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Abstract

The Iterated Back Projection (IBP) is a famous reconstruction method
in Super-Resolution context, which is based on the sum of squared differ-
ences of two images. It is commonly known that the mean square error
does not accurately reflect the subjective image quality for most image
and video enhancement tasks. Among the various image quality metrics,
Structural Similarity provides remarkably good prediction for subjective
scores. In this paper a new version of IBP method based on contribu-
tion of this measurement to IBP formulation is proposed. The proposed
approach has been tested over the classical IBP approach and the robust
super resolution method, which is a version of IBP method. The new
methods applied to a video super resolution problem, successfully. Vari-
ous objective and subjective comparisons show the superior performance
of the proposed approach.
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1 Introduction

The Super-Resolution (SR) techniques fuse a sequence of low-resolution (LR)
images to produce a higher resolution (HR) image. The low resolution images
may be noisy, blurred and have some displacement with each other. A common
matrix notation which is used to formulate the super-resolution problem [6, 7]
is as follows:

Y k = DHFkX + V k, k = 1, . . . , N (1)

where:

• X is the high-resolution frame and

• Y k is the kth low-resolution frame which are rearranged in lexicographic
order,
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• Fk is the geometric motion operator between the high-resolution frame X
and the kth low-resolution frame Y k ,

• r is the resolution enhancement factor,

• H is the camera’s point spread function (PSF),

• D represents the decimation operator,

• Vector V is the system noise and

• N is the number of available low-resolution frames.

We assumed that the decimation operator D and blur matrix H is same for all
images.

The vast majority of the super-resolution restoration algorithms – named as
reconstruction methods – use a short sequence of low-resolution input frames
to produce a single super-resolved high-resolution output frame. Perhaps the
mean square error is the most common objective criterion for measuring the
differences in the image and video domains for several years. For this reason
many super-resolution methods try to minimize an error function, reflecting the
difference between down-sampled of the estimated high resolution image and
low resolution frames.

The Iterated Back Projection technique, initially introduced by Michal Irani
and Schmuel Peleg [12] is one of the pioneering works in the field of super-
resolution. This method uses averaged projections in HR grid to iteratively
solve the HR image X, by minimizing an error function. The method of Zomet
et al. [20] -also known as the Robust Super-resolution (SR)- is a version of IBP
in which instead of averaging, uses median operator. These methods are the
basis or a part of some later methods [11, 8, 7, 9, 16, 17].

Minimization of the mentioned error function, alone can lead to excessive
noise magnification in some applications due to the ill-posed nature of the SR
problem[11]. In some super-resolution approaches, such as Shift & Add ap-
proach of Farsiu et al. [7], Bayesian approach of Cheeseman et al. [5] and exam-
ple based approach of Freeman et al. [10], a kind of pixel neighbour correlation is
included in the model as a way to smooth out the noise without bullring the real
features. Hardie et al. [11] and Nguyen et al. [15] added a regularization term
to the objective function, in which makes the resulting HR image smoother.

In this paper a new approach for including the neighbor correlation into
the IBP model via Structural SIMilarity (SSIM) error measurement [19] is pro-
posed. Recently by incorporating the SSIM into the objective function of
Lucas-Kanade approach [14], this idea has been applied to image registration
by us, successfully [1], .

The reminder of this paper is organized as follows: in section 2 we will have a
brief look to IBP approach and SSIM error measurement criterion. In section 3
the proposed method and in section 4 experimental results are provided. The
last section describes concluding remarks.
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2 Previous Art

Since the proposed method is based on IBP approach and the SSIM criterion,
at first we will have a quick review to these concepts.

2.1 Iterated Back Projection

The Iterated Back Projection approach uses averaged projections in HR grid to
iteratively solve the HR image X, by minimizing the following error function
[20]:

L(X) =
1

2

N∑
k=1

||Y k −DHFkX||22 (2)

Minimizing the error function has been done with taking the derivative of L(.),
with respect to X; the gradient of L(.) is the sum of gradients computed over
the input images:

Bk = FT
k HTDT (DHFkX − Y k) (3)

∇L(X) =
N∑

k=1

Bk (4)

The estimated HR is updated in each iteration using gradient based minimiza-
tion method:

Xn+1 = Xn − λ∇L(X) (5)

where λ is a scale factor defining the step size. In each iteration, the HR estimate
is re-sampled in the latices of the input images. The difference between this
resampled image and the input image is projected back to the HR lattice.

