attached to each point of
S, we will take any point C of the vector e1 tangent to C, in order to have ω2 =; we
will therefore also the vector e1 tangent at each point of C; but the vector e2 can be
chosen in two ways different to each of which corresponds a definite choice of e3.
This fact will establish a point correspondence (analytical) between arbitrary C and
C̄, which provide the function u = ds̄/ds. Each of these solutions one-dimensional
of the system (7.45) provide, therefore, according to the general theory, a Fixed-line
representation of S̄ on S.

Analytically, the problem is easily solved. The two surfaces being supposed an-
alytic, can be found on each of them a system of curvilinear coordinates: x, y in S,
and x̄, ȳ for S̄, so that we have

ds2 = A2 (dx2 +dy2), ds̄2 = Ā2 (dx̄2 +dȳ2). (7.48)

Any conformal representation is obtained by taking for x̄+ iȳ an analytic function of
x+ iy, or an analytic function of x− iy. The analytical curve C is moreover defined
by taking x+ iy is an analytic function f (t) of a real parameter t. If we assign to
each point of C the same parameter at the point corresponding to t, we will have

x̄+ iȳ = f̄ (t), (7.49)

f (t) being a certain analytic function of t. By eliminating t we will have an analytic
relationship between the two complex variables x+ iy, x̄+ iȳ and this will define
the analytic relationship a consistent correspondence searched. The other will be
obtained by determination t from the equation x̄+ iȳ = f̄ (t) and the equation which
expresses x− iy as a function of t.

Problem 3. Weingarten surfaces
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11. A surface with a given relation between the its principal curvatures is called
Weingarten surfaces. More symmetrically they can define by a relation (analytical)
between the mean curvature 1/R1 + 1/R2, and the total curvature 1/R1R2. If we
attach to each point on a surface S searched an arbitrary right-handed rectangular
trihedral subject to the sole condition that the vector e3 is normal to the surface,
the differential system that puts the problem into an equation is provided by the
relations 

ω3 = 0,
ω13 = aω1 +bω2,

ω23 = bω1 + cω2,

F(a+ c,ac−b2) = 0,
Fa da+Fb db+Fc dc = 0.

(7.50)

This system is then closed by adding the exterior quadratic equations{
ω1 ∧ (da−2bω12)+ω2 ∧ (db+(a− c)ω12) = 0,

ω1 ∧ (db+(a− c)ω12)+ω2 ∧ (dc+2bω12) = 0.
(7.51)

One checks easily that the last equation of (7.50) can be written as

Fa (da−2bω12)+Fb (db+(a− c)ω12)+Fc (dc−2bω12) = 0. (7.52)

The equations of the system thus are involved forms ω1, ω2, independent linear
combinations of the differentials of curvilinear coordinates of a point on the surface
S, and six independent forms ω3, ω13, ω23, da − 2bω12, db + (a− c)ω12, dc +
2bω12, between the last three of which are relation (7.52); there are indeed five
unknown functions to define the contact element of S corresponding to a system of
given values the curvilinear coordinates.

Here the polar matrix, whose columns correspond to the three forms da−2bω12,
db+(a− c)ω12, dc+2bω12 is ω1 ω2 0

0 ω1 ω2

Fa Fb Fc

 ; (7.53)

we have s1 = 2, caracteriatiques being defined by the equation

Fa (ω1)2 −Fb ω1.ω2 +Fc (ω2)2 = 0, (7.54)

or again, by asking a+ c = u, and ac−b2 = v, we have

Fu
(
(ω1)2 +(ω2)2)+Fv

(
a(ω1)2 +2bω1.ω2 + c(ω2)2)= 0. (7.55)

We see that the characteristics tangents on each integral surface belong to the
involution defined by the asymptotic tangents and minima tangents.
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The generic two-dimensional integral element is given by the relations
da−2bω12 = α ω1 +β ω2,

db+(a− c)ω12 = β ω1 + γ ω2,

dc+2bω12 = γ ω1 +δ ω2,

(7.56)

with

α Fa +β Fb + γ Fc = 0,
β Fa + γ Fb +δ Fc = 0.

(7.57)

12. Cauchy problem.
Any one-dimensional solution, non-characteristic of equations (7.50) provides an
unambiguously Weingarten surface of a given class. Such a solution is defined by
a one-parameter family of rectangular trihedral to each of which are attached three
numbers a, b, c. We will get by taking a curve C at each point of which we seek an
analytical law following an arbitrary rectangular trihedral directly with the vector e1
is tangent to C (this is possible because of the indeterminacy the trihedrals fasteners
each point on the surface searched). We will have then, according to formulas (7.33)
of No. 6,

a =
1

Rn
=

cosϖ
ρ

, b =
1
Tg

=
dϖ
ds

+
1
τ
, (7.58)

ϖ has the meaning given above, (No. 5). As for c, is given by the equation

F(a+ c,ac−b2) = 0; (7.59)

Each solution of this equation a solution correspond to a dimension of equations
(7.1) and consequently a Weingarten surface containing the curve C and normal
vector e3 attached to each point on this curve.

The Cauchy problem may be impossible or indeterminate if one starts with a
solution to a characteristic dimension, that is to say, from (7.55), if Fu+aFv =Fc =0
or if the value chosen for c at each point of C is a double root of equation F = 0
who gives it. It is easy to see that if the curve C is taken arbitrarily, the problem is
impossible. Indeed we have by (7.52) along C,

Fa
(
da−2bω12

)
+Fb

(
db− (a− c)ω12

)
= 0, (7.60)

where, according to (7.56),

α Fa +β Fb = 0, β Fa + γ Fb = 0, (7.61)

and consequently, along C (since ω2 = 0), we have

Fa
(
db+(a− c)ω12

)
+Fb

(
dc+2bω12

)
= 0, (7.62)
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It is seen that a, b, c are known according to the curvature 1/ρ , torsion 1/τ of
the curve and the angle ϖ fact that the normal to the principal normal with S, the
two equations F = 0, Fc = 0 and equation (7.62) provide three relations between
1/ρ , 1/τ and ϖ , that their derivatives with respect to s. The elimination of c and
ϖ will therefore provide a relation between the curvature 1/ρ , the torsion 1/τ and
their derivatives with respect to arc length, which restricts the possible choice of the
curve C.

We will study some special cases.

13. First particular case. Surface with a given constant value α for its principal
curvature. Here, by the formula (7.29), the relation F = 0 is

F ≡ (α −a)(α − c)−b2 = 0. (7.63)

Characteristics are given by

a(ω1)2 +2bω1.ω2 + c(ω2)2 = a
(
(ω1)2 +(ω2)2). (7.64)

The relations between the elements of a characteristic curve are

a = α , b = 0, (c−α)2 ω12 = 0. (7.65)

Two cases are possible. If the value of c along C is not constantly equal to α , we
must have ω12 = 0; line C must be a geodesic of the surface, with ϖ = 0, where

α =
1
ρ
,

1
τ
= 0, (7.66)

the characteristic of C is a circle with radius 1/α , the clclic developable of the
surface along the C is a cylinder of revolution with the same radius.

If instead c = α at all points of C, the line C is a line of umbilics; is a line traced
on a sphere of radius α , because the equations

cosϖ
ρ

= α ,
dϖ
ds

+
1
τ
= 0, (7.67)

this leads

ρ2 + τ2
(dρ

ds

)2
=

1
α2 , (7.68)

this sphere is still a surface of answer to the question.
Weingarten surfaces of the relevant class are none other than the cylinderical-

surfaces, envelope of a family of spheres of radius 1/α depending on a parameter.
Now we see easily that if we are given a curve C drawn on a sphere Σ of radius
1/α and that is not a large circle of this sphere, the only cylinderical-surfaces that
can contain C and is tangent to C along the sphere Σ is the sphere itself. the Cauchy
problem in this case contains one and only one solution. If we are given instead to
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a circle of radius C, there exists an infinity of cylinderical-surfaces containing the
same geodesic; So, the Cauchy problem is indeterminate.2

14. Second particular case. Surfaces whose difference of principal curvatures
has a given value 2α . The relationship between a, b, c is here

F ≡ (a− c)2 +4(b2 −α2) = 0. (7.69)

The characteristics are given by

(a− c)(ω1)2 +4bω1.ω2 − (a− c)(ω2)2 = 0. (7.70)

Which satisfies the three relations is a characteristic.

a− c = 0, b =±α , dc+2bω12 = 0, (7.71)

where, assuming b = α , we have

a = c =
cosϖ

ρ
,

dϖ
ds

+
1
τ
= α,

cosϖ .
d(1/ρ)

ds
+

sinϖ
ρ

( 1
ρ
+α

)
= 0. (7.72)

If d(1/ρ)
ds = 0 with 1

ρ ̸= 0, we have either 1
τ = α , with ϖ = 0, or 1

τ = −α , with
dϖ
ds = 2α; in both cases the curve C is a circular helix. Otherwise the curve C is

subject to the relation

d(1/ρ)
ds

d(1/τ)
ds

−
(1

τ
+α

) d2(1/ρ)
ds2

+2
1
ρ

(d(1/ρ)
ds

)2
+
( 1

τ2 −α2
)(1

τ
+α

)
= 0. (7.73)

If, this relation is verified, then the angle ϖ is determined at each point to a multiple
near it.

The problem has no singular solution, because the equation of characteristics
can not be reduced to an identity that if a = c, b = θ , which contradicts the equation
F = 0.

15. Third particular case. Surface with constant mean curvature.
The relationship between a, b, c is here

F ≡ a+ c−α = 0; (7.74)

characteristics, imaginary, are minimal lines of the integral surface. The Cauchy
problem has a one and only one solution if one gives a curve C at each point and a

2 The problem here has singular solutions, the equation of characteristics becomes an identity if
a = c = α , b = 0; these are the spheres of radius 1/α .
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trihedral whose vector e1 is tangent to the curve: we have then along C,

a =
cosϖ

ρ
, c = α − cosϖ

ρ
, b =

dϖ
ds

+
1
τ
. (7.75)

16. Fourth particular case. Surfaces with constant curvature K. In this case

F ≡ ac−b2 −K = 0. (7.76)

The characteristics are given by

a(ω1)2 +2bω1.ω2 + c(ω2)2 = 0. (7.77)

it is the asymptotic surface integrals, real if K < 0. The three relations to be satisfied
by a characteristic, assumed at each point tangent to the vector e1, are

a = 0, b2 =−K, c2 ω12 +2b(dc+2bω12) = 0; (7.78)

or

cosϖ
ρ

= 0,
dϖ
ds

+
1
τ
=
√
−K,

dc
ds

+
c2 −4K
2
√
−K

sinϖ
ρ

= 0. (7.79)

If C is not a straight line, it was cosϖ = 0, sinϖ =±1, 1/τ =
√
−K; torsion of

the curve is constant and equal to
√
−K (Enneper’s theorem), and further,

c =±
√
−K tan

∫ ds
ρ
. (7.80)

If C is a right, the speed of rotation of the normal to the surface along this line is
equal to

√
−K and c must be taken to a constant value along the right.

As in the previous problems we leave aside the question of whether the data
satisfy the necessary conditions above, the Cauchy problem has a solution or in-
finitely many solutions. There are certainly cases where it has an infinite number of
solutions, otherwise the surfaces searched could depend on more than an arbitrary
function of one variable, such as torsion curves given constant.

Problem 4. Isothermal surfaces

17. Isothermal surface is defined by the property that its ds2 is reducible to the form
A(dξ 2 + dη2), where ξ and η are the parameters of lines of curvature. Attach to
each point of such a surface a Darboux trihedral whose vectors e1 and e2 are carried
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by the principal tangents, which forces us to restrict ourselves to the consideration
of portions of the surface without umbilicus.

Denoting by a and c principal curvatures, we first equations

ω3 = 0, ω13 = aω1, ω23 = cω2. (7.81)

We must then express that there is a function u such that the two forms ω1 and
ω2 are exact differentials, giving

ω1 ∧ du
u

+ω2 ∧ω12 = 0,

ω2 ∧ du
u

−ω2 ∧ω12 = 0.
(7.82)

Finally externally by differentiating equations (7.81) and taking into account the
structure equations, we obtain{

ω1 ∧dc+(a− c)ω2 ∧ω12 = 0,
ω2 ∧dc− (a− c)ω2 ∧ω12 = 0.

(7.83)

The equations (7.81, 7.82, and 7.83) are closed differential system from of prob-
lem. The generic two-dimensional integral element is given by the equations

ω12 = hω1 + k ω2,

du
u

=−k ω1 +hω2,

da = a1 ω1 +(a− c)hω2,

dc = (a− c)k ω1 + c2 ω2,

(7.84)

it depends on four arbitrary parameters h, k, a1, c2, as there are four linearly inde-
pendent quadratic equations (7.82) and (7.83), the system is in involution and its
general solution depends on four arbitrary functions of a variable. The determinant
of the polar system is ω1.ω2.

(
(ω1)2 +(ω2)2

)
, the real characteristics are lines of

curvature of the integral surfaces.
Any solution to a dimension of equations (7.81) can be obtained by a curve C at

each point of which was attached a rectangular trihedral whose vector e3 is normal
to C; by calling the angle through which must be rotated e1 around in the forward
direction for the tangent to C positive, we will

a cos2 θ + c sin2 θ =
cosϖ

ρ
,

(c−a) cosθ sinθ =
dϖ
ds

+
1
τ
, (7.85)

where ϖ denotes the angle S with the normal to the principal normal C. It may be
arbitrarily according to the angle ϖ and the angle θ and the two preceding equa-
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tions provide a and c, however, if sinθ and cosθ is not zero. Finally the function u
will be chosen arbitrarily along C. A data correspond a surface isothermal and one
containing C and for admitting Darboux tribhedral at each point of the trihedral C
we attach to this point.

The data depend on five arbitrary functions of one variable, it agrees with what
we got, because you can determine the surface S by taking the C section of this
surface by a given plane, which reduces to four arbitrary functions the data corre-
sponding to the Cauchy problem.

Now suppose we take θ = 0, the curve C becomes line of curvature of the surface
integral unknown. Equations (7.85) reduce to

a =
cosϖ

ρ
,

dϖ
ds

+
1
τ
= 0, (7.86)

but there is an additional condition relating to the equations (7.82) and 7.83) result

ω2 ∧
(u

u
+

dc
a− c

)
= 0; (7.87)

we should have along C

u
u
+

dc
a− c

= 0. (7.88)

It may give the curve C and the function c, the angle ϖ is given by a constant
expression (−

∫
ds/τ) then we will have a = cosϖ/ρ , and finally the function u

will be known up to a factor (which does not play any role in the rest the question).
This time the data involve only three arbitrary functions of one variable. We leave
aside the question of whether there are solutions compatible with these data and
with what degree of indeterminacy. There are certainly cases where it is an infinity
of integral surfaces.

Particular case. The minimal surfaces are particular isothermal surfaces, because
for such a surface (c = −a), equations (7.82) and (7.83) show that du/u = da/a,
which allows us to delete the equations (7.82). More generally, constant mean cur-
vature surfaces are isothermal du/u = da/(a− c) since that is an exact differential.

Problem 5. Pairs of surfaces isometric

19. Let S and S̄ two isometric surfaces, that is to say, have a same ds2. Attach to each
point of S the right-handed rectangular trihedral the most general of which the vector
e3 is normal to S. By hypothesis there exists a point correspondence between S and
preserving the ds2. According to an argument made in the resolution of Problem 2,
we can associate each direct trihedral S attached to a direct trihedral attached to S̄
so that we have, by this correspondence, relations ω̄1 = ω1, ω̄2 = ω2. These two
relations give, by exterior differentiation,

ω1 ∧ (ω̄12 = ω12) = 0, ω2 ∧ (ω̄12 = ω12) = 0, (7.89)
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from which we deduce ω̄12 = ω12. Finally the differential system on which the
solution is formed by the linear equations

ω3 = 0, ω̄3 = 0, ω1 = 0,

ω̄1 = ω1, ω̄2 = ω2, ω̄12 = ω12. (7.90)

It is supplemented by exterior differentiation of the above equations, giving the
three quadratic exterior equations

ω1 ∧ω13 +ω2 ∧ω23 = 0,
ω1 ∧ ω̄13 +ω2 ∧ ω̄23 = 0,
ω̄13 ∧ ω̄23 −ω13 ∧ω23 = 0.

(7.91)

All these equations involve the eleven forms ω1, ω2, ω3, ω̄1, ω̄2, ω̄3, ω13, ω23,
ω̄13, ω̄23, ω̄12 −ω12, there are indeed eleven variables as dependent than indepen-
dent: ten elements determine the contact of the two surfaces, its eleventh determines
the correspondence between the tangents to the two surfaces in two corresponding
points.

The integral element two-dimensional generic is given by the relations
ω13 = aω1 +bω2,

ω13 = bω1 + cω2,

ω̄13 = āω1 + b̄ω2,

ω̄13 = b̄ω1 + c̄ω2,

(7.92)

with

āc̄− b̄2 = ac−b2. (7.93)

Note immediately that the relation (7.93) expresses the equality of total curvature
two corresponding points on both surfaces, and the equation ω̄12 = ω12, expresses
the equality of the geodesic curvatures of two corresponding curves (Gauss theo-
rem).

Polar matrix, whose columns correspond to the forms ω13, ω23, ω̄13, ω̄23 is ω1 ω2 0 0
0 0 ω1 ω2

ω23 −ω13 −ω̄23 ω̄13

 ; (7.94)

its rank is equal to 3, number of quadratic equations (7.91), the system is in involu-
tion and its general solution depends on s2 = 1 arbitrary function of two variables.

The one-dimensional solutions features, which reduce to two the rank of the die-
polar are given by equations

ω1.ω13 +ω2.ω23 = 0, ω1.ω̄13 +ω2.ω̄23 = 0; (7.95)
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Singular solutions of the system are those for which the two previous equations
are identities, and are formed by a pair of planes whatsoever; they are trivial. they
exist only when the two surfaces S and S̄ admit two asymptotic lines that match.

