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Abstract

It is commonly known that the Mean Square Error (MSE) does not accu-

rately reflect the subjective image quality for most video enhancement tasks.

Among the various image quality metrics, Structural Similarity metric pro-

vides remarkably good prediction of the subjective scores. In this paper a new

registration method based on contribution of structural similarity measure-

ment to the well known Lucas-Kanade (LK) algorithm has been proposed.

The core of the proposed method is contributing the SSIM in the sum of

squared difference of images along with the Levenberg-Marquardt optimiza-

tion approach in LK algorithm. Mathematical derivation of the proposed

method, based on the unified framework of Baker et. al.is given. The pro-

posed registration algorithm is applied to a video super resolution problem,

successfully. Various objective and subjective comparisons show the superior

performance of the proposed method.
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Figure 1: “sliding window” technique for video super resolution [3].
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1. Introduction1

Nowadays digital cameras are very popular and taking films and movies2

became usual tasks. Many of these devices – such as some mobile phones –3

can take High-Resolution (HR) photos and low-resolution (LR) videos. En-4

hancement of these LR videos using HR photos is related to Super-Resolution5

(SR) context. Video Super-resolution algorithms reconstruct a high resolu-6

tion video from a low resolution video. The vast majority of the super-7

resolution restoration algorithms – named as reconstruction methods – use8

a short sequence of low-resolution input frames to produce a single super-9

resolved high-resolution output frame [1, 2]. These techniques have been10

applied to video restoration by using a shifting window of processed frames11

as illustrated in figure 1. For a given super-resolution frame, a “sliding win-12

dow” determines the subset of LR frames to be processed to produce a given13

super-resolution output frame. The window is moved forward in time to14

produce successive super-resolved frames in the output sequence [3].15
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Some of the video resolution enhancement methods, map the whole of16

a training image onto each frame coordinates and fuse the result with the17

LR video frame [4, 5]. These methods require advanced motion-compensated18

signal processing. More precise mapping leads to a better synthesized result;19

hence any fruitful consideration of the mapping problem promises significant20

returns. In [6] a feature based registration approach using SIFT1 key points21

[7] has been used. This approach followed by Lucas-Kanade registration22

method (LK-Algorithm)[8] in [5]. The well known LK-algorithm is a famous23

area based registration method and many variations of it has been introduced24

by researchers for several years [9]. The core part of this algorithm is finding25

the registration parameters with minimization of the square error between26

the reference image and a motion compensated of the other image.27

Perhaps the mean square error is the most common objective criterion28

for measuring the differences in the image and video domains for several29

years. According to [10] automatic optimization based on a reliable subjec-30

tive metric, seems a challenging target for future video enhancement research.31

Recently Amintoosi et. al.[11] proposed a new version of LK-algorithm which32

has higher performance relative to the its original form, in paticular when the33

LR image is very noisy. They used the Structural SIMilarity (SSIM) error34

measurement [12] as a weighting term to the objective function of LK algo-35

rithm. The chief idea of this approach is based on the fact that the contrast36

1Scale Invariant Feature Transform

3



(a) Original Image (b) JPEG Com-
pressed

(c) MSE map (d) SSIM map

Figure 2: Comparing the error map of two images based on MSE and SSIM. The images
are takes from [13].

inverted form of SSIM highlights the structural differences of two images,37

much better than the absolute error map, inparticular when one image is38

distorted. Figure 2 shows a reference image, its JPEG compressed version;39

the MSE map and the SSIM map between the original and its distorted ver-40

sion. As can be seen the structural differences are more clear in the SSIM41

image map.42

In this paper another version of the image registration algorithm intro-43

duced in [11] has been proposed and applied to video super-resolution. Ex-44

perimental results show the better performance of the new version of the45

LK-algorithm with respect to some others for the image registration pur-46

pose. Also the algorithm is applied in video super resolution problem and47

produced efficient results.48

The reminder of this paper is organized as follows: in section 2 the pro-49

posed method and in section 3 experimental results are provided. The last50
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section describes concluding remarks.51