Zomet et. al.[20] replaced the sum of images in Eqn. (3) with a scaled
pixel-wise median in their Robust Super-resolution (RS) approach:

∇L(X)(x, y) ≈ n.medianBk(x, y)
n
k=1 (6)

2.2 Structural Similarity Error Measurement

Wang et al. [19] introduced a method for measuring the structural similarity of
two images. The system separates the task of similarity measurement into three
comparisons: luminance, contrast and structure. The luminance and contrast
are estimated based on the mean and standard deviation of pixel intensities.
The similarity is estimated based on the correlation between two image patches.
Suppose x, y are two non-negative image signals, based on these three factors,
Structural SIMilarity (SSIM) measurement of two image patches is defined as
follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(7)

where C1 and C2 are some constants for avoiding instability, µx, σx and σxy are
estimates of local statistics. SSIM closes to 1 when x, y became more similar.

3



(a) Original Image (b) JPEG Com-
pressed

(c) Absolute error
map

(d) SSIM map

Figure 1: Comparing the error map of two images based on MSE and SSIM.
The images are takes from [4].

The Mean Structural SIMilarity (MSSIM) is defined for structural error
measurement of two images as follows:

MSSIM(X,Y ) =
1

M

M∑
j=1

SSIM(xj , yj) (8)

Where X and Y are the reference and the distorted images, respectively; xj and
yj are the image contents at the jth local window; M is the number of local
windows of the image. The higher values of MSSIM mean more structural
similarity of X and Y .

3 The Proposed Method

The contrast inverted form of SSIM highlights the structural differences of two
images, much better than the absolute error map, in particular when one image
is distorted. Figure 1 shows a reference image, its JPEG compressed version;
the absolute error map and the SSIM map between the original and its distorted
version. As can be seen the structural differences are more clear in the SSIM
image map.

The chief idea of the proposed method is incorporating the SSIM as a
weighting term to the mentioned IBP formulation. Hence in addition to absolute
error map of two images in eq. (2), the structural difference of two images is
considered. Since the definition of SSIM is based on a block around of each pixel,
the neighbor information of each pixel is included in the formulation, implicitly.

But the SSIM is for measuring similarity, while we look for a criterion for dif-
ference or dissimilarity of images. Hence here SDIS as Structural DISsimilarity
is defined as follows, which represents the difference of two images:

SDIS(x, y) = 1− SSIM(x, y) (9)
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More structural difference leads to a higher value of SDIS. The error map
of two images X and Y based on SDIS is called SDIS map image here and
denoted by ESDIS(X,Y ) or simply ESDIS .

In eq. (5), the step size factor λ is equal for all of the image pixels; here we
multiply it by ESDIS , so the step size of gradient method will be variable, with
respect to the structural differences of corresponding pixels. The max value of
SSIM , when two images are identical, is equal 1; so the min value of SDIS is
zero. More structural differences of two images, lead to a higher value of SDIS;
and thus have more contribution to △X.

We rewrite the eq. (5) as follows:

Xn+1 = Xn − λ

N∑
k=1

[FT
k HTDTESDIS(DHFkX,Yk)]∇L(X) (10)

In the above equation ESDIS(DHFkX,Yk), denotes the structural dis-similarity
of LR frame Yk, and the current estimation of HR image X, affected by the
imaging model. The reverse of the imaging model should be run on ESDIS so
that the resulting matrix whould be summable with Xn.

For speed-up the process and having an equal formulation with the original
IBP algorithm, we move the structural difference term from eq. (10) to the eq.
(3)1. Hence eq. (3) changes to:

Bk = FT
k HTDTESDIS(DHFkX,Yk)(DHFkX − Y k) (11)

and the estimated HR is updated in each iteration as before:

Xn+1 = Xn − λ∇L(X) (12)

where :

∇L(X) =
N∑

k=1

Bk (13)

We name this approach as ’IBP-SSIM’ 2.
The mentioned method can be combined with the robust super resolution,

where in eq. (6), Bk, is computed based on the proposed method in eq. (11).
We name this modified robust SR as ’RS-SSIM’.

1The reason for speed-up gain of moving the structural difference term from eq. (10) to the
eq. (3) is because that in the case of eq. (10), the reverse of the imaging model (FT

k HTDT )
should be run two times (in equations (10) and (3)); but with the mentioned modification,
the reversing process appears only in eq. (3).

2ESDIS does not included in the error function (2); because, in this case -as we will see
in Appendix A- the term ESDIS vanishes in the update stage. Hence this term is multiplied
directly in the gradient term in eq. (10).
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Table 1: Description of test sequences. The differences between HR and LR
frames are clear with zooming on the electronic version of the paper.
Sequence Name: Tehran Park Tokyo LSMS Closing

First HR Frame
Frames 69 60 4

Resolution 360×288 320×240 512×384
Device: Panasonic NV-GS75 Sony HDR-SR12E Sony DSC-W30

First LR Frame
Resolution 180×144 160×120 256×192
Blurred Yes Yes Yes

Down-sampled Yes Yes Yes
Noisy Yes Yes No

4 Experimental Results

We categorized the experiments into two cases. In the first case we use some real
video sequences, which are corrupted with noise for quantitative comparisons.
In the second part we will use 4 synthesized LR image from one HR image
for visual comparison of the proposed method against some others. The test
sequences are illustrated in table 1.