20. Search surfaces S̄ isometric to a given surface. The surface S being given,
the closed differential system which gives S̄ is reduced to the equations

ω̄1 = ω1, ω̄2 = ω2,

ω̄3 = 0, ω̄12 = ω12,

ω1 ∧ ω̄13 +ω2 ∧ ω̄23 = 0,
ω̄13 ∧ ω̄23 −K ω1 ∧ω2,

(7.96)

K denotes the total curvature ac−b2 of S.
The integral element two-dimensional generic is given by{

ω̄13 = āω1 + b̄ω2,

ω̄23 = b̄ω1 + c̄ω2,
(7.97)

with

āc̄− b̄2 = K. (7.98)

The matrix for determining polar∣∣∣ ω1

−ω̄23
.

ω2

ω13

∣∣∣= ω1ω̄13 +ω2.ω̄23; (7.99)

rank 2 equals the number of quadratic equations (7.10), the system is in involution
and its general solution depends on two arbitrary functions of one variable.

21. Cauchy problem.
Give us a curve C on the surface S, one can enjoy the indeterminacy of trihedral
attached to different points of S and just keep at each point of a C trihedral whose
vector e1 is tangent to C in one direction chosen as positive on this curve. Let us
now a curve C̄ and trying to attach to each point of C̄ a rectangular trihedral to
obtain a solution of one-dimensional equations (7.96), there will be between C and
C̄ correspond with conservation of arcs elements ds̄ = ds; the vector e1 the trihedral
will be tangent to C̄ in the positive direction, the vector e3 is normal to C̄ and finally
condition ω̄12 = ω12, gives

sin ϖ̄
ρ̄

=
sinϖ

ρ
; (7.100)

the curve C being given, this relations gives ϖ̄ = sinϖ .(ρ/ρ̄); and it must, for the
problem is possible that the curvature 1/ρ̄ of C̄ is less than the geodesic curvature
of C on the surface S. If this condition is satisfied, there are two values for ϖ ad-
ditional one another, which gives for the vector e3 of the trihedral attaches to C̄ in
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two possible positions. One of these positions being chosen, there will be a surface
S̄ and one containing the curve C̄, which carries the normal vector e3 and which is
isometric to S.

The exception is if ā = 0, that is to say, if cos ϖ̄ = 0, the curve C̄ would be, if the
problem is possible, asymptotic line of S . This case would occur have at each point
of the curve C̄ was equal in absolute value than the geodesic curvature of C at the
corresponding point. In this case, there would generally not possible. The relation
(V7.98) indeed gives b̄2 =−K, or b̄ is the geodesic torsion, that is to say by twisting
ordinary, C̄, so it is necessary that the torsion of C̄ is equal to absolute value to the
square root of the total curvature change of sign of the surface S at the corresponding
point of C (Enneper theorem). The characteristics of the surface integral S̄ are not
arbitrary curves.

One can observe that the remaining quadratic equations (7.96) can be written(
ω̄13 +

√
−K ω2

)
∧
(
ω̄13 −

√
−K ω2

)
= 0,(

ω̄13 −
√
−K ω2

)
∧
(
ω̄13 +

√
−K ω2

)
= 0;

(7.101)

they show the two families of characteristics

ω̄13 +
√
−K ω2 = 0, ω13 −

√
−K ω2 = 0,

ω̄13 −
√
−K ω2 = 0, ω̄13 +

√
−K ω2 = 0;

(7.102)

curves of each family satisfy the equation asymptotic on the other hand we have for
the first family

ω1.ω̄23 −ω2.ω̄13 =
√
−K

(
(ω1)2 +(ω2)2), or

1
τ̄
=
√
−K, (7.103)

and for the second

ω1.ω̄23 −ω2.ω̄13 =−
√
−K

(
(ω1)2 +(ω2)2), or

1
τ̄
=−

√
−K. (7.104)

Problem 6. Pairs of surfaces isometric with
conservation of a family of asymptotic lines

22. Will focus on a point of each of the two surfaces a rectangular trihedral whose
directly vector e1 will be tangent to the asymptotic family correspondence stored by
the vector e and which will be normal to the surface so that one has ω̄1 = ω1, ω̄2 =
ω2 (the trihedral is chosen on S, one attached to S is determined). The consideration
of the relations (7.92) and (7.93) the previous number, where a = ā = 0, leads to
equations
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ω̄1 = ω1, ω̄2 = ω2,

ω3 = 0, ω̄3 = 0,
ω̄12 = ω12, ω̄13 = ε ω13, (ε =±1),
ω1 ∧ω13 +ω2 ∧ω23 = 0, ω1 ∧ ω̄13 +ω2 ∧ ω̄23 = 0,
ω2 ∧ω13 = 0, ω12 ∧

(
ω̄23 − ε ω23

)
= 0;

(7.105)

the last equation arises from the exterior differentiation of the equation ω̄13 = εω13.
The generic two-dimensional integral element is given by the relations

ω13 = bω13, ω23 = bω1 + cω2,

ω̄13 = εbω13, ω̄23 = bω1 + c̄ω2,

(c̄− εc)ω12 ∧ω2 = 0.
(7.106)

Two cases are distinguished

1) c̄ = εc. In this case ω̄13 = εω13, ω̄23 = εω23, ω̄12 = ω12, and if ε =+1 families
of the two triples are equal, it is the same on both surfaces S and S̄, if ε = +1
these two surfaces are symmetrical. This solution is trivial.

2) c̄− εc ̸= 0. In this case we have ω12 = hω2; the full two-dimensional element
depends on four arbitrary parameters b,c, c̄,h.

The determinant of the matrix polar, whose columns correspond to the forms
ω13, ω23, ω̄23, ω12, is∣∣∣∣∣∣∣∣∣

ω1 ω2 0 0
εω1 0 ω2 0
ω2 0 0 0
0 −εω12 ω12 −ω̄23 + εω23

∣∣∣∣∣∣∣∣∣= (εc− c̄)(ω2)4. (7.107)

Its rank 4 is equals to the number of quadratic equations (7.106), the system is in in-
volution and its general solution depends on four arbitrary functions of one variable.
The characteristics are the asymptotic lines which correspond to both surfaces.

The surfaces S and S̄ have a simple geometric property, one to be resolved; indeed
when one moves along the asymptotic line ω2 = 0, we have

dA = ds.e1, de1 = ω12.e2 +ω13.e3 = 0. (7.108)

The point A describes a straight line, the vector e1 is constant.

23. Cauchy problem.
There will be a one-dimensional solution of linear equations (7.106) by giving two
oriented curves C, C̄ is corresponding with conservation of curvilinear abscissa. We
focus on each point of a C right-handed trihedral rectangular directly, whose vector
e3 is normal to C, or θ the angle between the vector e1 with the tangent positive C.
The corresponding point of C̄ must be attaching a directly trihedral whose vector e3
is normal to C̄ and the vector e1 makes the same angle θ with the tangent positive
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C̄. To satisfy the last two linear equations (7.106) will require that we have3
sin ϖ̄

ρ̄
=

sinϖ
ρ

,

cos θ̄
cos ϖ̄

ρ̄
− sinθ

(dϖ̄
ds̄

+
1
τ̄

)
= ε cosθ

cosϖ
ρ

− sinθ
(dϖ

ds
+

1
τ

)
.

(7.109)

The two curves oriented C, C̄ being given, and the angle θ , the two preceding
equations determine ϖ and ϖ̄ . If chooses for example θ = π/2, then

d(ϖ̄ − εϖ)

ds
=

ε
τ
− 1

τ
,

tan
ϖ̄ + εϖ

2
=

ϖ̄ + ε ρ
ϖ̄ − ε ρ

. tan
ϖ̄ + ε ϖ

2
,

(7.110)

which gives ϖ̄ +εϖ to an additive constant, then where tan((ϖ̄ +εϖ)/2) to a mul-
tiple of 2π around. The angles ϖ and ϖ̄ given fixed, the two surfaces S and S̄ are
well defined, each point of C by the plane tangent to S the right carrying the vector
e1, the right caused the surface S, the surface S̄ is engendered a similar manner.

Otherwise we could have proceeded by giving arbitrary curves C and C̄ and at
each point of each curve the vector e3 the normal curve, under the only condition
that we has sinϖ/ρ = sin ϖ̄/ρ̄; the angle θ is then determined, after the equations
of (7.109), for its tangent, provided that this angle is not zero is expressed by the
inequality

cos ϖ̄
ρ̄

̸= ε
cosϖ

ρ
. (7.111)

Cauchy-Kowdewski’s theorem fall in default if the normal curvature of C and
C̄ are zero. In this case we know that these two lines should be straight lines such
that the angle which rotates the vector e3 when moving on a certain segment of C̄
is equal to the angle C multiplied by similar relative ε (b̄ = ε b). It is clear that then
the problem has infinitely many solutions.

Remark I. If the surface S is given and the curve C, the corresponding curve C̄, and
the angle ϖ̄ , Are given by two equations 1/ρ̄ , 1/τ̄ , ϖ̄ , dϖ̄/ds̄; we see that the curve
C̄ must satisfy a certain relation between its curvature, its twist and their derivatives
with respect to the arc.

Remark II. Two surfaces can be adjusted without their isometric generation cor-
respond.

3 In after equations (7.27) number 6, was the identity, ω1Φ −ω2Ψ = ω13 F , where F , Φ , Ψ denote
the three basic forms, we deduce ω12 = (1/Rn)ω1 − (1/Tg)ω2, the result is the second equation
(7.109).
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Problem 7. Two isometric surfaces with conservation of line of curvature

24. The equations 
ω̄1 = ω1, ω̄2 = ω2,

ω3 = 0, ω̄3 = 0,
ω̄13 = ω13,

(7.112)

between any two isometric surfaces, add a new equation of the form

ω1.ω̄23 −ω2.ω̄13 = u
(
ω1.ω23 −ω2.ω13

)
, (7.113)

u being an unknown function essentially different from zero. This equation allows
to write {

ω̄13 = uω13+vω1,

ω̄23 = uω23+vω2.
(7.114)

The equations (7.112, 7.114, and 7.112) are the closed differential system to
solve. The integral element two-dimensional generic is given by

Finally the exterior differentiation of equation (7.112) and (7.114) provides the
quadratic equations 

ω1 ∧ω13 +ω2 ∧ω23 = 0,
ω̄13 ∧ ω̄23+ω13 ∧ω23= 0,
ω13 ∧du +ω1 ∧dv = 0,
ω23 ∧du +ω2 ∧dv = 0.

(7.115)

The equations (7.112, 7.114, and 7.115) are the closed differential system to
solve.

The integral element two-dimensional generic is given by
ω13 = aω1 +bω2,

ω23 = bω1 + cω2,

du = u1 ω1 +u2 ω2,

dv = (bu2 − cu1)ω1 +(bu1 −au2)ω2,

(7.116)

with

(au+ v)(cu+ v)−b2a2 = ac−b2; (7.117)

it depends on four arbitrary parameters.
The determinant of the matrix polar, whose columns correspond to the forms

ω13, ω23, du, dv, is
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ω1 ω2 0 0

ω23 −u ω̄23 −ω13 +u ω̄13 0 0
−du 0 ω13 ω1

0 −du ω23 ω2

∣∣∣∣∣∣∣∣∣= (7.118)

=−
(
ω1.ω23 −ω2.ω13

)
.
(

u.
(
ω1.ω̄13 −ω2.ω̄23

)
−
(
ω1.ω13 +ω2.ω23

))
.

Its rank is equal to 4, number of quadratic equations (7.115), the system is in in-
volution and its general solution depends on four arbitrary functions of one variable.

25. The singular solutions are those for which the determinant of the polar array
is identically zero, which gives u =±1, v = 0, then the two surfaces are equal to or
symmetrical: trivial solutions. Must be added the singular solutions from the inde-
terminacy of lines of curvature pair of planes or spheres, are also trivial solutions.

It follows from what precedes that the surfaces S who has the property that there
exists an isometric surface S̄ of S with preservation of lines of curvature without
being equal to S or symmetric with S, are extraordinary.

The characteristics are:

1) The two families of lines of curvature which correspond to both surfaces;
2) Defined by the two families

u.
(
ω1.ω̄13 −ω2.ω̄23

)
= ω1.ω13 +ω2.ω23; (7.119)

these two families are not in general true. In fact the discriminant of the quadratic
form

u.
(
ω1.ω̄13 −ω2.ω̄23

)
−ω1.ω13 +ω2.ω23 = (7.120)

= (u2 −1).
(
a(ω1)2 +2bω1.ω2 + c(ω2)2)+uv

(
(ω1)2 +(ω2)2),

is

(u2 −1)2b2 − ((u2 −1)a+uv)((u2 −1)c+uv) = (7.121)

= (u2 −1)2(b2 −ac)− (u2 −1)uv(a+ c)−u2v2;

taking into account the relation (7.117), is discriminant reduced to −v2 < 0.

26. Cauchy problem.
Look for a solution to one dimension of system of equations (7.112) and (7.114).
It can be assumed, because of the uncertainty attached to surfaces of the trihedral S
and S̄, which was ω2 = 0 to this solution. So we will take two oriented curves C and
C̄ preserving correspondence with the arcs (ds̄ = ds). At each point of each curve
we attach a trihedral whose vector e1 is tangent to the curve in the positive direction.
We will then
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sin ϖ̄
ρ̄

=
sinϖ

ρ
,

cos ϖ̄
ρ̄

= u
cosϖ

ρ
+ v, (7.122)

dϖ̄
ds̄

+
1
τ̄
= u

(dϖ
ds

+
1
τ

)
.

We see that the choice of vectors e3 is subject to one condition

sin ϖ̄
ρ̄

=
sinϖ

ρ
; (7.123)

functions u and o are then determined along C and C̄ by the other two equations
which exclude essentially the lines of curvature. These data clearly determine the
surfaces S and S̄. We see that they involve five arbitrary functions of one variable
(two arbitrary functions for each curve and an arbitrary function of the angle ϖ),
but if you do restricted by take the curve C in a given plane, it only four arbitrary
functions, according to the result obtained above.

Now consider the case where the Cauchy-Kowalewski theorem fall in default. In
this case it was necessary conditions

sin ϖ̄
ρ̄

=
sinϖ

ρ
,

dϖ̄
ds̄

+
1
τ̄
= 0,

cos ϖ̄
ρ̄

= u
cosϖ

ρ
+ v,

dϖ
ds

+
1
τ
= 0.

(7.124)

Equations (7.116) also show that in our case (ω2 = 0, b = 0) we must have cdu+
dv = 0 along the lines C and C̄. Now we

a =
cosϖ

ρ
, b =

cos ϖ̄
ρ̄

, v = ā−ua, (7.125)

then, according to (7.117), ā(cu+ v) = ac; we deduce easily that

c =
ā(ā−au)

a− āu
; (7.126)

by replacing v and c by their values in the equation dv+ cdu = 0, we obtain, to
determine the function u, the Riccati equation

(ā2 −a2)
du
ds

+ ā
da
ds

u2 −
(

a
da
ds

+ ā
dā
ds̄

)
u+a

dā
ds̄

= 0. (7.127)

Note that the two curves C and C̄ can not be chosen arbitrarily, they depend in
general only three arbitrary functions of one variable can be given arbitrarily de-
pending on the angles ϖ and ϖ̄ and the geodesic curvature common 1/Rg; curva-
tures and torsions are then determined according to s.

27. Another method
The calculations become easier if we attach to each point of S the Darboux trihedral
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whose vectors e1 and e2 are carried by the principle tangents, in limiting ourselves
to naturally stay in areas without umbilicus. We may from equations

ω̄1 = ω1, ω̄2 = ω2, ω3 = 0,
ω̄3 = 0, ω̄12 = ω12, ω13 = aω1,

ω̄23 = cω2, ω̄13 = taω1, ω̄23 =
c
t

ω2,

(7.128)

whose last two express equal total curvature two corresponding points on both sur-
faces.

The system was closed by exterior differentiation, hence the new equations are

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,

ω2 ∧dc+(a− c)ω1 ∧ω12 = 0,

ω1 ∧d(ta)+
(

ta− c
t

)
ω2 ∧ω12 = 0,

ω2 ∧d
(c

t

)
+
(

ta− c
t

)
ω1 ∧ω12 = 0.

(7.129)

May be modified last two equations taking into account the first two, which gives
the equivalent equations

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,

ω2 ∧da+(a− c)ω1 ∧ω12 = 0,

ω1 ∧
( t dt

1− t2 +
c
a

da
a− c

)
= 0,

ω2 ∧
( t dt

t(1− t2)
− a

c
dc

a− c

)
= 0.

(7.130)

The characteristics are as shown in an easy calculation, data by the equation

ω1 ∧ω2 ∧
(
(ω1)2 + c2 (ω2)2)= 0. (7.131)

there are two families of lines of curvature and two imaginary families.

28. This method has the advantage of leading quickly to the system which gives
differential S̄ isometric surfaces of a given surface S, with matching lines of curva-
ture, without that S̄ is equal or symmetrical to S. The surface S is given, we have in
fact simply to ascertain the unknown with the condition t2 ̸= 1. The last two equa-
tions (7.130) represent the differential sought system in which a and c are given. If
we assume, for the surface S,

ω12 = hω1 + k ω2, (7.132)

the first two equations (7.129) give us

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



7.2 The fundamental theorems of the theory of surfaces 129

a2 = (a− c)h, c1 = (a− c)k, (7.133)

by appointing a2 the second covariant derivative of a (da = a1ω1 + a2ω2) and c1
the first covariant derivative c. The last two equations (7.130) we then give

t dt
1− t2 = t

t a
c

k ω1 − c
a

ω2 = t2 ω1 −ω2, (7.134)

asking to shorten

t a
c

k ω1 = ϖ1,
c
a

hω2 = ϖ2. (7.135)

The exterior differentiation of (7.134) gives

t2
{

dω1 −2ϖ1 ∧ϖ2
}
= dϖ2 −2ϖ1 ∧ϖ2. (7.136)

The coefficient of t2 in the first member is known, represent it as Aω1 ∧ω2, the
second member is also known, is Bω1 ∧ω2. That said, if A and B are zero or one
nor the other, the differential system can not admit that the solution t2 = B/A. In
general it will not be a solution, because we know that the problem is possible only
for a restricted class of surfaces S. It may happen that t2 = B/A is actually a solution
and then it will be the unique solution of the problem, however if B ̸= A.4 If A =
B = 0, equation (7.134) is completely integrable, in which case there is an infinity
of surfaces S̄ essentially dependent on an arbitrary constant (essentially means a
displacement close).