2. The Proposed Method52

This section is categorized into three parts. Since the proposed method is53

based on the LK-algorithm and SSIM criterion, at first we will have a quick54

review to these concepts. In the second part we will discuss the mathematical55

derivation of the LK-algorithm based on SSIM and Levenberg-Marquardt op-56

timization method. Then the application of this method for video resolution57

enhancement is explained.58

2.1. Related Concepts59

The goal of the Lucas-Kanade algorithm is to align a template image T

to an input image I, by minimizing the following Sum of Squared Differences

(SSD) between two images:

SSD =
∑
x

[I(W(x;p))− T (x)]2 (1)

where x = (x, y)T is a column vector containing the pixel coordinates,60

p = (p1, . . . , pn)
T is a vector of parameters; W(x;p) denotes the param-61

eterized set of allowed warps and I(W(x;p)) is image I warped back onto62

the coordinates frame of the template T . The warp W(x;p) takes the pixel x63

in the coordinate frame of the image I and maps it to the sub-pixel location64

W(x;p) in the coordinates frame of the template T [9]. The warp model65

may be any transformation model such as affine, homography or optical flow.66
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But in this paper we concentrate on homography model. The minimization67

of the expression in equation (1) is performed with respect to p and the sum68

is performed over all of the pixels x in the template image T .69

The Lucas-Kanade algorithm assumes that a current estimate of p is

known and then iteratively solves for increments to the parameters △p ;

i.e. the following expression is minimized with respect to △p , and then the

parameters are updated:

∑
x

[I(W(x;p+△p))− T (x)]2 (2)

p← p+△p (3)

These two steps are iterated until the estimates of the parameters converge.

△p is calculated as follows:

△p = H−1
∑
x

[∇I ∂W
∂p

]T [T (x)− I(W(x;p))] (4)

where H is the approximate Hessian matrix:

H =
∑
x

[∇I ∂W
∂p

]T [∇I ∂W
∂p

] (5)

and ∇I = ( ∂I
∂x
, ∂I
∂y
) is the gradient of image I evaluated at W(x;p); ∂W

∂p
is70

the Jacobian of the warp and ∇I ∂W
∂p

is the steepest descent images [9, 11].71
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In [12] the Mean Structural SIMilarity (MSSIM) is defined for structural

error measurement of two images as follows:

MSSIM(X, Y ) =
1

M

M∑
j=1

SSIM(xj, yj) (6)

Where X and Y are the reference and the distorted images, respectively; xj

and yj are the image contents at the jth local window; M is the number of

local windows of the image and the SSIM is defined as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(7)

where C1 and C2 are some constants for avoiding instability, µx, σx and σxy72

are estimates of local statistics defined in [12]. Higher values of MSSIM73

mean more structural similarity of X and Y .74

Based on this measurement criterion, the SDIS is defined in [11] as a

measurement of Structural Dissimilarity:

SDIS(x, y) = −SSIM(x, y) (8)

More structural difference leads to a higher value of SDIS. The error map75

of two images I(W(x;p)) and T (x) based on SDIS was called ESDIS.76
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2.2. New Variation of the LK Algorithm based on SDIS and the Levenberg-77

Marquardt optimization78

Here our goal is the optimization of the following function:

∑
x

ESDIS.[I(W(x;p))− T (x)]2 (9)

where dot denotes the element by element multiplication as ’.*’ operator in

MATLAB. For optimizing (9) in an iterative manner similar to (2), we have

to optimize the following function:

∑
x

ESDIS.[I(W(x;p+△p))− T (x)]2 (10)

where ESDIS is evaluated at W(x;p), so it is independent to △p2. Perform-

ing a first order Taylor expansion on I(W(x;p+△p)) gives:

SSD =
∑
x

ESDIS.[I(W(x;p)) +∇I ∂W
∂p
△p− T (x)]2 (11)