4.1 Quantitative Comparison

We applied our modified IBP algorithms on ‘Tehran Park’ and ‘Tokyo’ sequences
and compared its performance with the original algorithms. Each sequence is
blurred, down-sampled and corrupted with noise for producing low-resolution
video frames with SNR value equal 40db.

For video enhancement by SR algorithms, we used the ‘sliding-window’ tech-
nique [3, 2] with the Iterated Back-Projection (IBP) [12] and Robust Super-
resolution (RS)[20] and their modifications (IBP-SSIM and RS-SSIM) as recon-
struction methods. Computing the motion parameters between frames has been
done using the registration method of Keren et. al.[13] and the initial condi-
tions are the same for all of the methods. The implementations has been done
in MATLAB. The magnification factor r and the window size were set to 2 and
4 respectively.
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Figure 2: The average error over image sequences in each iteration.

4.1.1 Convergence Comparison

The back projection algorithm cycles until reaches to a predefined maximum
iterations allowed or ||e|| > ϵ, where:

e =
||Xi −Xi−1||

||Xi||
(14)

Figure 2 shows the average error over video frames in each iteration for two
mentioned sequences. For each video, the average of ||e|| over all of its frames
for each iteration is computed and illustrated. To avoid the results being biased
by cases when one method converges sooner, we included in the averaging only
those iterations, in which both of the two algorithms are not terminated. Better
convergence of the proposed approach for both sequences, is obvious.

The convergence plots of RS and RS-SSIM – not shown here - was similar to
the mentioned results.

4.1.2 Running Time Comparison

Since the computing of SSIM is not complicated, it does not increase the
overall time significantly. For instance in average each cycle of the IBP and
IBP-SSIM algorithms for ‘Tehran Park’ sequence, took 1.055 and 1.085 seconds,
respectively; which means about 2.9% increase of running time. In other words,
the time taken by IBP algorithm for 15 cycles is equal to required time of IBP-
SSIM approach for 14.58 cycles. Hence the minor overhead time of computing
SSIM is negligible.

4.1.3 Comparing with different supper-resolution methods

Table 2 shows quantitative comparisons of the mentioned methods based on
Mean Absolute Error (MAE), Power Signal to Noise Ratio (PSNR) and SSIM
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Table 2: MAE, PSNR and SSIM comparisons of the original IBP and RS meth-
ods and their modifications based on SSIM over different sequences. The best
score is highlighted with Bold letters in each row and for each category.

Iterated Back Projection Robust Super Resolution

Video IBP IBP-SSIM RS RS-SSIM

MAE(×10−3)
Tehran Park 45.91 37.54 46.72 39.47

Tokyo 44.83 38.65 42.75 35.80

PSNR
Tehran Park 23.05 24.84 22.76 24.21

Tokyo 22.74 24.09 23.09 24.69

SSIM
Tehran Park 0.67 0.74 0.65 0.70

Tokyo 0.62 0.66 0.63 0.69

for the test sequences, in which:

MAE =
ΣN

i=1Σ
M
j=1Σ

Q
q=1|F q(i, j)− F̂ q(i, j)|
N.M.Q

(15)

and

PSNR = 10× log
( 2552

1
N.M.QΣN

i=1Σ
M
j=1Σ

Q
q=1

(
F q(i, j)− F̂ q(i, j)

)2) (16)

where M , N are the image dimensions, Q is the number of channels of the image
(Q = 3 for color image), and F q(i, j) and F̂ q(i, j) denote the qth component
of the original image vector and the distorted image, at pixel position (i, j),
respectively. In these experiments, the mentioned criteria has been computed
over gray scale version of images (Q=1).

The best score is highlighted with Bold letters for each sequence and for
each category (Iterated Back Projection and Robust Super Resolution), in table
2. As shown in table 2 the proposed methods (IBP-SSIM and RS-SSIM) have
the highest performance for all MAE, PSNR and SSIM criteria.