The surfaces S for which this feature is present are characterized by the property
that the two forms

ϖ1 =
a
c

k ω1, ϖ2 =
c
a

hω2, (7.137)

satisfy the two relations

dϖ1 = dϖ2 = 2ϖ1 ∧ϖ2. (7.138)

especially the form ϖ1 −ϖ2 is an exact differential.
These surfaces can be determined. Using relations

dω1 = hω1 ∧ω2, dω2 = k ω1 ∧ω2, (7.139)

we find that (h
a

)
1
=

hk
c
,

(k
c

)
2
=−hk

a
. (7.140)

4 In reality there will be two solutions corresponding to two symmetric surfaces S from each other.
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Continuing the calculations5, we find hk = 0.
For example, let k = 0. We have d(h/a) = λ ω2.
However, the exterior differentiation of the equation ω12 = hω2 gives h2 = ac+

h2, and as a2 = (a− c)h, it follows

λ = c
(

1+
h2

a2

)
. (7.141)

The closed differential system which defines the class of surfaces S is regarded
then 

ω3 = 0, ω13 = aω1,

ω23 = ω2, ω12 = hω1,

d
(h

a

)
+ c
(

1+
h2

a2

)
ω2 = 0,

ω1 ∧da−h(a− c)ω1 ∧ω2 = 0,

ω2 ∧dc = 0.

(7.142)

It is in involution and its general solution depends on two arbitrary functions of one
variable, and characteristics are the two families of lines of curvature.

29. We can geometrically characterize these surfaces. Note first that the lines of
curvature of the second family (ω1 = 0) are geodesics (ω12 = 0) and are plane
because by moving along one of them was

dA
ds

= e2,
de2

ds
= ce3,

de3

ds
=−ce2. (7.143)

c is its curvature; dc is a multiple of ω2, all these planar geodesic are equal. The
plans of these various lines of curvature envelop a developable surface, the surface
is generated by a flat line Γ whose plane rolls without slipping on a developable sets
(each point Γ moves normal to the plane of the valley). Since the vector normal to
the plane e1 of the curve for differential (he2 + ae2)ω1, it follows that the charac-
teristic plane Γ is in the plane Ae2e3, the vector perpendicular to the he2 + ae3;
the generatrix of the envelope developable surface of the plane of Gamma is a
straight line parallel to the vector e2 − (h/a)e3. As the differential of this vector is
c(h/a)(e2 − (h/a)e3)ω2, it follows that the generator of the developable has a fixed
direction. The plane Γ of a cylinder envelope so, so that the surfaces are sought-
molding surfaces, which do depend on two arbitrary functions of a variable.

We therefore arrive at the following conclusion. The surfaces S such that there
exists a surface S̄ with conservation of isometric lines without curvature S̄ is equal
to S or are symmetric to S exceptional, forming a dependent class of four arbitrary
functions of one variable. The corresponding surface S̄ is generally unique to a dis-

5 The differential system which gives the sought surfaces by simply using the results we just
obtained is not in involution, that is, applying the method of extension specified in Chapter 6 we
find the relation hk = 0.
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placement or near symmetry, and there-except for molding-surfaces, for which the
surfaces depends, has a displacement and a near symmetry, an arbitrary constant.

Problem 8. Two isometric surfaces with preservation of principal curvatures

30. It is sufficient that the mean curvature is preserved. If we use the same rectan-
gular trihedral than in the previous problems, we have the equations

ω̄1 = ω1, ω̄2 = ω2, ω1 = 0, ω̄3 = 0, ω̄12 = ω12. (7.144)

As on the other hand

ω1 ∧ω23 −ω2 ∧ω13 = (a+ c)ω1 ∧ω2

=
( 1

R1
+

1
R1

)
ω1 ∧ω2, (7.145)

the differential system which expresses the closed conditions of the problem is ob-
tained by adding to equations (7.144) quadratic equations

ω1 ∧ω13 +ω2 ∧ω23 = 0,
ω1 ∧ ω̄13 +ω2 ∧ ω̄23 = 0,
ω̄13 ∧ ω̄23 − ω̄13 ∧ω23 = 0,
ω1 ∧ (ω̄23 − ε ω23)−ω2 ∧ (ω̄13 − ε ω13) = 0, (ε =±1).

(7.146)

The double sign is that the principal radii of curvature of both surfaces can be
worn in different directions on the vectors e3 attached to the surfaces S and S̄. Can
be reduced to the remainder ε = 1 case, the solutions of case ε =−1 being deduced
if the solutions ε =+1 by symmetry of the surface S̄ with respect to a plane.

The integral element two-dimensional generic is given by{
ω13 = aω1 +bω2, ω23 = bω1 + cω2,

ω̄13 = āω1 + b̄ω2, ω̄23 = b̄ω1 + c̄ω2,
(7.147)

with

āc̄− b̄2 = ac−b2, ā+ c = a+ c; (7.148)

it depends on four arbitrary parameters.
The determinant of the matrix polar, whose columns correspond to the forms,

ω13, ω23, ω̄13, ω̄23 is
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ω1 ω2 0 0
0 0 ω1 ω2

ω23 −ω13 −ω̄23 ω̄13

ω2 −ω1 −ω2 ω1

∣∣∣∣∣∣∣∣∣= (7.149)

=
(
(ω1)2 +(ω2)2

)
.
(

ω1.
(
ω13 − ω̄13

)
+ω2.

(
ω23 − ω̄23

))
.

The rank of the matrix being equal to 4, number of quadratic equations (7.6), the
system is in involution and its general solution depends on four arbitrary functions
of one variable.

Singular solutions. They correspond to a = ā, b = b̄: c = c̄, that is to say ω13 = ω̄13,
ω23 = ω̄23. They are supplied by two equal or symmetrical surfaces (ε =−1). These
are trivial solutions.

The real characteristics are provided by the pairs of corresponding curves have
the same normal curvature.

31. Cauchy problem. Any solution of a dimension system (7.50) is obtained by
taking two curves C and C̄ oriented with conservation corresponding to arcs and by
attaching to these curves of rectangular trihedral whose vector e1 is raised by the
tangent b-positive the curve, the vectors e3 being chosen so as to satisfy the relation

sin ϖ̄
ρ̄

=
sinϖ

ρ
; (7.150)

such a solution depends on five arbitrary functions of one variable. It is characteristic
if it has at the same time

cos ϖ̄
ρ̄

=
cosϖ

ρ
; (7.151)

that is to say if the curvature is the same function of the curvilinear abscissa for both
curves. We will then take ϖ̄ = ϖ . Moreover, the equalities

a = ā, ā− c̄ = a+ c, āc̄− b̄2 = ac−b2, (7.152)

leads

c = c̄, b̄ =±b. (7.153)

the two curves have therefore the torsions geodesic equal to or opposed. This is a
new condition which must be satisfied that the two curves for the Cauchy problem
is possible (See the problem VIII, who was asked by O. Bonnet, an article by E.
Cartan [8]).

Problem 9. Pairs of surfaces point correspondence
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to the lines of curvature and the principal curvatures

32. We will explain the problem by requesting that the correspondence between
the two surfaces preserves the mean curvature and total curvature.

We will attach to each point on the surface S a directly Darboux trihedral6, we
can then attach in a one way and only one at the corresponding point of the surface
S a Darboux trihedral as it has

ω3 = 0, ω̄3 = 0, ω̄1 = uω1, ω̄2 = vω2, (u > 0, v > 0). (7.154)

That being so, two essentially distinct cases are considered according to the prin-
cipal curvatures are the same for lines of curvature which correspond to both sur-
faces, or after these principal curvatures are exchanged between the two families of
lines of curvature when passing from one surface to another.

33. First problem. It will add to the equations (7.154) the equations

ω13 = aω1, ω23 = cω2, ω̄13 = εa ω̄1, ω̄23 = εc ω̄2, (ε =±1), (7.155)

then the equations are derived from (7.154) and (7.154) by exterior differentiation.
These new equations are

ω1 ∧du+ω2 ∧
(
uω12 − v ω̄12

)
= 0,

ω2 ∧dv+ω1 ∧
(
u ω̄12 − vω12

)
= 0,

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,
ω2 ∧dc+(a− c)ω1 ∧ω12 = 0,
ω̄1 ∧da+(a− c) ω̄2 ∧ ω̄12 = 0,
ω̄2 ∧dc+(a− c) ω̄1 ∧ ω̄12 = 0.

(7.156)

Subtracting the fifth equation multiplied by u the third and sixth equation of the
fourth multiplied by v, we obtain relations

ω2 ∧
(
uω12 − v ω̄12

)
= 0, ω1 ∧

(
u ω̄12 − vω12

)
= 0. (7.157)

This allows to write the six quadratic equations in the form
ω2 ∧

(
uω12 − v ω̄12

)
= 0, ω1 ∧du = 0,

ω1 ∧
(
u ω̄12 − vω12

)
= 0, ω2 ∧dv = 0,

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,
ω2 ∧dc+(a− c)ω1 ∧ω12 = 0.

(7.158)

Equations (7.154, 7.155, and 7.159) are the differential system closed the first
problem.

6 This implies that we only consider portions of the surface no umbilicus.
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The determinant of a matrix whose columns are polar forms of du, dv, ω12, ω̄12
da, dc is, all calculations, given by

∆ = (a− c)2(u2 − v2)(ω1)3(ω2)3. (7.159)

Its rank is equal to 6, number of quadratic equations (7.159), the system is in
involution and its general solution depends on six arbitrary functions of one variable.

Singular solutions. As a− c is assumed to be essentially different from zero, the
singular solutions are those for which u2 = v2 or u− v, since u and v are two func-
tions essentially positive. The first two equations (7.159) then give the du = 0 and
the next two give ω̄12 = ω12, hence, by exterior differentiation,

ω̄13 ∧ ω̄23 = ω13 ∧ω23, (7.160)

or

(u2 −1)ac = 0. (7.161)

If we leave the cete developable surfaces, we find u = 1, the equalities

ω̄1 = ω1, ω̄2 = ω2, ω̄12 = ω12, ω̄13 = ε ω13, ω̄23 = ω23, (7.162)

then show that the two surfaces are equal or symmetrical: trivial solution.
Thus we see that the surfaces S such that there exists a surface S̄ may, without

being either symmetrical to S, or equal to S, to be matched with point S with preser-
vation lines of curvature, mean curvature and the total curvature are exceptional:
they are a class of six arbitrary functions depending on a variable.

Characteristics, according to (7.162), are lines of curvature.

34. Cauchy problem. Any solution to one dimension of equations (7.154) and
(7.155) consists of two families of rectangular trihedral attached to two curves C and
oriented C̄ and four functions u,v,a,c, each trihedral is determined by the vector e3
normal to the corresponding curve and the angle θ is that the positive tangent to the
curve with the vector e1. We then. from (7.27) and (7.31) of No. 6, relations

cosθ ds̄ = ucosθ ds, sinθ ds̄ = vsinθ ds,

cosϖ
ρ

= a cos2 θ + c sin2 θ ,
dϖ
ds

+
1
τ
= (c−a) sinθ cosθ , (7.163)

cos ϖ̄
ρ̄

= ε
(

a cos2 θ̄ + c sin2 θ̄
)
,

dϖ̄
ds

+
1
τ̄
= ε(c−a) sinθ cos θ̄ .

We arbitrarily give the law of point correspondence between C and C̄, that is to
say ds̄/ds = w. We will then
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u =
wcos θ̄
cosθ

, v =
wsin θ̄
sinθ

; (7.164)

functions a, c, θ , θ̄ will be determined by the last four relations, where the angles ϖ
and ϖ̄ are known by the position vectors e3 attached to the trihedral of two curves.
We see that the data depend on seven arbitrary functions of one variable (the two
curves, the angles ϖ and ϖ̄ and the function w). This agrees with the degree of
arbitrariness of the general solution of the problem as a solution to the problem
being given, we can take to curve section C of S given by a fixed plane.

The Cauchy-Kowalewski theorem falls into default if the curve C is line of cur-
vature of S, that is to say, if θ = 0 or π/2 (θ then has the same value). For example,
assume θ = 0, ω2 = ω̄2 = 0. Equations (7.156) then show that one must have, for
the possibility of the problem,

dv = 0, ,ω12 − v ω̄12 = 0. (7.165)

The data in this case are as follows. We must have

u =
ds̄
ds

, a =
cosϖ

ρ
= ε

cos θ̄
ρ̄

,
dϖ
ds

+
1
τ
= 0,

dv = 0,
sinϖ

ρ
= v

sin θ̄
ρ̄

,
dϖ̄
ds̄

+
1
τ̄
= 0. (7.166)

Let-denote, for example, ϖ and 1/ρ depending on s, the torsion 1/τ of C is given
by 1/τ = −dϖ/ds. Let us then u as a function of s and the constant value m of v.
we will have

tan ϖ̄ =
ε
m

tanϖ ,
1
ρ̄
= ε

cosϖ
sin ϖ̄

1
ρ
,

1
τ̄
=

−1
u

dϖ̄
ds

, (7.167)

which gives ϖ̄ , 1/ρ̄ and 1/τ̄ as a function of s̄. Finally we give an arbitrary c as
a function of s. The characteristic solution thus obtained depends on four arbitrary
functions of s, namely ϖ , 1/ρ , u and c. It is clear that there will be solutions to
a characteristic dimension which correspond infinitely many solutions of the given
problem.

35. Particular case: Surfaces admitting a family of lines of curvature of geodesic
forms.
If the second family of lines of curvature of a surface S is formed of geodetic there
will be a relation of the form

ω12 = hω1. (7.168)

as dω2 = ω1 ∧ω12 = 0, the form ω2 is an exact differential dβ . As we saw earlier
(No. 29), the lines of curvature of this family are all flat and equally between them;
the surface S is generated by a flat plane Γ whose plane rolls without sliding on a
fixed developable.
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If such a surface belongs to the class that we consider, the surface S̄ will be given
by the system 

ω̄1 = uω1, ω̄13 = εa ω̄1, ω̄3 = 0,
ω̄2 = vω2, ω̄23 = εc ω̄2,

ω1 ∧du = 0, ω1 ∧
(
u ω̄12 − vω12

)
= 0,

ω2 ∧dv = 0, ω2 ∧
(
uω12 − v ω̄12

)
= 0.

(7.169)

In the second last of these equations and equation (7.168) it follows that ω̄12 is
proportional to ω1 and the last equation (7.169) results

ω̄12 =
u
v

ω12 =
h
v

ω1. (7.170)

The surface S, if it exists, has also his second family of lines of curvature of
geodesics formed. The functions u and v are given by the system

ω1 ∧du = 0, ω2 ∧dv = 0, ω̄12 =
u
v

ω12 (7.171)

hence, by exterior differentiation

hω1 ∧dv+acv(v2 −1)ω1 ∧ω2 = 0. (7.172)

We deduce from these equations

dv = ac
v(1− v2)

h
ω2. (7.173)

As ω2 ∧dc = 0, we see that two cases are possible:

1) ω2∧d(a/h)= 0. In this case equation (7.173) is completely integrable for v gives
a function that depends on an arbitrary constant, the equation ω1 ∧ du = 0 then
gives u for an arbitrary function of the parameter lines of curvature of the first
family of the surface S. There is then an infinity of surfaces S̄ with forming S a
pair of surfaces satisfying the conditions of the problem.

2) ω2 ∧d(a/h) ̸= 0. In this case the equation (7.173) has the unique solution v = 1,
and can still take for u an arbitrary function of the parameter lines of curvature
of the first family of S, of the existence of yet oh an infinity of surfaces S̄.

The first case is that of surface-molding.

36. Second problem. We start from equations (7.154) which one must add the
equations

ω̄13 = aω1, ω̄23 = cω2, ω̄13 = εcω1, ω̄23 = εaω2, (ε =±1) (7.174)

and quadratic equations
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ω1 ∧du+ω2 ∧
(
uω12 − v ω̄12

)
= 0,

ω2 ∧dv+ω1 ∧
(
u ω̄12 − vω12

)
= 0,

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,
ω2 ∧dc+(a− c)ω1 ∧ω12 = 0,
ω̄1 ∧da+(a− c) ω̄2 ∧ ω̄12 = 0,
ω̄2 ∧dc+(a− c) ω̄1 ∧ ω̄12 = 0.

(7.175)

The determinant of the polar array whose columns correspond to the forms du,
dv, ω12, ω̄12, da, dc, is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 0 uω2 −vω2 0 0
0 ω2 −vω1 uω170 0
0 0 (a− c)ω2 0 ω1 0
0 0 (a− c)ω1 0 0 ω2

0 0 0 −(a− c) ω̄2 0 ω̄1

0 0 0 −(a− c) ω̄1 ω̄2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= (a− c)2 ω1.ω2.
(
(ω1)2.(ω̄1)2 − (ω2)2.(ω̄2)2

)
. (7.176)

The rank of the matrix being equal to 6, number of quadratic equations (7.175),
the system is in involution and its general solution depends on six arbitrary functions
of one variable. As a− c is essentially zero, and lee functions u and v, there is no
singular solution. The characteristics are lines of curvature and the two families give
lineage by

ω1.ω̄1 −ω2.ω̄2 = 0 or u(ω1)2 − v(ω2)2 = 0, (7.177)

there are two other characteristics of families, but they are imaginary.