Finding the optimum value of △p can be done by differentiating (11)

with respect to △p, setting the result to equal zero and solving it:

∂SSD

∂△p
= 2

∑
x

ESDIS.[∇I
∂W

∂p
]T [I(W(x;p)) +∇I ∂W

∂p
△p− T (x)] (12)

2In appendix A it is explained why ESDIS is not evaluated at W(x;p+△p)
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79

∂SSD

∂△p
= 0⇒

∑
x

ESDIS.[∇I
∂W

∂p
]T∇I ∂W

∂p
△p+

∑
x

ESDIS.[∇I
∂W

∂p
]T [I(W(x;p))−T (x)] = 0

(13)

Hence we have:

△p = H−1
∑
x

ESDIS.[∇I
∂W

∂p
]T [T (x)− I(W(x;p))] (14)

where H is:

H =
∑
x

ESDIS.[∇I
∂W

∂p
]T [∇I ∂W

∂p
] (15)

In (15),H is the approximate Hessian Matrix in the Gauss-Newton method.The

Levenberg-Marquardt optimization method, as an extension of Gauss-Newton

method, uses the following approximation form of the Hessian matrix:

HLM = H + δHDiag (16)
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Where HDiag is defined as follows:

HDiag =
∑
x



(∇I ∂W
∂p1

)2 0 · · · 0

0 (∇I ∂W
∂p2

)2 · · · 0

...
...

. . .
...

0 0 · · · (∇I ∂W
∂p8

)2


(17)

Hence the approximate Hessian matrix for the Levenberg-Marquardt opti-

mization is computed as follows:

HLM =
∑
x

ESDIS.[∇I
∂W

∂p
]T [∇I ∂W

∂p
] + δHDiag (18)

If we replace H in (14) with HLM we have:

△p = H−1
LM

∑
x

ESDIS.[∇I
∂W

∂p
]T [T (x)− I(W(x;p))] (19)

The modified Lucas-Kanade algorithm based on SDIS and Levenberg-80

Marquardt optimization is illustrated in Algorithm 1. In the original form of81

LK algorithm, △p and the Hessian matrix were computed by equations (4)82

and (5); but in the proposed method, they are computed based on equations83

(14) and (15), respectively. For consistency with the unified framework, in84

Algorithm 1 shown below, we have not explicitly described the computation85

of ESDIS required in equations (14) and (15). The initial approximation of86

warp model W(x;p) is computed with a feature-based registration method.87
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Algorithm 1 The proposed registration algorithm based on SDIS and
Levenberg-Marquardt optimization (LK-SSIM-LM)

Input: The reference image I, template image T and approximate estima-
tion of the registration parameters p = (p1, . . . , pn)

T as the warp model
W(x;p).

Output: The tuned warp model W(x;p).
1: Initialize δ = 0.01.
2: Compute the gradient ∇I of I(x).
3: Warp I with W(x;p) to compute I(W(x;p)).
4: Compute the error e =

∑
x[T (x)− I(W(x;p))]2

5: repeat
6: Compute the SDIS map error image of T (x) and I(W(x;p)), based

on (7), (8).
7: Warp the gradient ∇I with W(x;p).
8: Evaluate the Jacobian ∂W

∂p
at (x;p).

9: Compute the steepest descent images ∇I ∂W
∂p

.

10: Compute HLM matrix using Equation (18).
11: Compute △p using Equation (19).
12: Update the parameters p← p+△p
13: Re-compute I(W(x;p)).
14: Compute the new error e∗: e∗ =

∑
x[T (x)− I(W(x;p))]2

15: If e < e∗ then δ ← δ × 10, undo Steps 12–14;
else δ ← δ/10, e← e∗.