The ‘Tehran Park’ sequence has been used here for further comparisons.
Figure 3 shows MAE, PSNR and SSIM of the original IBP approach and the
proposed method over 69 frames of ‘Tehran Park’ sequence. The superior perfor-
mance of the proposed modification of original IBP is obvious. The experimental
results for ‘Tokyo’ sequence was alike to ‘Tehran Park’ sequence. Similar results
have been achieved for robust super resolution and its modification (RS-SSIM).
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4.2 Visual Comparison

The previous two test sequences do not have good details for visual comparison
purposes. Hence we synthesized 4 LR images from a HR image shown in table
1 as ‘LSMS Closing’ sequence . Each frame in addition to blurring and down-
sampling has some differences about horizontal and vertical shifts and rotation
angles relating to the HR image .

Figure 4 shows close-up demonstrations of an instance frame, produced by
some different methods. The original HR frame, the nearest and the bicubic
resized versions of that frame has been shown for comparison purposes. Note
the better quality of the proposed method (4(e)) with respect to 4(d) due to
incorporating of the neighbor pixels via SSIM criterion. The SDIS error map
image between two results shown in figures 4(d) and 4(e) and the HR image
4(a) is shown in figures 4(f) and 4(g). Brighter pixels indicate more structural
differences. As can be seen the proposed method has less differences with the
original HR image.

5 Concluding Remarks

Iterated Back Projection (IBP) and its successor, Robust Super resolution (RS)
are two famous multi-frame super resolution reconstruction methods which use
the Sum of Squared Differences (SSD) of two images as error function. The
SSD between the low resolution frames and down-sampled of the estimated
high resolution image does not reflect the pixels’ neighboring correlation.

In this paper the Structural Similarity of two images, which is based on
the local statistical information of each pixel, is contributed to the formulation
of IBP and RS methods. In contrast to the original approaches, in which the
step size of the gradient based minimization method is fixed and equal for all
of the pixels, here it is variable. The step size of each pixel of estimated high
resolution image is affected by the structural differences of two corresponding
patches. Hence more structural differences leads to a larger step size in updating
the estimated high resolution image and consequently faster convergence in the
proposed approach. Various objective and subjective comparisons showed the
superior performance of the proposed modifications over original IBP and RS
approaches.
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(a) Original HR frame

(b) LR frame (Nearest) (c) LR frame (Bicubic)

(d) Iterated Back-projection (e) IBP-SSIM

(f) IBP’s SDIS error map (g) IBP-SSIM’s SDIS error map

Figure 4: Close-up views of the original HR image, replication (nearest) and
bicubic resized versions of the first LR image, super-resolution reconstruction
methods: Iterated Back-projection[12] and the proposed method (IBP-SSIM)
on ‘LSMS Closing’ sequence. The last row illustrates SDIS error map image
between two results shown in the third row and the HR image. Brighter pixels
indicate more structural differences. The lower error of the proposed approach
is obvious, specially near the edges.
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A Why SSIM does not contribute into error
function, L(X)

In eq. (10), SSIM was multiplied by the gradient term, here we discuss about
why SSIM does not contribute into the objective function of IBP approach.

Let we multiply SSIM into the error function, hence eq. (2) is rewritten as
follows:

L(X) =
1

2

N∑
k=1

ESDIS .||Y k −DHFkX||22 (17)

where dot denotes the element by element multiplication as ’.*’ operator in
MATLAB. For minimizing (17) in an iterative manner, we have to minimize the
following function:

L(X +△X) =
1

2

N∑
k=1

ESDIS .[Y k −DHFk(X +△X)]2 (18)

where ESDIS evaluates the structural dissimilarity of Y k and DHFkX. Finding
the optimum value of △X can be done by differentiating (18) with respect to
△X, setting the result to equal zero and solving it:
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Derivation of this new error function with respect to △X, yields:

∂L

∂△X
=

N∑
k=1

FT
k HTDT

(
ESDIS .[DHFk(X +△X)− Y k]

)
=

N∑
k=1

FT
k HTDT

(
ESDIS .[DHFk△X + (DHFkX − Y k)]

)
(19)

∂SSD

∂△X
= 0 ⇒

N∑
k=1

FT
k HTDTESDIS .DHFk△X +

N∑
k=1

FT
k HTDTESDIS .(DHFkX − Y k) = 0

(20)
Hence we have:

N∑
k=1

FT
k HTDTESDIS .DHFk△X = −

N∑
k=1

FT
k HTDTESDIS .(DHFkX − Y k)

(21)
dropping of FT

k HTDTESDIS . from two side of eq. (21) and multiplying each
side of the result by FT

k HTDT leads to:

△X = −
N∑

k=1

FT
k HTDT (DHFkX − Y k) (22)

which is as same as eq. (3). Note that (i) the dot operator after ESDIS indicates
element by element multiplication and (ii) the negative sign is included in eq.
(5).

Thus the term ESDIS is vanished in the update stage. Hence instead of
contributing the SSIM into the error function, it is multiplied directly in the
gradient term in eq. (10).
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