37. Cauchy problem. The formulas in the first problem for the formulation of the
Cauchy problem is here replaced with the following

ds̄cos θ̄ = uds cosθ , ds̄sin θ̄ = vds sinθ ,

dϖ
ds

+
1
τ
= (c−a) sinθ cosθ ,

cosϖ
ρ

= a cos2 θ + c sin2 θ , (7.178)

dϖ̄
ds̄

+
1
τ̄
= ε(c−a) sin θ̄ cos θ̄ ,

cos ϖ̄
ρ̄

= ε
(
c cos2 θ̄ +a sin2 θ̄

)
,

We will arbitrarily two curves C and C̄, and the angles ϖ and ϖ̄ the law of point
correspondence between them, that is to say the function ds̄/ds = w. We will then

u = w
cos θ̄
cosθ

, v = w
sin θ̄
sinθ

, (7.179)
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functions a, c, θ , θ̄ will be determined by the last 4 relations.
The Cauchy-Kowalewski theorem falls in default or if the curve C is line of

curvature of S, or if one has such
√

u cosθ =
√

v sinθ .
Let us look first the former case and assume, to fix the ideas, θ = 0, where θ̄ = 0.

the equations

ds̄ = uds, a =
cosϖ

ρ
, a = ε

cos ϖ̄
ρ̄

,
dϖ
ds

+
1
τ
= 0,

dϖ̄
ds̄

+
1
τ̄
= 0, (7.180)

we should add new relations to ensure that the problem is possible. Relations (7.175)
is deduced in effect

ω2 ∧
(

da+dc+(a− c)
dv
v

)
= 0, (7.181)

we should have along C

dv
v
+

da+dc
a− c

= 0. (7.182)

Let us, for example u, ϖ and 1/ρ as a function of s, the curve C will be deter-
mined by its curvature and torsion equal to −dϖ/ds. The function s̄ is known, let us
ϖ and 1/ρ̄ as a function of s̄; torsion 1/τ̄ is determined. When the function u will
be determined at a constant factor; the data dependent and five arbitrary functions
of one variable.

Now consider the second case, or assumed
√

ucosθ =
√

vsinθ , or
√

uω1 =√
vω2. Equations (7.175) is drawn equation(√

uω1 −
√

vω2)∧ (vda+udc+(a− c)
√

uv(ω̄12 −ω12)
)
= 0. (7.183)

To equations (7.178) should therefore be added to equation

vda+udc+(a− c)
√

uv(ω̄12 −ω12)
)
= 0. (7.184)

Then we can give the curve C and the functions ϖ , u, v as a function of S. we will
have

tanθ =

√
u
v
, tan θ̄ =

√
v
u
, ds̄ =

√
uvds, (7.185)

where θ , θ̄ , s̄; as to the functions a and c, they will be given by the equations

av+ cu
u+ v

=
cosϖ

ρ
, (c−a)

√
uv

u+ v
=

dϖ
ds

+
1
τ
, (7.186)

Finally, the curve C̄ and the angle ϖ̄ will be given by the equations
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cos ϖ̄
ρ̄

= ε
av+ cu
u+ v

,
dϖ
ds

+
1
τ
= ε(a− c)

√
uv

u+ v
(7.187)

and the value of sin ϖ̄/ρ̄ will be derived from equation (7.184). The data dependent
thus five arbitrary functions of one variable.

We leave aside the determination of the surface S̄ when we know the surface S.

Problem 10. Couples of surfaces in point correspondence
with preservation of geodesic torsion curves

38. We have excluded the trivial case of planes and spheres. The geodesic torsion
being the ratio

ω1.ω23 −ω2.ω13

(ω1)2 +(ω2)2 , (7.188)

each form of the numerator and denominator must, from the first surface S to the sec-
ond surface S̄ to reproduce, even multiplied by a factor (the sign). the two surfaces
are in line representation. Attach to different S pointed to the rectangular trihedral
directly subject to the sole condition that the vector e3 is the surface normal; will
strive to corresponding points of S̄, without ambiguity, the corresponding trihedral
so as to have

ω̄1 = uω1, ω̄2 = uω2, (u > 0); (7.189)

we must then have

ω1.ω̄23 −ω2.ω̄13 = εu
(
ω1.ω̄23 −ω2.ω̄13

)
, (ε =±1); (7.190)

from which

ω̄13 = εu(ω13 + vω1), ω̄23 = εu(ω23 + vω2). (7.191)

Finally the problem of closed differential system proposed will consist of the
equations

ω3 = 0, ω̄1 = uω1, ω̄13 = εu
(
ω13 + vω1),

ω̄3 = 0, ω̄2 = uω2, ω̄23 = εu
(
ω23 + vω2), (7.192)

and exterior quadratic equations
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ω1 ∧ω13 +ω2 ∧ω23 = 0,

ω1 ∧ du
u

+ω2 ∧
(
ω12 − ω̄12

)
= 0,

ω2 ∧ du
u

−ω1 ∧
(
ω12 − ω̄12

)
= 0,

ω1 ∧dv+ω13 ∧
du
u

+ω23 ∧
(
ω12 − ω̄12

)
= 0,

ω2 ∧dv+ω23 ∧
du
u

−ω13 ∧
(
ω12 − ω̄12

)
= 0.

(7.193)

The generic two dimensional integral element is given by the equations

ω13 = aω1 +bω2,

ω23 = bω1 + cω2,

du
u

= α ω1 +β ω2,

ω12 − ω̄12 = β ω1 −α ω2,

dv =
(
(a− c)α +2bβ

)
ω1 +

(
2bα +(c−a)β

)
ω2,

(7.194)

it depends on five arbitrary parameters a, b, c, α , β . The system is in involution
and its general solution depends on five arbitrary functions of one variable if the
determinant of the polar array is not identically zero. But this determinant, whose
columns correspond to the forms ω13, ω23, du/u, ω12 − ω̄12, dv, is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 0 0 0
0 0 ω1 ω2 0
0 0 ω2 −ω1 0

−du
u

ω̄12 −ω12 ω13 ω23 ω1

ω12 − ω̄12 −du
u

ω23 −ω13 ω2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

du
u
.
(
(ω1)2 +(ω2)2), (7.195)

it is not identically zero. The actual characteristics of general solutions are one fam-
ily characterized by the constancy of the function u.

39. Cauchy problem. Leaving aside for now the singular solutions of the problem
proposed, let’s get to the Cauchy problem on general solutions. Presumably for a
one-dimensional solution (Cauchy data) system (7.192), was ω2 = 0. We then have
for the couple of curves corresponding C, C̄ and the couple of developable circles
Σ , S̄igma,

ds̄ = uds,
cos ϖ̄

ρ̄
= ε
(cosϖ

ρ
+ v
)
,

dϖ̄
ds̄

+
1
τ̄
= ε
(dϖ

ds
+

1
τ

)
. (7.196)

More simply we will arbitrarily two curves and two developable; the point cor-
respondence between the two curves will be that which achieves equality, around
with the sign s, the geodesic torsion; we will thus have the function u = ds̄/ds along
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curves, and the function v is the difference (ε = 1) or sum (ε = −1) of the normal
curvatures in two corresponding points of two curves. The data depend on six arbi-
trary functions, which are reduced to five if we take the C section of the surface S
by a given plane.

The Cauchy-Kowalewski Theorem falls in default if the data are characteristic,
that is to say, if the function u is constant, equal to m for example. In this case
we have an additional condition for the data. The coefficient alpha of the formulas
(7.194) being zero, we must have along the curve C

dv = 2b
(
ω12 − ω̄12

)
, (7.197)

or

dv
ds

= 2
(dϖ

ds
+

1
τ

)
.
( sinϖ

ρ
−m

sin ϖ̄
ρ̄

)
. (7.198)

The data are no longer dependent while four arbitrary functions of one variable,
the curve C and being developable Σ data (three arbitrary functions), functions 1/ρ̄ ,
1/τ̄ , ϖ̄ of s̄ are linked by a finite relation and a differential equation.

If the surface S is given, the surface is determined by the S̄ system formed the
last five equations (7.192) and the last four equations (7.193). This system is not
in involution, in the most favourable case the surface S depends, to a displacement
around, five arbitrary constants; would still have to ensure that this case can actually
occur.

39. Singular solution. Singular solutions of the system (7.192 and 7.193) are those
for which the function u is a constant m. Equations (7.193

ω̄12 −ω12 = 0, dv = 0, (v = n), (7.199)

and, by exterior differentiation,

ω̄13 ∧ ω̄23 −ω13 ∧ω23 = 0. (7.200)

The closed differential system which gives singular solutions is then

ω3 = 0, ω̄1 = mω1, ω̄12 = ω12,

ω̄3 = 0, ω̄2 = mω2, (7.201)

ω̄13 = εm
(
ω13 +nω1), ω̄23 = εm

(
ω23 +nω2),

ω1 ∧ω13 +ω2 ∧ω23 = 0, ω̄13 ∧ ω̄13 −ω13 ∧ω23 = 0,

This system is in involution and its general solution depends on two arbitrary
functions of one argument. Characteristics are given by the equation

ω̄1 ∧ ω̄13 + ω̄2 ∧ ω̄23 = ω1 ∧ω13 +ω2 ∧ω23, (7.202)
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or further

(m2 −1)
(
ω1 ∧ ω̄13 +ω2 ∧ω23

)
+m2n

(
(ω1)2 +(ω2)2). (7.203)

The last equation (X, 4) shows that the surfaces S are Weingarten surfaces satis-
fying the relation

m2 −1
R1R2

+m2n
( 1

R1
+

1
R2

)
+m2n2 = 0. (7.204)

the corresponding surfaces S̄ satisfy a relation similar where m is replaced 1/m, and
n by −εn. If the surface S is given, the constants m and n are given, the correspond-
ing surfaces S̄ are given by the completely integrable system

ω̄3 = 0, ω̄1 = mω1, ω̄23 = εm
(
ω23 +nω2),

ω̄2 = mω2, ω̄12 = mω12, ω̄13 = εm
(
ω13 +nω1), (7.205)

these surfaces S̄ are completely determined has a displacement or around a symme-
try.

A singular solution of the system (7.192 7.193, and 7.194) is completely deter-
mined by the data of two curves C and C̄ and two developable circles Σ , Σ̄ , satisfying
the conditions

ds̄ = mds,
dϖ
s̄

+
1
τ̄
= ε

(dm
ds

+
1
τ

)
,

sin ϖ̄
ρ̄

=
sinϖ

ρ
cos ϖ̄

ρ̄
= ε

(cosϖ
ρ

+n
)
.

These data are characteristic if one has

cosϖ
ρ

=
m2n

1−m2 ,
cos ϖ̄

ρ̄
= ε

n
1−m2 . (7.206)

Problem 11. Surfaces with the same third fundamental form as a given surface

41. Lines of curvature corresponding to both surfaces, will focus on each point of
a given surface S right-handed Darboux trihedral: it will correspond to the corre-
sponding point of the researched surface S̄ of a Darboux trihedral as it has

ω̄3 = 0, ω̄1 = uω1, ω̄2 = vω2, (u > 0, v > 0), (7.207)

the relation
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ω̄1 ∧ ω̄23 − ω̄2 ∧ ω̄13 = ω1 ∧ω23 −ω2 ∧ω13, (7.208)

leads us to asking, by calling a and c principal curvatures of S,

ω̄13 =
1
v

(
ω13 +wω1) = a+w

v
ω1,

ω̄23 =
1
u

(
ω23 +wω2) = c+w

v
ω2.

(7.209)

Exterior differentiation (7.207) and (7.209) gives the exterior quadratic equations

ω1 ∧du+ω2 ∧
(
uω13 − v ω̄12

)
= 0,

ω2 ∧dv+ω1 ∧
(
u ω̄13 − vω12

)
= 0,

ω1 ∧
(

dw− c+w
u

du− a+w
v

dv
)
= 0,

ω2 ∧
(

dw− c+w
u

du− a+w
v

dv
)
= 0.

(7.210)

It follows the relation

dw =
c+w

u
du+

a+w
v

dv, (7.211)

which, exterior differentiated, gives

dc∧ du
u

+da∧ dv
v
− (a− c)

du
u

∧ dv
v

= 0. (7.212)

Finally, the closed differential system of problem is

ω̄3 = 0, ω̄1 = uω1, ω̄2 = vω2,

ω̄13 =
a+w

v
ω1, ω̄23 =

c+w
u

ω2

dw =
c+w

u
du+

a+w
v

dv,

ω1 ∧du+ω2 ∧
(
uω13 − v ω̄12

)
= 0, (7.213)

ω2 ∧dv+ω1 ∧
(
u ω̄13 − vω12

)
= 0,

dc∧ du
u

+da∧ dv
v
− (a− c)

du
u

∧ dv
v

= 0.

The generic element integral in two dimensions, by putting

da = a1 ω1 +h(a− c)ω2,

dc = k(a− c)ω1 + c2 ω2,
ω12 = hω1 + k ω2, (7.214)

is given by
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dv = γ ω1 +δ ω2,

du = α ω1 +β ω2,
ω12 =

uh−β
v

ω1 +
vk+ γ

u
ω2, (7.215)

where the coefficients α , β , γ , δ are related by the relations

−(a− c)(αδ −βγ)+(a− c)(vkδ −uhγ)+ua1δ − vc2α = 0. (7.216)

The two-dimensional integral element depends on three arbitrary parameters.
As the quadratic equations (7.225) are three in number, the system is in involution

and its general solution depends on three arbitrary functions of an variable.
Characteristics annihilate the determinant of the polar matrix∣∣∣∣∣∣∣∣∣

uω1 0 −vω2

0 vω2 uω2

dc+(a− c)
dv
v

da− (a− c)
du
u

0

∣∣∣∣∣∣∣∣∣=
= u2

(
da− a− c

u
du
)
.(ω2)1 − v2

(
dc+

a− c
v

dv
)
.(ω2)2. (7.217)

42. Singular solutions.
They are given by the two additional equations

du
u

=
da

a− c
,

dv
v

=
dc

c−a
, (7.218)

which, by exterior differentiation, leads to the condition da∧dc = 0 to be satisfied
by the given surface S. It expresses that S is a Weingarten surface. If so, we find,
according to (7.214) and (7.215),

u2

u
=

β
u
=

a2

a− c
= h, where uh = β ,

v2

v
=

γ
v
=

c1

c−a
=−k, where vk+ γ = 0. (7.219)

It was as a result ω12 = 0, where ω13 ∧ω23 = 0. This relation expresses that the
surface is developable S̄; expressions of ω̄13 and ω̄23 given by equations (7.225)
then show that (w+a)(w+ c) = 0, for example

w =−a, ω13 = 0. (7.220)

Was to determine the surface S̄, the system

du
u

=
da

a− c
,

dv
v

=
dc

c−a
,

ω̄13 = 0, ω̄23 =
c−a

u
ω2 ω̄12 = 0. (7.221)
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system is completely integrable. So if S is a Weingarten surface of the system (7.225)
admits singular solutions, consisting of a family of developable surfaces (cylinders
of revolution) depending on arbitrary constants.

43. Generar solution; Cauchy problem.
Give us on the surface S and a curve C trihedral attached thereto. We have a solution
of one-dimensional. system (7.225) giving us a curve C̄ must correspond to C, and
the developable circumscribed Σ̄ of S̄ along to C̄. We have, denoting by θ angle with
the first main tangent S and θ̄ the angle relative to similar C̄

cos θ̄ ds̄ = ucosθ ds, sin θ̄ ds̄ = vsinθ ds,
1

R̄n
=

a+w
uv

cos2 θ̄ +
c+w

uv
sin2 θ̄

=
ds2

ds̄2

(u
v
(a+w)cos2 θ +

v
u
(c+w)sin2 θ

)
,

1
T̄g

=
c−a

uv
sin θ̄ cos θ̄ =

ds2

ds̄2
1
Tg

,

dw
ds

=
c+w

u
du
ds

+
a+w

v
dv
ds

.

(7.222)

In these equations 1/Rn 1/Tg, θ , a, c, are known functions of an s. Moreover we
know in terms of s̄ the curvature 1/ρ̄ , torsion 1/τ̄ , and the angle ϖ̄ . It remains to
determine the functions u,v,w at different points of C̄. We first establish the point
correspondence between C and C̄ by the equation

ds̄2

T̄g
=

ds2

Tg
. (7.223)

We then have

u2 cos2 θ + v2 sin2 θ =
ds̄2

ds
,

u2(a+w) cos2 θ + v2(c+w) sin2 θ =
uv
R̄n

ds̄2

ds
.

(7.224)

Finally we have the differential equation given by the last equation (7.222) to deter-
mine who will complete u,v,w to an arbitrary constant. The data therefore involve
three arbitrary functions, which is consistent with the result obtained above.

We leave aside the determination of characteristic data.

Problem 12. Pairs of surfaces with conservation
of conformal representation asymptotic lines

44. It is evident that the correspondence line, keeping the asymptotic lines, also
keeps the lines of curvature. By attaching to each point of the first surface S the
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cube corner live the most general of which the vector e3 is normal to S, it will match
unambiguously trihedral those attached to S̄ and we shall relations

ω3 = 0, ω̄3 = 0, ω̄1 = uω1, ω̄2 = uω2, (u > 0). (7.225)

thus, we have

ω̄1 ∧ ω̄13 + ω̄2 ∧ ω̄23 = uv
(
ω1 ∧ω13 +ω2 ∧ω23

)
, (7.226)

where

ω̄13 = vω13 +wω2, ω̄23 = vω23 −wω1, (7.227)

but the relation ω̄1 ∧ ω̄13 + ω̄2 ∧ ω̄23 requires w = 0.
The closed system of differential problem is

ω3 = 0, ω̄2 = uω2, ω̄13 = vω13,

ω̄3 = 0, ω̄1 = uω1, ω̄23 = vω23,

ω1 ∧ du
u

+ω2 ∧
(
ω12 − ω̄12

)
= 0,

ω2 ∧ du
u

−ω1 ∧
(
ω12 − ω̄12

)
= 0,

ω13 ∧
dv
v
+ω23 ∧

(
ω12 − ω̄12

)
= 0,

ω23 ∧
dv
v
−ω13 ∧

(
ω12 − ω̄12

)
= 0.

(7.228)

The most general two-dimensional integral element is given by

ω13 = aω1 +bω2,

ω23 = bω1 + cω2,

ω12 − ω̄12 = β ω1 −α ω2,

du
u

= α ω1 +β ω2,

dv
v

= λ ω1 +µ ω2.