16: until ||△p|| ≤ ϵ or Reaching to Maximum Iteration allowed

2.3. Video Resolution Enhancement88

The proposed method shown in algorithm 2 has been introduced in [5],89

but instead of algorithm 1, the original LK-algorithm has been used in line90

6 of it. The warp model may be any transformation model such as affine,91

homography or optical flow. But in this paper we concentrated on the planar92

projective model.93

An estimation of the warping model W(x;p) for mapping training im-94
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age T into coordinate frame of LR frame g(i) is found by a feature based95

registration model in lines 3-5. This estimation is tuned by an area-based96

registration method in line 6. Then the compensated form of training image97

T is fused with the resized form of LR frame. Mask M in line 8 is used for98

dealing the uncommon parts of LR frame g(i) and image T , which is explained99

below.100

2.3.1. Handling Uncommon Parts101

The fusion process must be done on the common parts of two images.102

The main source of these parts is due to moving objects in LR frames, and103

the objects which are visible in HR image, but not in the video frames. The104

usual methods for background and foreground detection which are based on105

background modeling and subtraction, may lead unacceptable results, due to106

illumination changes and camera movement. Here, we used a simple subtrac-107

tion method between each LR frame (g(i)) and the registered HR training108

image (T (W(x;p))). In line 8 of algorithm 2, mask M which illustrates the109

uncommon parts, is built by thresholding the subtraction image.110

2.3.2. Fusion111

For fusion stage of registered HR image T (W(x;p)) and LR frame (g(i)),112

we used a version of multi-band blending approach [14] as a powerful image113

fusion technique. With this fusion method one can determine which regions of114

each image contributed in the final composite image by a mask. We produce115

the final HR frame f (i) by compositing the common parts of the registered116
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Algorithm 2 Video Enhancement using HR images with the proposed reg-
istration method in Algorithm 1.

Input: LR video frames g(1), . . . , g(n), HR training image T , magnification
factor r.

Output: HR video frames f (1), . . . , f (n).
1: Find the SIFT key-points of HR training image.
2: for i = 1 to n do
3: Resize g(i), with magnification factor r, for producing an LR image

with desired number of pixels,
4: Find SIFT key-points of this resized LR image,
5: Remove outliers and estimate the transformation model (W(x;p)),
6: Tune the warp model by Algorithm 1.
7: Warp T based on W(x;p) onto coordinate frame of g(i),
8: Create mask M by thresholding of subtraction of g(i) and T (W(x;p))

for dealing uncommon parts.
9: Produce f (i) by fusion of g(i) and T (W(x;p)) according to inversion

of M with multi-band blending approach [14].
10: end for

HR image and LR frame g(i). The multi-band blending approach guaranties117

the smoothness of the transition between these parts, so we have a seam-less118

result.119

In the next section we will mention the experimental results of the pro-120

posed algorithms for image registration and its application to video enhance-121

ment.122

3. Experimental Results123

To demonstrate the effectiveness of the proposed video enhancement124

method, we have applied it to a broad variety of low-quality videos, including125

those corrupted by impulse noise, indoor and outdoor video sequences. Be-126
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cause of our assumptions in the proposed algorithms, we have to use special127

videos and HR training image such that (i) HR image can be transformed to128

each frame using planar projective model, (ii) for super-resolution compar-129

ison purposes the frames must have some displacements against each other130

and (iii) the moving objects must not be so large to affect the registration131

procedure. These restrictions prohibited us from using some common LR132

videos in SR context, so we used our own collected data. Table 1 shows the133

description of the used video sequences. The different resolution between134

LR video frames and HR training images could be shown by zooming. Two135

separate sources of motions were present in each sequence. The first kind of136

motion was created by moving the camera for each individual frame. The137

second motion was due to the changing the positions of people or waterfall138

(see table 1). The videos are captured with different devices.139

3.1. Comparing different registration methods in algorithm 2140

We ran the proposed video enhancement algorithm (Algorithm 2) using141

different variations of the LK-algorithm over the mentioned sequences. In142

line 6 of the mentioned algorithm, we tried the LK algorithm [8, 9], the LK143

algorithm with the Levenberg-Marquardt optimization approach [15] (LK-144

LM), the LK algorithm with SSIM weighting term [11] (LK-SSIM) and the145

proposed registration method in algorithm 1 (LK-SSIM-LM).146

The Mean Square Error (MSE) between 60 synthesized frames of ‘Tokyo’147

sequence is shown in figure 3. The mean value of each criterion was displayed148
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Figure 3: MSE comparison of the proposed video enhancement algorithm (Algorithm 2)
using different variations of LK-algorithm for ‘Tokyo’ sequence .

Table 2: MSE comparison of the proposed video enhancement algorithm (Algorithm 2)
using different variations of LK-algorithm over different sequences. The first and the
second minimum scores are highlighted with Bold and italic letters, respectively.

MSE(10−6) LK LK-LM LK-SSIM LK-SSIM-LM
Tehran Park 108.31 108.23 108.35 107.96

LSMS Opening 70.86 70.86 70.65 70.77
Tokyo 101.51 101.29 101.16 100.24

Shanghai Garden 203.17 203.67 202.87 204.76

along with its legend. The mean error of the LK-SSIM-LM is lower than the149

others.150

Table 2 shows the MSE results over test sequences described in table151

1. As can be seen the video enhancement with the proposed LK-SSIM-LM152

algorithm has the highest performance with achieving the first rank in two153

cases and the second rank in one sequence.154

When the ground-truth HR image was not available (sequences ‘LSMS155

Opening’, ‘Shanghai Garden’) the resized version of the LR frame (without156
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noise) was used as the reference image. The initial approximation of warp157

model W(x;p) in algorithm 1 is computed with a feature-based registration158

method using SIFT key-points [5]. Finding the homography matrix has been159

done using the RANSAC3 method [16]. Since RANSAC is a random nature160

method, for each pair of images, the initial warp model has been found once161

and the resulting homography was used as the initial warp model for each of162

LK algorithm’s variations. Thus the comparisons are not affected by random163

nature of the RANSAC method.164

3.2. Comparing with different supper-resolution methods165

We applied our proposed method in algorithm 2 on aforementioned test166

sequences and compared its performance with some other super-resolution167

algorithms. We used the ‘sliding-window’ techniques with the Interpolation168

(IN), Iterated Back-projection(BP)[1] and Robust Super-resolution(RS)[2] as169

reconstruction methods. Computing the motion parameters between frames170

has been done using the registration method of Keren et. al.[17] . The171

magnification factor r and the window size were set to 2 and 4 respectively.172

Table 3 shows quantitative comparisons of the mentioned methods based173

on Mean Absolute Error (MAE), Power Signal to Noise Ratio (PSNR) and174

SSIM for the test sequences, in which:175

3RANdom SAmple Consensus (RANSAC)
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Table 3: MAE, PSNR and SSIM comparisons of the proposed video enhancement al-
gorithm (Algorithm 2) and some super-resolution reconstruction methods over different
sequences. The best score is highlighted with Bold letters in each row.

Method: BP IN RS Algorithm 2

MAE(×10−3)
Tehran Park 102.46 54.16 82.57 47.53

LSMS Opening 61.99 34.90 52.02 28.48
Tokyo 133.43 55.94 96.70 38.46

Shanghai Garden 84.92 47.46 67.90 35.08

PSNR
Tehran Park 17.58 22.44 19.30 23.19

LSMS Opening 22.21 25.99 23.09 28.15
Tokyo 15.44 22.10 17.97 25.14

Shanghai Garden 19.56 23.73 21.26 25.28

SSIM
Tehran Park 0.24 0.50 0.31 0.63

LSMS Opening 0.45 0.62 0.47 0.69
Tokyo 0.13 0.39 0.20 0.60

Shanghai Garden 0.31 0.45 0.36 0.70

MAE =
ΣN

i=1Σ
M
j=1Σ

Q
q=1|F q(i, j)− F̂ q(i, j)|
N.M.Q

(20)

and

PSNR = 10× log
( 2552

1
N.M.Q

ΣN
i=1Σ

M
j=1Σ

Q
q=1

(
F q(i, j)− F̂ q(i, j)