(7.229)

with the relations {
aα +bβ − cλ +bµ = 0,
bα + cβ +bλ −aµ = 0,

(7.230)

it depends on five arbitrary parameters, as 5 is the number of independent quadratic
equations system (7.244), the system is in involution and its general solution de-
pends on five arbitrary functions of one variable.

The characteristics are obtained by annihilating the determinant of the polar ma-
trix. This, by matching the shapes ml columns ω13, ω23, ω12 − ω̄12, du/u, dv/v, can
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be written∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 0 0 0
0 0 ω2 ω1 0
0 0 −ω1 ω2 0

−dv
v

ω̄12 −ω12 ω23 0 ω13

ω̄12 −ω12
dv
v

−ω13 0 ω23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
(ω2)1 +(ω2)2)×

×
(dv

v

(
ω1.ω13 +ω2.ω23

)(
ω12 − ω̄12

)
.
(
ω1.ω13 −ω2.ω23

))
. (7.231)

Taking into account equations (7.229), the determinant of the polar matrix is
equal to(

(ω1)2 +(ω2)2).((aλ −bβ )(ω1)3 +(2bλ +aµ +bα +a− cβ ).(ω1)2.ω2

+(2λ +2bµ + c−aα +bβ ).ω1.(ω2)2 +(cµ −bα)(ω2)3
)
. (7.232)

These are obtained by adding four linear equations in α , β , λ , µ to the system
of equations 

aλ −bβ = 0,
2bλ +aµ +bα +(a− c)β = 0
cλ +2bµ +(c−a)α +bβ = 0

cµ −bα = 0,

(7.233)

the determinant of the coefficients of these equations is

(b2 −ac)(4b2 +(a− c)2). (7.234)

Several cases may be distinguished.

1) The determinant is not zero. - We then have α = β = λ = µ = 0, it follows from
(7.229),

du
u

= 0,
dv
v

= 0, ω12 = ω̄12, (7.235)

where, by exterior differentiation,

ω̄13 ∧ ω̄23,−ω13 ∧ω23 = 0, (v2 −1)ω13 ∧ω23 = 0. (7.236)

As b2 − ac was assumed zero, we see that v2 = 1; because the two surfaces are
directly or inversely similar: it is a trivial solution.

2) The determinant is zero and b2 − ac ̸= 0. - Then we have a = c, b = 0, the two
surfaces are planes (a = 0) or spheres. In the first case the solution is trivial in

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



148 7 Differential system, Theory of surfaces

the second case (a ̸= 0) is also, according to (7.233), λ = µ = 0, where dv = 0.
These surfaces are any two spheres is one obvious solution of the problem.

3) The determinant is zero and b2 − ac = 0. - Both surfaces are developable. The
surface S is given, we can assume the trihedral chosen to be b = c = 0, a ̸= 0,
then we have from (7.230) and (7.233),

α = β = λ = µ = 0, (7.237)

functions u, v are constants and ω̄12 = ω12. The surface is then given by the
completely integrable system

ω̄3 = 0, ω̄1 = mω1, ω̄2 = mω2,

ω̄23 = 0, ω̄12 = ω12, ω̄13 = nω13,
(7.238)

where m and n are constants. There exists among the curvilinear abscissa cusp
edges of Γ , =̄Γ of the two surfaces S, S̄, the relationship s̄ = ms. If the curvature
1/ρ of Γ is equal to φ(s), the curvature 1/ρ̄ of Γ̄ the corresponding point is equal
to (1/m)φ(s̄/m); torsion of γ̄ results from torsion of Γ at the corresponding point
in the multiplied by n.

46. Singular solution; Cauchy problem.
It can be assumed for any solution to one dimension of system (7.244) which has
been ω2 = 0. Keeping the notations, we will arbitrarily corresponding to two given
curves C and C̄ and the two circumscribed developable Σ and Σ̄ ,

ds̄ = uds,
cos ϖ̄

ρ̄
= v

cosϖ
ρ

ds,
(dϖ̄

ds̄
+

1
τ̄

)
ds̄ = v

(dϖ
ds

+
1
τ

)
ds. (7.239)

We know 1/ρ , 1/τ and ϖ in terms of s; 1/ρ̄ , 1/τ̄ and ϖ̄ according to s̄. We will
then have the relation between s̄ and s by the equation

1
R̄n

1
T̄g

=
1

Rn

1
Tg

, (7.240)

s̄ being known as a function of s, we have u = ds̄/ds and function in v, deduce
immediately. The solution will be considered one-dimensional characteristic if one
has aλ −bβ = 0, that is to say

1
R̄n

d lnv
ds

− 1
Tg

( 1
Rg

− 1
R̄g

)
= 0, (7.241)

the other hand by eliminating p between the two relations (7.230) we find λ =−α ,
and hence we have the additional condition

d ln(uv)
ds

= 0. (7.242)
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It may give 1/ρ , 1/τ and ϖ and u as a function of s; v will be determined at a nearly
constant factor, we will then 1/ρ̄ , 1/τ̄ and ϖ̄ and then we going to experience 1/R̄n,
1/R̄g and 1/T̄g; that is to say cos ϖ̄/ρ̄ , sin ϖ̄/ρ̄ , and dϖ̄/ds̄+1/τ̄ . The data in this
case will involve not only four arbitrary functions of one variable.

47. Special case. Minimal surface.
If the surface S is minimal, it will be the same for S̄. Relations (7.230) reduce to
λ +α = 0, µ+ ∵= 0, which results in the equation

du
u

+
dv
v

= 0. (7.243)

We then see that the last two quadratic equations (7.244) are consequences of the
previous two. The minimum surface S̄ is given, the surface must satisfy the three
system 

ω̄1 = uω1, ω̄13 =
m
u

ω13, ω̄3 = 0,

ω̄2 = uω2, ω̄23 =
m
u

ω23,

ω1 ∧ du
u

+ω2 ∧
(
ω12 − ω̄12

)
= 0,

ω2 ∧ du
u

−ω1 ∧
(
ω12 − ω̄12

)
= 0.

(7.244)

this system that is in involution and its solution is provided by an arbitrary mini-
mum surface. Two arbitrary minimal surfaces can be mapped in accordance with
correspondence of asymptotic lines and lines of curvature: it is a classical result.

If the surface S is not minimal, the surface S̄, when it exists, depends on more
arbitrary constants.

Problem 13. Pairs of surfaces in point correspondence to the
lines of curvature and the second fundamental form

48. By relating the two surfaces to their trihedral of Darboux, one is led to the
closes following differential system:
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ω3 = 0, ω̄1 = uω1, ω13 = aω1, ω̄13 =
a
u

ω1, (u,v > 0),

ω̄3 = 0, ω̄2 = vω2, ω23 = cω2, ω̄23 =
c
v

ω2,

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,
ω2 ∧dc+(a− c)ω1 ∧ω12 = 0,

ω1 ∧du+ω2 ∧
(

uω12 − vω̄12

)
= 0,

ω2 ∧dv+ω1 ∧
(

u ω̄12 − vω12

)
= 0,

ω1 ∧
(da

a
− du

u

)
+ω2 ∧

(
ω12 −

cu
av

ω̄12

)
= 0,

ω2 ∧
(dc

c
− dv

v

)
−ω1 ∧

(
ω12 −

av
cu

ω̄12

)
= 0.

(7.245)

This system is not in involution, two simple linear combinations lead to quadratic
equations {

ω1 ∧
(
uv(a+ c)ω12 − (av2 + cu2) ω̄12

)
,

ω2 ∧
(
uv(a+ c)ω12 − (av2 + cu2) ω̄12

)
,

(7.246)

where the new equation

(av2 + cu2) ω̄12 = uv(a+ c)ω12, (7.247)

that removes the last two example equations (7.244).
The new system obtained is provided by the equations

ω3 = 0, ω̄1 = uω1, ω13 = aω1, ω̄13 =
a
u

ω1, (u,v > 0),

ω̄3 = 0, ω̄2 = vω2, ω23 = cω2, ω̄23 =
c
v

ω2,

(av2 + cu2) ω̄12 = uv(a+ c)ω12,

ω1 ∧da+(a− c)ω2 ∧ω12 = 0,

ω2 ∧dc+(a− c)ω1 ∧ω12 = 0,

ω1 ∧du+ cu
u2 − v2

av2 + cu2 ω2 ∧ω12 = 0,

ω2 ∧dv+av
u2 − v2

av2 + cu2 ω1 ∧ω12 = 0,[
uv(u2 − v2)(adc− cda)+(a+ c)(av2 − cu2)(udv− vdu)

]
∧ω2

+c(av2 + cu2)
(

uv(a+ c)− av2 + cu2

uv

)
ω1 ∧ω2 = 0.

(7.248)

The generic integral element in two dimensions depends on five arbitrary param-
eters. The system is in involution and its general solution depends on five arbitrary
functions of one variable.

The characteristics are given by the equation
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2uv(u2 − v2)
av2 − cu2

av2 + cu2 ω12.
(
a(ω1)2 − c(ω2)2).ω1.ω2 +

[
uv(u2 − v2)×

× (adc− cda)+(a+ c)(av2 − cu2)(udv− vdu)
]
.(ω1)2.(ω2)2 = 0. (7.249)

Some possibilities have been left coast. We will discard first the case of de-
velopable surfaces. The last linear equation (7.229) could be the identity ei had
a+c = 0, av2+cu2 = 0, the two surfaces would be minimal, with u = v; they would
be consistent with conservation of matching lines asymptotic case studied in the
previous problem.

If we had, av2+cu2 = 0 without a+c = 0, then the form ω12 is zero, and ac = 0,
the case excluded.

46. Singular solution.
Equation (7.230) may be an identity, the form w,, is not identically zero, if one has

(u2 − v2)(av2 − cu2) = 0,
uv(u2 − v2)(adc− cda)+(a+ c)(av2 − cu2)(udv− vdu) = 0.

(7.250)

If v = u, falls on the previous problem, but with an additional condition, how-
ever narrowly, the two surfaces to be exactly the same second fundamental form. If
the surfaces are not minimal, the last linear equation (7.229) shows thatω̄12 = ω12,
where uv(1−uv) = 0 and hence u = 1. Both are equal surfaces, trivial case.

If a2v2 = c2u2, av= εcu and if the surfaces are not minimum, we have ω̄12 =ω12,
where u =

√
a/c, v = ε

√
c/a. Then, The quadratic equations (7.229) show that the

product has a constant value ac. Both are surfaces constant positive curvature, the
same for both surfaces; the principal curvatures are the same in two corresponding
points, but to the tangent of curvature principal principal has in the surface S is the
tangent of principal principal curvature c in S̄ . The surface S being given, the surface
is determined by a displacement.

We leave aside consideration of the Cauchy problem.7

Problem 14. Surfaces S̄ in point correspondence with a given surface S
of way that the lines of curvature of each surface correspond

to the asymptotics of the other.

50. We naturally assume that the surfaces S and S̄ with opposite curvatures and we
shall relate to their Darboux trihedral. On both surfaces correspond to the tangents
harmonics conjugate both with respect to the tangents to the tangents and main
asymptotic tangents represented by the equations

a(ω1)2 − c(ω2)2 = 0, ā(ω̄1)2 − c̄(ω̄2)2 = 0. (7.251)

7 On the determination of surfaces admitting a given second fundamental form, see an article by
E. Cartan [9].
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We get a relation of the form

ā(ω̄1)2 − c̄(ω̄2)2 = ρ
(

a(ω1)2 − c(ω2)2
)
, (7.252)

On the other hand, the equation ω̄1 = 0 that is one of the asymptotic tangents of
S. The result for example, taking into account the above relation,{ √

āω̄1 = λ
(√

aω1 −
√
−cω2

)
,

√
−c̄ω̄2 = λ

(√
aω1 +

√
−cω2

)
,

(7.253)

assuming a > 0, c < 0, ā > 0, c̄ < 0. Is deduced ρ = 2λ 2. As a checking, we have

ω̄1 ∧dā+(ā− c̄) ω̄2 ∧ω12 = 0,
ω̄2 ∧dc̄+(ā− c̄) ω̄1 ∧ω12 = 0,

√
ā ω̄1 ∧

(dλ
λ

+
ā+ c̄
ā− c̄

dā
2ā

)
−H ω̄1 ∧ ω̄2 = 0,

√
−c̄ ω̄2 ∧

(dλ
λ

− ā+ c̄
ā− c̄

dc̄
2c̄

)
−K ω̄1 ∧ ω̄2 = 0.

(7.254)

formulas agree with the statement of the problem.
By adding to the equations (7.256) linear equations

ω̄2 = 0, ω̄12 = ā ω̄1, ω̄23 = c̄ ω̄2, (7.255)

and quadratic equations resulting from the outer exterior differentiation of (7.256)
and (7.255), we obtain { √

āω̄1 = λ
(√

aω1 −
√
−cω2

)
,

√
−c̄ω̄2 = λ

(√
aω1 +

√
−cω2

)
,

(7.256)

The closed system of differential problem is constituted by the equations (7.256,
7.255, and 7.254). We find that

H ω̄1 ∧ ω̄2 = λd
(√

aω1 −
√
−cω2),

= λ
a+ c

2

( h√
a
+

k√
−c

)
ω1 ∧ω2,

=
(a+ c)

√
−āc̄

4λ
√
−ac

( h√
a
+

k√
−c

)
ω̄1 ∧ ω̄2, (7.257)

K ω̄1 ∧ ω̄2 = λd
(√

aω1 +
√
−cω2),

= λ
a+ c

2

( h√
a
− k√

−c

)
ω1 ∧ω2,

=
(a+ c)

√
−āc̄

4λ
√
−ac

( h√
a
− k√

−c

)
ω̄1 ∧ ω̄2,
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where h and k denote the coefficients that enter into the form ω12:

ω12 = hω1 + k ω2. (7.258)

The elements integral to both dimensions of four dependent parameters and the
number of quadratic equations (7.254) being equal to four, the system is in involu-
tion and its general solution depends on four arbitrary functions of one variable.

The characteristics are given by the following equation, obtained by annihilating
the determinant of the polar matrix whose columns correspond to the forms dā, dc̄,
ω̄12, dλ/λ : ∣∣∣∣∣∣∣∣∣∣∣∣

ω̄1 0 ω̄2 0
0 ω̄2 ω̄1 0

1
2
√

ā
ā+ c̄
ā− c̄

ω1 0 0
√

āω1

0
1

2
√
−c̄

ā+ c̄
ā− c̄

ω2 0
√
−c̄ω2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (7.259)

A one factor that is neither zero nor infinite, this equation is

(ā+ c̄) ω̄1.ω̄2.
(
a(ω1)2 − c(ω2)2)= 0. (7.260)

The characteristics of this complete differential system are lines of curvature and
asymptotic lines of integral surfaces.

51. Singular solution.
These are the integral surfaces minimal (ā+ c̄ = 0). The last two equations (7.254)
results, by an easy calculation,

2dλ
λ

=
a+ c√
−ac

(
hω1 + k ω2). (7.261)

The function λ exists only if the second member is an exact differential, if so λ is
defined in an almost arbitrary constant factor. The surface is then S̄ an arbitrary min-
imum area, and the point correspondence between S and S̄ depends on the arbitrary
constant that enters the λ expression. If the minimum surface is S, λ is an arbitrary
constant non-zero.

We will not address the problem of determining the surfaces S for which the
equation (7.261) is completely integrable, that is to say that satisfy the equation

ω1 ∧d
(

h
a+ c√
−ac

)
+ω2 ∧d

(
h

a+ c√
−ac

)
= 0. (7.262)

51. General solution. Cauchy problem. Let correspond to a given line C of S which
is neither a line nor a curve asymptotic line given a line and a barC oriented devel-
opable circumscribed, so that 1/ρ̄ , 1/τ̄ and angle ϖ̄ are functions of data s̄, and also
give us the point correspondence between two curves. Linear equations (7.256) and
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(7.255) provide, by appointing the angles θ and θ̄ which the tangents to the positive
curves C and C̄ with the vectors e1 corresponding

√
ācos θ̄ ds̄ = λ

(√
acos θ̄ −

√
−csinθ

)
ds,

√
−c̄sin θ̄ ds̄ = λ

(√
acos θ̄ +

√
−csinθ

)
ds,

cos ϖ̄
ρ̄

= ācos2 θ̄ + c̄sin θ̄ ,

dϖ̄
ds̄

+
1
τ̄
= (c̄− ā)sin θ̄ cos θ̄ .

(7.263)

The report ds̄/ds being known as θ , we have
√

ācos θ̄ = mλ ,
√
−c̄sin θ̄ = nλ , (7.264)

where m and n have well known by the curve C; We then

(m2 −n2)λ 2 =
cos ϖ̄

ρ̄
, (7.265)

equation which gives λ ; we finally

m2λ 2 tan ϖ̄ +n2λ 2 cot ϖ̄ =−dϖ̄
ds̄

− 1
τ̄
, (7.266)

where θ̄ is drawn; finally we deduce ā and c̄. The one dimensional solution of the
system is thus completely determined. As verification, the data depend effectively
four arbitrary functions of one variable.

Suppose now that the line C is an asymptotic line of S, for example
√

acosθ +
√
−csinθ = 0. (7.267)

Equations (7.263) then give θ̄ = 0 and

√
āds̄ = 2λ

√
acosθ ds,

cos ϖ̄
ρ̄

= ā,

dϖ̄
ds̄

+
1
τ̄
= 0.

(7.268)

There is an additional condition, the last equation (7.254) shows that we must have
along C̄

dλ
λ

− ā+ c̄
ā− c̄

+
(a+ c)

√
ā

4λ
√
−ac

( h√
a
− k√

−c

)
ds̄ = 0. (7.269)

Give us the line C, the third at equation (7.268) gives ϖ̄ a constant, the second
gives ā. If we now give the point transformation between C and C̄, the first equation
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(7.268) is λ , and equation (7.269) gives a differential equation in c̄, allowing the
function to have an arbitrary constant pressure. This time dependent data of three
arbitrary functions of one variable. Assume that the line C is a line of curvature.

Assume that the line C is a line of curvature of S, for example θ = 0. Equations
(7.263) then becomes

√
āds̄ =

√
−c̄sin θ̄ ds̄ = λ

√
ads,

cos ϖ̄
ρ̄

= ācos2 θ̄ + c̄sin2 θ̄ = 0,

dϖ̄
ds̄

+
1
τ̄
= (c̄− ā)sin θ̄ cos θ̄ .

(7.270)

We must add an additional condition. A linear combination of the quadratic equa-
tions (7.254) leads to the equation

(√
−ā ω̄1 −

√
−c̄ ω̄2)∧(dλ

λ
+

ā+ c̄
2
√
−1āc̄

ω̄12

)
= (H −K) ω̄1 ∧ ω̄2, (7.271)

hence the required condition

dλ
λ

+
ā+ c̄

2
√
−1āc̄

ω̄12 =
λ (H −K)√

−1āc̄
ds̄ =

nds̄√
−1āc̄

, (7.272)

where n is a known function.
Let us then the curve C̄, with ϖ̄ = π/2 and the point transformation between C

and C̄. This we will have
√

ācos θ̄ =
√
−c̄sin θ̄ = mλ , (7.273)

m is known, then

m2λ 2 =−1
τ̄

sin θ̄ cos θ̄ . (7.274)

By bringing the value of λ 2 in (XIV, 9), where ω̄12 is replaced by its value
−dθ̄ + sin ϖ̄ ds̄/ρ̄ , we obtain a differential equation in θ̄ , which determines θ̄ up
to constant, hence the values of λ , ā and c̄. The data are still dependent on three
arbitrary functions of one variable.

Remark. The famous transformation of S. Lie changing the lines into spheres and
vice versa passes a surface S to a surface S̄ whose asymptotic lines correspond to
lines of curvature of S and vice versa. But this transformation does not exist in the
real domain; remains of the surfaces S̄ that correspond to a surface S are independent
as of arbitrary constants.

Problem 15. Pairs of convex surfaces such that the point transformation
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of one asymptotic lines correspond to lines of the other minimum.

53. We say that a surface is convex if its total curvature is everywhere positive.
Clearly we can restrict ourselves to surface portions that have this property.

The lines of curvature are on both surfaces, since the principal tangents are both
harmonics conjugate with respect to the asymptotic tangents and the minimum tan-
gents.

We will attach to different points of the two surfaces of the trihedral correspond-
ing right-handed Darboux trihedral. The closed system attached to the differential
problem is formed of linear equations

ω3 = 0, ω̄1 = u
√

aω1, ω13 = aω1, ω̄13 =
v√
a

ω1,

ω̄3 = 0, ω̄2 = u
√

cω2, ω23 = cω2, ω̄23 =
v√
c

ω2,
(7.275)

it was assumed the Darboux trihedral of the first area selected so that the principal
curvatures are positive, we can also assume u > 0.

The differential system is completed by the quadratic equations

ω1 ∧ du
u

+ω2 ∧
(a+ c

2a
ω12 −

√
c
a

ω̄12

)
= 0,

ω2 ∧ du
u

−ω1 ∧
(a+ c

2c
ω12 −

√
a
c

ω̄12

)
= 0,

ω1 ∧ dv
v
+ω2 ∧

(3a− c
2a

ω12 −
√

a
c

ω̄12

)
= 0,

ω2 ∧ dv
v
−ω1 ∧

(3a− c
2c

ω12 −
√

c
a

ω̄12

)
= 0.

(7.276)

The generic integral element in two dimensions depends on six arbitrary parame-
ters, the system is in involution as independent quadratic equations (7.276) are six in
number, and the general solution depends on six arbitrary functions of one variable.

The determinant of the matrix polar, whose columns correspond to the forms
da/(a− c), dc/(a− c), du/u, dv/v, ω12, ω̄12 is, after division by a− c of the first
two lines, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 0 0 0 ω2 0

0 ω2 0 0 ω1 0

0 0 ω1 0
a+ c
2a

ω2 −
√

c
a

ω2

0 0 ω2 0 −a+ c
2a

ω1
√

a
c

ω1

0 0 ω1 0
3a− c

2c
ω2 −

√
a
c

ω2

0 0 ω2 0 −3c−a
2c

ω1
√

c
a

ω1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.277)
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its value is

(a− c)2

2ac
√

ac
ω1.ω2.

(
(ω1)2 +(ω2)2).(a(ω1)2 + c(ω2)2). (7.278)

The only actual characteristics correspond to the lines of curvature of the two sur-
faces.

There is no singular solution; of the manner in same after we posed the prob-
lem analytically, we exclude surface portions containing umbilici points. But it is
obvious that any pair of spheres is a solution of the problem.

54. Cauchy problem. Do we give two curves C and C̄, and the law of correspon-
dence between these two curves, we finally give the angles ϖ and ϖ̄ that is to say,
the developable circumscribed Σ and Σ̄ . Equations (7.275) containing four unknown
functions a, c, u, v, and the angles θ and θ̄ that are the tangents to the curves C and
C̄ with the vectors e1 corresponding to write as

cos θ̄ ds̄ = u
√

acos θ̄ ds, sin θ̄ ds̄ = u
√

csin θ̄ ds,
cosϖ

ρ
= acos2 θ̄ + csin2 θ ,

dϖ
ds

+
1
τ
= (c−a)sinθ cosθ ,

cos ϖ̄
ρ̄

=
v
uc

cos2 θ̄ +
v
uc

sin2 θ̄ ,
dϖ̄
ds̄

+
1
τ̄
=

v
u

a− c
ac

sin θ̄ cos θ̄ .

(7.279)

It was therefore finished six equations with six unknowns θ̄ , θ , a, c, u, v.
If the angle θ is zero (C be the line of curvature of S), the angle θ̄ will also be

zero, and equations will be reduced to
ds̄ = u

√
ads,

dϖ
ds

+
1
τ
= 0, a =

cosϖ
ρ

,

v
au

=
cos ϖ̄

ρ̄
,

dϖ̄
ds̄

+
1
τ̄
= 0.

(7.280)

But we must add an additional condition which is obtained by searching a linear
combination of equations (7.276) not containing. Thus we find the new condition

a
dv
v
− c

du
u

+
c−a

2c
dc = 0. (7.281)

Give us the two curves C, C̄ smells and the point transformation between them. The
third and fifth equations (7.280) give ϖ and ϖ̄ , gives the second was the first to
give u, and the fourth gives the equation (7.281) gives c using a differential equa-
tion. The data depend on five arbitrary functions of one variable. We shall use the
corresponding portions of the curves C and C̄ for which the functions a and c are
positive.

55. Note. The problem that has been treated and the previous one have a close
analogy, but there is however an essential difference between them. Given a sur-
face S has opposite curvatures, there is always an infinity of surfaces S̄ that can be
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matched with point S so as to match the asymptotic surfaces of any of the lines of
curvature of the other. Instead, given a convex surface S, it is usually impossible to
find a surface S̄ can be mapped point with S so has to match the asymptotic lines of
surfaces of any of the lines minima of the other surface.

General note. The problems we have reviewed have been treated in Euclidean
geometry, but they can arise in non-Euclidean geometry without the analytical ap-
paratus and put essentially different results without undergoing significant change.
The only difference comes from the structure equations. Instead of the equations

dω23 = ω12 ∧ω31, dω31 = ω23 ∧ω12, dω12 = ω31 ∧ω23, (7.282)

we have

dω23 = ω12 ∧ω31 −Cω2 ∧ω3,

dω31 = ω23 ∧ω12 −Cω3 ∧ω1, (7.283)

dω12 = ω31 ∧ω23 −Cω1 ∧ω2,

In these formulas C denotes the constant curvature of space.
In applications we have made of structural formulas, the form ω3 was always

zero, the only change is in the expression of dω12.
The notions of fundamental forms of a surface remains unaltered; the formulas

ω13 cosθ +ω23 sinθ =
cosϖ

ρ
ds,

ω23 cosθ −ω13 sinθ =
cosϖ

ρ
ds,

dθ +ω12 =
sinϖ

ρ
ds,

(7.284)

remain unchanged.
Part of the problems treated also keeps a sense of Riemannian geometry in three

dimensions. It could also deal with problems of affine differential geometry, projec-
tive line, etc., using in each case the structure equations of the group of the corre-
sponding geometry (See E. Cartan [7]).
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Chapter 8
Geometric problems with more than two
independent variables

8.1 Orthogonal triple systems

57. The search for orthogonal triple systems in ordinary space of three dimensions
is reduced to a very simple closed differential system where we take the rectangular
trihedral unknowns attached to different points A of space whose unit vectors base
e1, e2, e3 are respectively normal to the three surfaces of the system which pass
through A.

First recall the Darboux equations (structure equations) of Chapter 7:
dω1 = −ω2 ∧ω12 +ω3 ∧ω31,

dω2 = −ω3 ∧ω23 +ω1 ∧ω12,

dω3 = −ω1 ∧ω31 +ω2 ∧ω23,

(8.1)

where ω1, ω2, ω3 are the projections on the axes of the trihedral with origin A of
a vector

−→
AA′ joining A to the point infinitely close A′, and ω23, ω31, ω12, are the

components of the vector which infinitesimal represents the rotation which brings
the trihedral attached to point A to be equipollent to the trihedral attached to point
A′.

It was to express each of the equations that ω1 = 0, ω2 = 0, ω3 = 0 is completely
integrable, which gives

ω1 ∧dω1 = 0, ω2 ∧dω2 = 0, ω3 ∧dω3 = 0. (8.2)

It follows immediately, taking account of (8.1), the three equations

ω2 ∧ω3 ∧ω23 = 0, ω3 ∧ω1 ∧ω31 = 0, ω1 ∧ω2 ∧ω12 = 0. (8.3)

There is no need to exterior differentiate these equations since this would lead
to equations of the fourth degree, identically satisfied for any three-dimensional
element.
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It is clear that the system (8.3) imposes no condition on a linear element has
a dimension or two dimensions to, be complete, we therefore have, for reduced
characters s0 and s1,

s0 = 0, s1 = 0. (8.4)

Is now a two-dimensional element, which, among ω1, ω2, ω3 a linear relation-
ship1

u1 ω1 +u2 ω2 +u3 ω3 = 0, (8.5)

the polar system reduces this integral element is reduced obviously

u1 ω23 +u2 ω31 +u3 ω12 = 0. (8.6)

As its rank is 3, we have s2 = 3, and hence s3 = 0.
On the other hand, the integral three-dimensional elements of six parameters

depend arbitrary, since the equations (8.3) give
ω23 = α1 ∧ω2 −β1 ∧ω3,

ω31 = α2 ∧ω3 −β2 ∧ω1,

ω12 = α3 ∧ω1 −β3 ∧ω2.

(8.7)

Since the sum s1 +2s2 +3s3 = 2s2, is equal to 6, it follows that the system (8.3) is
in involution and its general solution depends on three arbitrary functions of two
variables.

58. Cauchy problem. Solutions that do not two-dimensional characteristic of the
system (8.3) uniquely determines an orthogonal triple system. Such a solution will
be obtained by giving an arbitrary analytic surface Σ , and attaching to each point a
arbitrary rectangular trihedral, c is to say by giving each point A in three rectangular
unit vectors e1, e2, e3. There will, in a sufficiently small neighbourhood of Σ , an
orthogonal triple system such that at point A of Σ the surfaces of the three families
that go through A are respectively normal to e1, e2, e3. If we take in. In particular
a specific plan, we thus obtain the orthogonal triple systems the most general, each
once and only once, and the data depend effectively of three arbitrary functions of
points of Σ .

Case where the data are characteristics. The data are characteristic of the equa-
tions (8.6), if one of the coefficients u1, u2, u3, the equation u1 ω1+u2 ω2+u3 ω3 =
0 the tangent plane at a generic point of Σ is zero, or if at any point A of the tri-
hedral Σ attached at this point has one of its axes, the first example, tangent to Σ .
In this case it is easy to see that the problem is usually impossible. This follows
from equations (8.7), if one moves on Σ in the direction e1 was ω2 = ω3 = 0, and

1 The coefficients u1, u2, u3 are none other than the Plückerian coordinates u23, u31, u13 with
respect to the trihedral with origin A and bi-vector formed by the two-dimensional integral element
considered.
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consequently the form ω23 must be zero. Therefore, for the problem is possible that
moving on Sigma along a trajectory of the vector e1, we have the relation

e2 ·de3 = 0. (8.8)

This relation expresses that moving along a path e1 (that is to say along the intersec-
tion of the surfaces of the last two families of triple system unknown) vector e3 leads
me developable surface: it the same is true for the vector e2: this is a consequence
of the classical theorem of Dupin.

If two of coefficients of the equation of the tangent plane at a generic point in
Σ were zero, is that one of the axes of the attached to that point, the third example,
would be normal to Σ . It is then necessary for the possibility of the problem that
moving on Σ in the direction e1 form ω23 is zero and that moving in the direction
e2 form ω31, is zero. A necessary condition of possibility is that two axes of the Σ
are attached to the main tangents at this point of the surface Σ . This condition is of
sufficient rest, as the family of surfaces parallel to Σ and the two families of normal
developable of Σ is an orthogonal triple system corresponding to the data. This does
not mean they are the only solution of the problem.

Finally, note that given a triple orthogonal surfaces characteristics of this sys-
tem are formed by the surface areas of intersection curves of two families of triple
system.

Remark. We used only the structure equations (8.1) space. As a result, all results are
valid in a space of constant curvature, and even in any Riemannian space.

8.2 Triple systems with constant angles

59. We can generalize the problem of orthogonal triple systems in three families
searching one-parameter surfaces intersecting two to two angles given constant. If
we attach to each point A of space with an orthogonal unit vectors are tangent to the
three basic curves of intersection of pairs of three surfaces of the system which pass
through this point, the faces of the trihedral angles are constant which we denote its
cosines by α , β , γ .

We then relations {
dA = ω i ei,

dei = ω j
i e j,

(8.9)

with 9 coefficients ω j
i that satisfy 6 linear relations with constant coefficients. They

are obtained by differentiating the relations

e2
i = 1, e2 · e3 = α , e3 · e1 = β , e1 · e2 = γ, (8.10)

which gives
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ω1
1 + γ ω2

1 +β ω3
1 = 0,

ω2
2 +α ω3

2 + γ ω1
2 = 0,

ω3
3 +β ω1

3 +α ω2
3 = 0,

ω3
2 +ω2

3 +α
(
ω2

2 +ω3
3
)
+β ω1

2 + γ ω1
3 = 0,

ω1
3 +ω3

1 +α
(
ω3

3 +ω1
1
)
+ γ ω2

3 +α ω2
1 = 0,

ω2
1 +ω1

2 +α
(
ω1

1 +ω2
2
)
+α ω3

1 +β ω3
2 = 0.

(8.11)

Forms ω j
i are three in number independent, which agrees with the fact that the

orientation of a mobile trihedral remains equal to itself depends on three parameters.
The structure equations that result from the exterior differentiation of the first

equation (8.9) (we will not need the other) are
dω1 = ω1 ∧ω1

1 +ω2 ∧ω1
2 +ω3 ∧ω1

3 = ω i ∧ω1
i ,

dω2 = ω1 ∧ω2
1 +ω2 ∧ω2

2 +ω3 ∧ω2
3 = ω i ∧ω2

i ,

dω3 = ω1 ∧ω3
1 +ω2 ∧ω3

2 +ω3 ∧ω3
3 = ω i ∧ω3

i .

(8.12)

Setting equations of the problem. Is expressed, as in the case of orthogonal triple
systems, each of the equations that ω1 = 0, ω2 = 0, ω3 = 0 is completely integrable,
which gives, according to (8.12),

ω1 ∧ω2 ∧ω1
2 −ω3 ∧ω1 ∧ω1

3 = 0,
ω2 ∧ω3 ∧ω2

3 −ω1 ∧ω2 ∧ω2
1 = 0,

ω3 ∧ω1 ∧ω3
1 −ω2 ∧ω3 ∧ω3

2 = 0,
(8.13)

A new exterior differentiation is unnecessary, the equations (8.13) form the
closed system of differential problem.

All the elements in one dimension or two dimensions are integral; the polar sys-
tem of the integral two-dimensional element u1 ω1 +u2 ω2 +u3 ω3 = 0 is

u3 ω1
2 −u2 ω1

3 = 0,
u1 ω2

3 −u3 ω2
1 = 0,

u2 ω3
1 −u1 ω3

2 = 0.
(8.14)

Its rank s2 is equal to 3; result, we

s1 = 0, s2 = 3, s3 = 0. (8.15)

The generic integral element in three dimensions depends on the other hand s1 +
2s2 +3s3 = 6 arbitrary parameters2, the system is in involution and its general solu-
tion depends on three functions of two arbitrary variables.

2 There is indeed omega 9 forms, and their expression in terms of 27 coefficients ω1, ω2, ω3

introduced; equations (8.11) each provide three relations between these coefficients, making 18 in
all; each equation (8.14) provides a new relation, making a total of 18+3 = 21 relations more. It
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60. Cauchy problem. Any two-dimensional solution uncharacteristic of the system
(8.13) uniquely determines a solution of the problem. We have such a solution by
giving us an arbitrary surface Σ and at each point of this surface equal to a trihedral
trihedral considered. If we take a fixed plane of Σ , the data depend effectively of
three arbitrary functions of two variables.

The data will be characteristic if the equations (8.14), where u1, u2, u3 are the
parameters of the tangent plane to the reported trihedral attempts to this point, are
among this least three independent, or if the rank of the system formed by the nine
equations (8.11) and (8.14) is less than to 9, or finally if the determinant of the
coefficients of four in the nine equations is zero.

To form the equation which expresses that this determinant is zero, we can solve
first the equations (8.14) by putting

ω1
2 = λ 1 u2, ω1

3 = λ 1 u3,

ω2
3 = λ 2 u3, ω2

1 = λ 2 u1, (8.16)

ω3
1 = λ 3 u1, ω3

2 = λ 3 u2,

where λ 1, λ 2, λ 3 designate three auxiliary unknowns. The first three equations
(8.11) then give

ω1
1 =−(βλ 3 + γλ 2)u1,

ω2
2 =−(γλ 1 +αλ 3)u2, (8.17)

ω3
3 =−(αλ 2 +βλ 1)u3,

by bringing in the last three equations (8.11), we obtain three equations in λ 1, λ 2,
λ 3:(

(β −αγ)u2 +(γ −αβ )u3
)

λ 1 +(1−α2)u3 λ 2 +(1−α2)u2 λ 3 = 0,

(1−β 2)u3 λ 1 +
(
(γ −αβ )u3 +(α −βγ)u1

)
λ 2 +(1−β 2)u1 λ 3 = 0, (8.18)

(1− γ2)u2 λ 1 +(1− γ2)u1 λ 2 +
(
(α −βγ)u1 +(β − γα)u2

)
λ 3 = 0.

The elimination of λ 1, λ 2, λ 3 leads to the required equation∣∣∣∣∣∣∣
(β −αγ)u2 +(γ −αβ )u3 (1−α2)u3 (1−α2)u2

(1−β 2)u3 (γ −αβ )u3 +(α −βγ)u1 (1−β 2)u1

(1− γ2)u2 (1− γ2)u1 (α −βγ)u1 +(β − γα)u2

∣∣∣∣∣∣∣= 0. (8.19)

This is the equation of a cone of the third class (characteristic cone). The plan
elements are singular integrals at each point A the tangent planes at characteristic

therefore remains at least 27− 21 = 6 arbitrary parameters. But on the other hand we know that
the number s1 +2s2 +3s2 can not be exceeded
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cone attached to that point. Being given a triple systems considered, the surfaces
corresponding characteristics are those whose tangent plane at any point is tangent
to the cone (characteristic) attached to that point.

The characteristic cone is divided into three axes of the in the case of orthogonal
triple systems. It decomposes when two faces of the trihedral are right angles; have
such e3 is the vector that is perpendicular to both vectors e1, e2, the cone is divided
into right and bringing e3 in two straight plan Ae1 ∧ e2 which form an angle π/4
with the bisector of the angle formed by the two vectors e1, e2. There is no other
case of decomposition characteristic of the cone.

8.3 p-tuples systems orthogonal to the p−dimensional space

61. It is found in the p-dimensional Euclidean space, p families of hypersurfaces
to p − 1-dimensional intersecting orthogonally. We will use the same method as
in space has three dimensions by attaching to each point A of space a rectangular
p−hedral formed by p unit vectors e1,e2, · · · ,ep, and each rectangular each of which
is orthogonal to a of the system of p hypersurfaces passing through A.

By moving from point A to point infinitely close, there will be formulas{
dA = ω i ei,

dei = ω j
i e j, (i = 1,2, · · · , p),

(8.20)

with forms ωi j = −ω ji, the last relations that just expressing vectors ei are of con-
stant length and intersect orthogonally.

The structure equations of the space are obtained by differentiation of exterior
(8.20) and give {

dω i = ωk ∧ωki,

dωi j = ωik ∧ωk j.
(8.21)

62. This granted, the problem of differential equations simply express that each of
the equations ω i = 0 is completely integrable. Now the equation ω1 ∧ω1 = 0, for
example, describes, taking account of (8.21),

ω1 ∧ωk ∧ωk1 = 0. (8.22)

The system of equations analogous p is not in involution. But the calculations
for p = 3, it follows that if we ω2 = ω3 = · · ·= ω p = 0, has the form ω12 does not
depend on ω3, so it does not depend of ω4, · · · ,ω p. As a result, any solution of the
problem considered, we must have

ω i ∧ω j ∧ωi j = 0, (i, j = 1,2, · · · , p) (not add up). (8.23)
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Reciprocally, the equations (8.23) result in the complete integrability of all equa-
tions ω i = 0.

Complete The equation of the problem demands the addition to equations (8.23)
those which are deduced by exterior differentiation, i.e.

ω j ∧ωk ∧ωki ∧ωi j−ω i ∧ωk ∧ωk j ∧ωi j

+ω i ∧ω j ∧ωik ∧ωk j = 0, (i, j = 1,2, · · · , p), (8.24)

equations in which we must sum only over the index k.
We will show that the system (8.24) is in involution.
First of all p−dimensional integral element is defined by (8.23), by relations of

the form

ωi j = αi j ω j −α ji ω i, (i, j = 1,2, · · · , p), (8.25)

and it is easy to see that, whatever the numerical values given to p(p−1) coefficients
αi j (i ̸= j), equations (8.24) are consequences of equations (8.25). Indeed, each term
of the first member of one of equations (8.24), is of the form ω i ∧ω j ∧ωik ∧ωk j,
i, j,k denote three indices still taken in the sequence 1,2, · · · , p, from (8.25), the
monomial ω i ∧ω j ∧ωik is a multiple of ω i ∧ω j ∧ωik and ω i ∧ω j ∧ωk its exterior
product by ω jk is zero, since ω jk is linear in ω j and ωk.

The p−dimensional integral elements therefore depend on p(p − 1) arbitrary
parameters.

Now looking characters reduced of the system (8.23 and 8.24). All two-dimensional
element is integral. The polar element of an integral two-dimensional Plückerian
components ui j is defined by the equations reduced

ui j ωi j = 0, (i, j = 1,2, · · · , p), (8.26)

the rank of this system is

s2 =
p(p−1)

2
. (8.27)

Since p(p−1)/2 is the number of forms ωi j distinct forms of ω i, we have

s1 = o, s2 =
p(p−1)

2
, s−3 = · · ·= sp = 0, (8.28)

and hence

s1 + s2 +3s3 + · · ·+ psp = p(p−1), (8.29)

number of arbitrary parameters upon which the generic p−dimensional integral el-
ement.

The system (8.23 and 8.24) is in involution and its general solution depends on
p(p−1)/2 arbitrary functions of two variables.
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63. Cauchy problem. Any two-dimensional non-characteristic solution of the sys-
tem (8.23 and 8.24) provides one and only one solution of the problem. Now any
element integral to both dimensions, we have the most general solution to two di-
mensions by giving a surface (analytical) Σ arbitrary two-dimensional, and, at each
point A of this surface, a p−hedral in a rectangular analytical law arbitrary. If data
are not typical, there will be close to Σ a p−tuple orthogonal and one such that at
each point A of Σ the p hypersurfaces of this system are respectively the normal
basis vectors of the corresponding p−hedral. Surface Σ is fixed, the data involve
p(p−1)/2 functions of the two curvilinear coordinates of the surface Σ .

The data will be characteristic if the rank of the polar system of the integral
element (ui j) tangent to Σ is less than p(p − 1)/2 that is to say, if at least one
component is zero ui j. It is then necessary additional conditions to the problem is
possible.

For example, suppose there is only one component zero or u12, which means
that each point A of Σ , one of the tangents to the Σ is perpendicular to the plane
determined by A and two vectors e1, e2, and can not the rest will be more than one,
because then all the components and u1i and u2i would be zero, what we exclude.
This put it on Sigma exist a family of curves possessing the property that each of
their points the tangent is perpendicular to the plane determined by the point A and
the vectors e1, e2. By moving along one of these curves, it would ω1 = ω2 = 0
and consequently, by (8.25) it would ω12 = 0, that is to say e1 · e2 = 0. This is a
necessary condition of possibility of the problem. It can be expressed by saying that
when moving along any one of two curves orthogonal plans Ae1 ∧ e2, the trace of
any point M = A+ x1e1 + x2e2 coordinate x1, x2 fixed is orthogonal to the plane
Ae1 ∧ e2 that contains: we in fact

e1dM = ω1 + x2ω21 = 0, e2dM = ω2 + x1ω12 = 0. (8.30)

64. There may be more complicated cases. Let us just consider what happens for
p = 4. We easily see that toue possible cases are reduced to the following six cases:

1◦ a component ui j zero, since we can assume u12;
2◦ two components are zero, we can assume u12, u34;
3◦ and 4◦ three components ui j are zero we may assume either u23, u31, u12, or u14,

u24, u34;
5◦ four components ui j are zero, we can assume u23, u31, u12, u34 ;
6◦ five components are zero, we can assume u12, u13, u14, u23, u24.

We will see that in each case, there are as many additional conditions of possi-
bility that there components ui j are zero, except for the case (6), which includes six
conditions.

The first two cases have already been considered potentially.

3◦ Suppose u23 = u31 = u12 = 0. – The equations of the planar tangent to a point Σ
are
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ω1

u14 =
ω2

u24 =
ω3

u34 , (8.31)

as a result there is at each point A of a tangent determined undermined Σ along
which we have ω1 = ω2 = ω3 bone, the three forms ω23, ω31, ω12, becoming
zero. There is thus a one parameter family of lines (C) of Σ along which the
quantities e2de3, e3de1, e1de2 must be zero for the problem is possible. This
means that even if the three-dimensional space Ae1 ∧ e2 ∧ e3 attach each point A
to Σ we consider a point M of coordinates x1,x2,x3 fixed, the location of the point
M, when A point describes a curve (C), is an orthogonal trajectory corresponding
spaces Ae1 ∧ e2 ∧ e3.

4◦ Now suppose u14 = u24 = u34 = 0. – The equations of the element tangent plane
at a point of Σ are

u23ω1 +u31ω2 +u12ω3 = 0, ω4 = 0. (8.32)

there in the surface Σ has three families of curves one parameter: the first consists
of lines (C1) which was the along ω1 = 0, the second lines (C2) along which was
ω2 = 0, the third lines (C3) along which is a ω3 = 0. The form ωi4 is zero if one
moves on the line (Ci) (i = 1,2,3). It thus gives three conditions of possibility,
each with a geometric interpretation similar to that which was given in case one
of the components ui j is zero. It came out of the conditions necessary for it to
pass through the surface Σ hypersurface belonging orthogonal to a quadruple
system.

5◦ Suppose u23 = u31 = u12 = u34 = 0. – The equations of the planar member Σ are
tangent to

u14ω2 −u24ω1 = 0, ω3 = 0. (8.33)

In Σ there a family of curves (C1) along which it ω1 = ω2 = 0 and a family of
curves (C2) along which was ω4 = 0. Along the curves (C1) forms ω12, ω13, ω23,
are zero along curves (C2) the form ω34 is zero. The consideration of lines (C1)
provides three conditions of possibility, that of curves (C2) a fourth condition.

6◦ Suppose finally u12 = u13 = u23 = u14 = u24 = 0. – The equations of the element
tangent plane to Σ are

ω1 = ω2 = 0. (8.34)

There are in Σ a family of curves (C1) along which we have ω3 = 0, and a
family of curves (C2) along which we have ω4 = 0. Along curves (C1) forms
ω12, ω13, ω23 are zero along the curves (C2) formsω12, ω14, ω24 are zero. This
gives six conditions of possibility. These are six conditions for the surface Σ
can be regarded as the intersection of two hypersurfuces a quadruple orthogonal
system (Here a hypersurface of the first family and a hypersurface of the second
family of the system).
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65. Varieties characteristics. Given a p−tuple orthogonal system, variety charac-
teristics of this system are those whose all two-dimensional elements are tangent to
singular, that is to say that at least one components ui j are zero. Assume for sim-
plicity p = 4, and denote by ξ 1, ξ 2, ξ 3, ξ 4 parameters of hypersurfaces of each of
the four families of the system. The six cases considered in the previous issue are
six classes of characteristic varieties.

1◦ u12 = 0. – We have varieties satisfying an equation f (ξ 1,xi2) = 0;
2◦ u12 = u34 = 0. – We have varieties satisfying an equation

f (ξ 1,xi2) = 0, φ(ξ 3,xi4) = 0. (8.35)

3◦ u23 = u31 = u12 = 0. – We have varieties satisfying an independent equation

f (ξ 1,xi2,ξ 3) = 0, φ(ξ 1,xi2,ξ 3) = 0. (8.36)

4◦ u14 = u24 = u34 = 0. – We have the varieties ξ 4 = cte., that is to say, hyper-
surfaces of one of four families of the given system and all the varieties in two
dimensions in such a hypersurface.

5◦ u23 = u31 = u12 = u34 = 0. – We have varieties satisfying an independent equation

ξ 3 = cte., φ(ξ 1,xi2) = 0. (8.37)

6◦ u12 = u13 = u23 = u14 = u24 = 0. – We have the intersections of two hypersurfaces
given orthogonal quadruple system.

66. Remark. There is nothing to change in the solution of systems of p-tuples or-
thogonal if p−dimensional space has constant curvature. But it is more even if one
is in an arbitrary Riemannian space3, the reason is that equations (8.24) involve the
exterior differential forms ωi j, and in general, every element that satisfies the three-
dimensional equations (8.23) does not satisfy equations (8.24). This drawback does
not present itself in the problem of orthogonal triple systems. Besides the existence
of a p−tuple orthogonal in a p-dimensional Riemannian space leads to the possibil-
ity of representing the ds2 of this space as a quadratic form

g1 (dξ 1)2 +g1 (dξ 2)2 + · · ·+g1 (dξ p)2, (8.38)

or ds2 the most general p−dimensions contains p(p−1)/2 arbitrary functions of p
variables, it is true that one can always make a change of variables to reduce the p
coefficients to have fixed numerical values, but will not generally cancel p(p−1)/2
of these coefficients, since p(p−1)/2 is greater than that of p, and p is greater than
3.

3 below the note No. 67
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8.4 Realization of a three-dimensional Riemannian space with a
manifold of Euclidean space

67. We have already seen (No. 20 and 21) the problem of application of surfaces,
which can be seen as the problem of finding a surface having a given ds2. A similar
problem arises if we are given a quadratic differential form defined three variables
can be found in one. Euclidean space a three-dimensional variety whose ds2 is pre-
cisely this particular form? We will show that the problem is always possible in a
six-dimensional Euclidean space, but it is generally impossible in Euclidean space
of five or four dimensions.

In Riemannian geometry (See E. Cartan [10]), can be attached to each point A
of a three-dimensional space as a rectangular trihedral in Euclidean geometry, the
infinitesimal displacement of the trihedral may, by a suitable convention, also be
defined by six forms ϖ1, ϖ2, ϖ3, ϖ23 = −ϖ32, ϖ31 = −ϖ13, ϖ12 = −ϖ21. ds2

the space is equal to the sum of squares (ϖ1)2 +(ϖ2)2 +(ϖ3)2. It was further the
formulas 

dA = ϖ1 e1 +ϖ2 e2 +ϖ3 e3,

De1 = ϖ12 e2 −ϖ31 e3,

De2 = −ϖ12 e1 +ϖ23 e3,

De3 = ϖ31 e1 −ϖ23 e2,

(8.39)

Symbol Dei is a symbol of covariant differentiation. The equations of structure is
also generalized, but in part; they are written

dϖ1 =−ϖ2 ∧ϖ12 +ϖ2 ∧ϖ31,

dϖ2 = ϖ1 ∧ϖ12 −ϖ3 ∧ϖ23,

dϖ3 =−ϖ1 ∧ϖ31 +ϖ2 ∧ϖ23,

dϖ23 = ϖ12 ∧ϖ31 −K11 ϖ2 ∧ϖ3 −K12 ϖ3 ∧ϖ1 −K13 ϖ1 ∧ϖ2,

dϖ31 = ϖ23 ∧ϖ12 −K21 ϖ2 ∧ϖ3 −K22 ϖ3 ∧ϖ1 −K23 ϖ1 ∧ϖ2,

dϖ12 = ϖ31 ∧ϖ23 −K31 ϖ2 ∧ϖ3 −K32 ϖ3 ∧ϖ1 −K33 ϖ1 ∧ϖ2.

(8.40)

The coefficients define the Ki j = K ji Riemannian curvature of space.
If one attaches to each point in space a fixed rectangular trihedral, or forms, ϖ i,

ϖi j are linear combinations of differentials of the coordinates u1, u2, u3 of a point
in space, coordinates defined following by any act. If one attaches to each point in
the opposite rectangular trihedral as general as possible with this point as origin,
ϖi j forms depend linearly on the differential parameters of three new, distinct from
the original point coordinates, and used to set the direction of the trihedral. The
formulas (8.39) and (8.40) is valid in both cases.

68. Before addressing the problem of realizing a given Riemannian space with
a variety of three-dimensional Euclidean space of six dimensions, recall the basic
formulas of the method of rectangular hexahedron mobile formulas that are a special
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case of formulas (8.39) and (8.40) No. 61. By attaching to each point A of the space
defined by a rectangular hexahedron six rectangular unit vectors e. , We have the
relations {

dA = ω i ei,

dei = ωi j e j, (ωi j =−ω ji), (i = 1,2, · · · ,6),
(8.41)

with the structure equations{
dω i = ωk ∧ωki, (i = 1,2, · · · ,6),
dωi j = ωik ∧ωk j, (i, j = 1,2, · · · ,6).

(8.42)

69. This being established, let us given a Riemannian space E and its three-
dimensional equations of structure (8.40) for a choice of rectangular trihedral at-
tached to its different points. The problem that we will ask involves matching each
of these trihedral a rectangular hexahedron in Euclidean space six-dimensional E6,
whose origin point will describe a three-dimensional variety V such that the three
vectors e1, e2, e3 of the hexahedron are tangential to V , the other three e4, e5, e6
it being normal, so that finally, in the infinitesimal displacement of the hexahedron
which corresponds to an infinitesimal displacement of the trihedral of the Rieman-
nian space, we have

(ω1)2 +(ω2)2 +(ω3)2 = (ϖ1)2 +(ϖ2)2 +(ϖ3)2. (8.43)

This relation shows that we can pass to ϖ i to ω i by orthogonal substitution,
which means we can say, in the three-dimensional space tangent to V at any point
M of V , to subject the vectors e1, e2, e3 from this point of rotation M together around
so as to obtain ϖ i = ω i.

Denote by Latin letters i, j, · · · the indices 1,2,3 and by Greek letters α,β ,γ
indices 4,5,6. The problem will come back to integrate the system.

ω i = ϖ i, (i = 1,2,3), ωα = 0, (α = 4,5,6), (8.44)

The exterior differentiation of the first three equations gives, from (8.40) and (8.42),

ω2 ∧ (ω12 −ϖ12)−ϖ3 ∧ (ω31 −ϖ31) = 0,

ω3 ∧ (ω23 −ϖ23)−ϖ1 ∧ (ω12 −ϖ12) = 0, (8.45)

ω1 ∧ (ω31 −ϖ31)−ϖ2 ∧ (ω23 −ϖ23) = 0,

Equations from which we deduce

ω23 = ϖ23, ω31 = ϖ31, ω12 = ϖ12. (8.46)

As for the last three equations (IV, 5), they shall, by exterior differentiation,
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ϖk ∧ωkα = 0, (α = 1,2,3), (8.47)

where the summation index k takes the values 1,2,3.
Finally equations (8.46) gives differentiated

ωik ∧ω jk +ωiλ ∧ω jλ = ϖℓ1 ∧ϖ jk +Kℓ1 ϖ2 ∧ϖ3

+Kℓ2 ϖ3 ∧ϖ1 +Kℓ3 ϖ1 ∧ϖ2, (8.48)

denoting by ℓ the Latin index, with both indices i, j, determines a permutation
(i, j, ℓ) of the three indices 1,2,3.

Finally we obtain the closed differential system

ω i = ϖ i,

ωα = 0,
ωi j = ϖi j,

ϖ i ∧ωkα = 0,
ωiλ ∧ω jλ = Kℓ1 ϖ2 ∧ϖ3 +Kℓ2 ϖ3 ∧ϖ1 +Kℓ3 ϖ1 ∧ϖ2.

(8.49)

Number of these equations is 15, 9 of which are linear and 6 quadratic, in three inde-
pendent variables of the coordinates of a point in given Riemannian space; forms ϖ i

and ϖi j are known linear combinations of differentials of these coordinates, which
the first three are independent. There are 21 unknown functions, namely the param-
eters needed for the more general rectangular hexahedron in 6−dimensional Eu-
clidean space; forms ω1, ωα , ωi j, ωiα are 18 independent linear forms constructed
with these 21 parameters and their differentials. But in reality, the number of un-
known functions is not equal to 18 parasites, because the equations expressed as the
origin point of the hexahedron moving remains fixed and the vectors e1, e2, e3, and
these equations are completely integrable system whose general solution is formed
by all the figures made a point and three rectangular unit vectors from this point,
figures which in fact depend of 18 parameters (6 for the coordinates of point 5 for
the components of e1, 4 for those e2 and 3 for those e3).

The system (8.49) does so in fact involves only the points of V , the three-
dimensional space tangent at each point in this space and the tangent rectangular
trihedral defined by the vectors e1, e2, e3. The positions of the vectors e1, e2, e3
provide unknown parasites. There is in reality only 18 unknown functions, whose
differential included in the 18 linear forms of independent, ω1, ωα , ωi j, ωiα .

70. Integral three-dimensional elements. They are obtained by solving 6 quadratic
equations (8.49) from 9 forms ωiα . The first three quadratic equations gives
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ω14 = a11 ϖ1 +a12 ϖ2 +a13 ϖ3,

ω24 = a21 ϖ1 +a22 ϖ2 +a23 ϖ3,

ω34 = a31 ϖ1 +a32 ϖ2 +a33 ϖ3,

ω15 = b11 ϖ1 +b12 ϖ2 +b13 ϖ3,

ω25 = b21 ϖ1 +b22 ϖ2 +b23 ϖ3,

ω35 = b31 ϖ1 +b32 ϖ2 +b33 ϖ3,

ω16 = c11 ϖ1 + c12 ϖ2 + c13 ϖ3,

ω26 = c21 ϖ1 + c22 ϖ2 + c23 ϖ3,

ω36 = c31 ϖ1 + c32 ϖ2 + c33 ϖ3,

(8.50)

where ai j = a ji, bi j = b ji, ci j = c ji. The ωi4 are the semi-partial derivatives with
respect to ϖ i of the quadratic form

Φ4 = ai j ϖ i.ϖ j, (8.51)

the ωi j and ωiα produced therefore and also two other quadratic forms

Φ5 = bi j ϖ i.ϖ j, Φ6 = ci j ϖ i.ϖ j. (8.52)

The geometrical meaning of these forms is as follows. If we consider a curve in
the manifold V and if we denote by

−−→
1/Rn the projection of the vector curvature of

the normal three-dimensional space, we have

−→
1

Rn
ds2 = Φ4 e4 +Φ5 e5 +Φ6 e6. (8.53)

Other quadratic equations (8.49) lay between the coefficients of Φ4, Φ5, Φ6 re-
lations

Ai j +Bi j +Ci j = Ki j, (8.54)

where Ai j, Bi j, Ci j designate minors relating to elements ai j, bii, ci j in the determi-
nants formed with the coefficients of the forms Φ4, Φ5, Φ6.

Hence it follows that the integral element generic three-dimensional depends
6×3 = 18 parameters related by 6 relations (independent), making 12 independent
parameters.

71. Calculation of reduced characters. Consider a linear integral element that we
can always assume satisfy the relations ω2 = ω3 = 0, because of the arbitrariness
of trihedral that we can attach to the Riemannian space. The polar system reduces
of this integral element is
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ω14 = ω15 = ω16 = 0,

a11 ω24 +b11 ω25 + c11 ω26 = 0,
a11 ω34 +b11 ω35 + c11 ω36 = 0,
a13 ω34 +b12 ω35 + c12 ω36 −

(
a13 ω24 +b13 ω25 + c13 ω26

)
= 0.

(8.55)

The rank of this system is s1 = 6.
If now we take a two-dimensional integral element satisfies ω3 = 0, the reduced

equations are of the polar element

ω14 = ω15 = ω16 = 0,
ω24 = ω25 = ω26 = 0,

a11 ω34 +b11 ω35 + c11 ω36 = 0,
a12 ω34 +b12 ω35 + c12 ω36 = 0,
a22 ω34 +b22 ω35 + c22 ω36 = 0.

(8.56)

We have, s1 + s2 = 9, where s2 = 3, and consequently s3 = 0.
As the sum s1 + 2s2 + 3s3 = 12 is equal to the number of arbitrary parameters

upon which the generic integral element in three dimensions, the system is inuolu-
tion and its general solution depends on three arbitrary functions of two variables.

72. Cauchy problem. It arises when one gives in Euclidean space has six dimensions
Σ realize a surface given a variety of two-dimensional Riemannian space S. We may
assume that at any point of S we have attached a rectangular trihedral with a third
vector is normal to S. There will therefore ω3 = 0 for the two-dimensional solution
of the differential system considered (8.49). At each point of Sigma will be attached
a rectangular hexahedral whose vectors e1 and e2 are determined and are tangent to
Σ in order to satisfy equations

ω1 = ϖ1, ω2 = ϖ2. (8.57)

However one chooses the other unit vectors of the hexahedral, we will ω3 =
ω4 = ω5 = ω6 = 0. The two equations (8.57) lead to

ϖ1 ∧
(
ω12 −ϖ12

)
= 0, ϖ2 ∧

(
ω12 −ϖ12

)
= 0, (8.58)

thus

ω12 = ϖ12. (8.59)

For the linear equations (8.49) are all verified, also demands that we have

ω13 = ϖ13, ω23 = ϖ23. (8.60)

Now the equation ω3 = 0 resulting according to the third equation (8.40) that

ϖ1 ∧ϖ13 +ϖ2 ∧ϖ23 = 0, (8.61)
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therefore

ϖ13 = aϖ1 +bϖ2, ϖ23 = bϖ1 + cϖ2. (8.62)

To determine the complete two-dimensional solution, we must choose the vector
e3 normal to Σ in order to have

ω13 = aϖ1 +bϖ2, ω23 = bϖ1 + cϖ2. (8.63)

To make this election, suppose first that we have taken, following some law, the
vectors e3, e4, e5, e6 normal to Σ ; denote them by ε3, ε4, ε5, ε6, and asking

de1 = ω̂13 ε3 + ω̂14 ε4 + ω̂15 ε5 + ω̂16 ε6,

de2 = ω̂23 ε3 + ω̂24 ε4 + ω̂25 ε5 + ω̂26 ε6, (8.64)

with

ω̂1α = hα ϖ1 + kα ϖ2, ω̂2α = kα ϖ1 + ℓα ϖ2, (α = 3,4,5,6). (8.65)

The desired vector e3 will be of the form

e3 = x3 ε3 + x4 ε4 + x5 ε5 + x6 ε6, (8.66)

with 
(x3)2 +(x4)2 +(x5)2 +(x6)2 = 1,

h3 x3 +h4 x4 +h5 x5 +h6 x6 = a,

k3 x3 + k4 x4 + k5 x5 + k6 x6 = b,

l3 x3 + l4 x4 + l5 x5 + l6 x6 = c.

(8.67)

These four equations with four unknowns can be reduced to linear equations by
calculating the first determinant

δ =

∣∣∣∣∣∣∣∣
x3 x4 x5 x6

h3 h4 h5 h6
k3 k4 k5 k6
l3 l4 l5 l6

∣∣∣∣∣∣∣∣ , (8.68)

whose square is equal to

∆ =

∣∣∣∣∣∣∣∣
1 a b c
a h2 h ·k h · l
b h ·k k2 k · l
c l ·h l ·k l2

∣∣∣∣∣∣∣∣ , (8.69)

where h, k, l designate in the normal four-dimensional space to Sigma, three
vectors having components respectively for the quantities hi, ki, li; (i = 3,4,5,6).
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Several cases are possible.
First assume the vectors h, k, l linearly independent. If ∆ is negative, it is clear

that equations (8.67) do not admit any real solution. If ∆ is positive, they admit
two distinct real solutions and we will see the next number that the data are not
characteristic and that consequently it passes through the surface Σ two varieties
producing three-dimensional in the neighbourhood Σ Riemannian space given E .
Finally if ∆ is zero, equations (8.67) admit a unique solution which corresponds to
the differential system (8.49) a two-dimensional solution, but that, as we will see
the following number is characteristic.

If the vectors h, k, l are linearly dependent, and if the system (8.67) is compatible,
at each of its solutions corresponds a two-dimensional solution of system (8.49), but,
as we shall see, it is characteristic.

73. Solutions two-dimensional characteristics of the system (8.49).
The integral element in two dimensions ω3 = 0 is singular if the rank of the system
(8.56) is less than nine, in other words if the determinant

δ ′ =

∣∣∣∣∣∣
a11 a11 a11
b12 b12 b12
c22 c22 c22

∣∣∣∣∣∣ , (8.70)

is zero. Start from a solution of the system in two dimensions (8.49) determined as it
was exposed to the previous issue. If we take for vectors ε3, ε4, ε5, ε6, the vectors e3,
e4, e5, e6, its the unknown x3,x4,x5,x6 of equations (8.67) have the values 1,0,0,0,
the vectors h, k, l will for components

a a11 a11 a11
b b12 b12 b12
c c22 c22 c22

(8.71)

That said, the determinant δ ′ is equal to the determinant δ (8.69), whose square is
∆ . For the two-dimensional variety is considered characteristic, it is necessary and
sufficient that ∆ is zero, it can happen in two ways, either that the vectors h, k, l
are linearly independent (the first case discussed in No. 72) either they are linearly
dependent (second case discussed in No. 72).

If the two-dimensional solution obtained for the system (8.49) is characteristic,
we will show that this solution must satisfy a (additional conditions to the problem
is possible. These conditions we will be provided by the consideration of equations
(8.72) of No. 70. We can assume that, for ϖ3 = 0, the quadratic form Φ6 is identi-
cally zero, that is to say that coefficients c11, c12, c22 are zero. the three equations

A11 +B11 +C11 = K11,

A12 +B12 +C12 = K12, (8.72)
A22 +B22 +C22 = K22,

are linear in a33 and b33, and they are written in effect
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a11a33 +b11b33 = a2

23 +b2
23 + c2

13 +K11,

a12a33 +b12b33 = a13a23 +b13b23 + c13c23 −K12,

a11a33 +b11b33 = a2
13 +b2

13 + c2
13 +K22.

(8.73)

However, the manifold being given two-dimensional, in each point is known all
the coefficients of linear forms Φ4, Φ5, Φ6, with the exception of a33, b33, c33 (the
coefficient a13 example is known because of the relation de3 = a31e1 +a32e2 which
takes place on two-dimensional manifold). By eliminating a33 and b33 between the
three equations (8.73), we obtain the necessary condition to be met by any solu-
tion for two-dimensional characteristic that passes through this variety has a variety
realizing the three-dimensional space E 4, this requirement results in the equation∣∣∣∣∣∣∣

a22 b22 a2
23 +b2

23 + c2
13 +K11

a33 b12 a13a23 +b13b23 + c13c23 −K12

a11 b11 a2
13 +b2

13 + c2
13 +K22

∣∣∣∣∣∣∣= 0. (8.74)

74. The variety of characteristics a variety of three-dimensional realizing a given
ds2. If the variety V three-dimensional Euclidean space to 6 dimensions real-
izes a given ds2 (E given a Riemannian space), we obtain the two-dimensional
characteristics varieties expressing the element tangent plane in three dimensions
u1 ω1 + u2ω2 + u3ω3 = 0 has the property that moving along this plane element,
forms Φ4, Φ5, Φ6, are linearly dependent, in other words that there are three coef-
ficients λ 4, λ 5, λ 6 not all zero such that the quadratic form λ 4Φ4 +λ 5Φ5 +λ 6Φ6
divisible by u1 ϖ1 +u2ϖ2 +u3ϖ3. This results in relation∣∣∣∣∣∣∣∣∣∣∣∣

u1 0 0 0 u3 u2
0 u1 0 u3 0 u1
0 0 u3 u2 u1 0

a22 a22 a23 2a23 2a13 2a11
b22 b22 b23 2b23 2b13 2b11
c22 c22 c23 2c23 2c13 2c11

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (8.75)

If this relation is not identically satisfied, that is to say if the manifold V is not
a singular solution of system (8.49) we obtain a cubic equation in u1, u2, u3 which
defines V at each point of a cone with third class. The characteristic varieties are
searched solutions of partial differential equation of first order defined by equation
(8.75), the tangent plane in each point to be tangent to the cone of the third class
defined by this equation.

75. Singular solutions. These are those for which the equation (8.75) in u1, u2, u3
is an identity. This condition allows the characterization of singular solutions by a
purely projective property.

4 This condition generalizes the well-known condition which has to satisfy a curve (C) of ordinary
space so that it passes through (C) a surface which gave ds2 is an asymptotic line (C): the square
of its torsion must equal to the Riemannian curvature changed sign of ds2 given.
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Consider the integral manifold V a curve (C) whose tangent in each point A has
the director parameters ϖ1, ϖ2, ϖ3. The flat variety containing both the triplane
(three dimensional flat variety) tangent to V in A and the biplane osculating at A of
(C) contains the vector

Φ4 e4 +Φ5 e5 +Φ6 e6, (8.76)

as shown immediately the calculation of dA and d2A. This raises, if the biplane
Π tangent to V at point A is a singular integral element, this means that instead
of osculating planes to a tangent curves at point A is located in a five-dimensional
hyperplane. The variety V is a singular solution if this takes place regardless of the
plane element Π tangent to V . This is the projective property of singular solutions
sought.

Two cases are possible, depending on whether the five-dimensional hyperplane
corresponding to the biplane is independent of the biplane or not; in the first case
this hyperplane is called the osculating hyperplane to the variety V at point A.

First case. – First case. - In this case can assume that the osculating hyperplane’s
normal vector at each point in e6, i.e. the form Φ6 is identically zero. The equations

ω16 = 0, ω26 = 0, ω36 = 0, (8.77)

to cause a by exterior differentiation,

ω14 ∧ω46 +ω15 ∧ω56 = 0,
ω24 ∧ω46 +ω25 ∧ω56 = 0, (8.78)
ω34 ∧ω46 +ω35 ∧ω56 = 0.

The result, in general, ω46 = ω56 = 0, unless the two conical Φ4 = 0, Φ5 = 0 are
bi-tangents or have them contact of the second order. If we allow these two cases
side, we see that de6 and hence that the osculating hyperplane is fixed. The corre-
sponding Riemannian spaces are those that are likely to be achieved by a variety
of three-dimensional Euclidean space with five dimensions. It can be shown that in
general their realization in the five-dimensional space is only possible in one way,
has a displacement or up to a symmetry.

It could happen that two forms Φ5 and Φ6, are zero: then the Riemannian space
would be likely to realization in a four-dimensional space. If all three forms Φ4, Φ5,
Φ6 were zero, the Riemannian space E ; Riemannian curvature would be zero and it
would, at least locally, realizable by the three-dimensional Euclidean space.

Second case. – We will say little about the singular solutions of the second case.
We prove easily that forms Φ4, Φ5, Φ6 all decompose into two factors of the first
degree, one of these factors being the same for all three forms, the other variable
with the three forms. These singular solutions exist only for six spaces which the
quadratic form of the Riemann coefficients Ki j has its discriminant zero. The in-
tegral manifolds are a very simple geometrical definition: each is generated by an
arbitrary one-parameter family of planar two-dimensional varieties. They therefore

Copyright: Mehdi Nadjafikhah, 7/1/2013. URL: webpages.iust.ac.ir/m_nadjafikhah



178 8 Geometric problems with more than two independent variables

depend on 11 arbitrary functions of one variable, which emphasizes the very ex-
ceptional character of Riemannian spaces for which the differential system (8.49)
admits singular solutions falling in the second case.

As seen, there are still a number of points to clarify in the theory of singular solu-
tions of differential system that gives three-dimensional varieties of six-dimensional
Euclidean space capable of realizing a three-dimensional Riemannian space given.

As for the n−dimensional Riemannian spaces, known to be realizable by Vari-
etal immersed in Euclidean space n(n+ 1)/2 dimensions of a given solution n− 1
uncharacteristic dimensions of the problem determines differential system, as for
n = 3, a finite number of n−dimensional solutions (See on this general problem, M.
Janet [18], and E. Cartan [6].)
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