)2) (21)

where M , N are the image dimensions, Q is the number of channels of the176

image (Q = 3 for color image), and F q(i, j) and F̂ q(i, j) denote the qth177

component of the original image vector and the distorted image, at pixel178

position (i, j), respectively. In these experiments, the mentioned criteria has179
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been computed over gray scale version of images (Q=1). The best score is180

highlighted with Bold letters for each sequence in table 3. As can be seen181

the proposed method has the highest performance for all MAE, PSNR and182

SSIM criteria.183

The ’Tokyo’ sequence which its high-resolution version is available has184

been used here for further comparisons. Figure 4 shows MAE, PSNR and185

SSIM of the proposed video enhancement algorithm (Algorithm 2) and some186

super-resolution reconstruction methods over 60 frames of ‘Tokyo’ sequence.187

The superior performance of the proposed method is obvious.188

Figure 5 shows close-up demonstrations of an instance frame, produced by189

some different methods. The original HR frame, the nearest and the bicubic190

resized versions of that frame has been shown for comparison purposes. Note191

that the windows of the rear building in the frame, is almost completely192

unrecognizable in the LR video frames and in the other super-resolution193

methods, except that of the proposed method (5(g)). The resolution is clearly194

enhanced and the mentioned windows are now visible.195

Figure 6 shows SDIS map image196

4. Concluding Remarks197

In this paper a new version of the popular Lucas-Kanade image registra-198

tion algorithm has been proposed and applied to video enhancement. Our199

goal is the enhancement of low resolution video frames, by fusion a motion200

compensated form of a high resolution image. The high resolution image is201
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Figure 4: MAE, PSNR and SSIM comparison of the proposed video enhancement algo-
rithm (Algorithm 2) and some super-resolution reconstruction methods for ‘Tokyo’ se-
quence .
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(a) Original HR
frame

(b) LR frame
(Nearest)

(c) LR frame
(Bicubic)

(d) Interpolation (e) Iterated Back-
projection

(f) Robust Super-
resolution

(g) This paper

Figure 5: Close-up views of the original HR image, replication (nearest) and bicubic
resizing methods, super-resolution reconstruction methods: Interpolation, Iterated Back-
projection[1] and Robust Super-resolution [2] and the proposed method in Algorithm 2 on
‘Tokyo’ sequence.
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(a) Interpolation (b) Iterated
Back-projection

(c) Robust Super-
resolution

(d) This paper

Figure 6: SDIS map image (ESDIS) between figures 5(d)-5(g) with related HR image
(5(a)). Brighter pixel means higher error.

from the same scene of the video but perhaps with a different resolution,202

different illumination and color and slightly different capturing view. The203

precise mapping of this image onto each video frame has been done with the204

proposed registration method. In the registration stage structural similarity205

metric used as a weighting term of the objective function of LK algorithm.206

The SSIM criterion exhibited very good consistency with a qualitative visual207

appearance and when the signal to noise of each video frame is low it reflects208

the structural differences of two images much batter than absolute error map.209

The mathematical derivation of the proposed approach using the Levenberg-210

Marquardt optimization method, based on the unified framework of Baker et.211

al.[9] was given. The accuracy of the proposed registration method is com-212
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pared with some variations of LK-algorithm. The experimental results over213

video super-resolution using the mentioned registration algorithm, showed214

the superior performance of the proposed method against some other meth-215

ods in terms of final perceived quality and objective comparisons.216
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Appendix A. On the derivation of the proposed algorithm based274

on ESDIS(W(x; p))275

In equation (10) in section 2.2 we mentioned that “ESDIS is evaluated

at W(x;p)”, here we discuss why ESDIS is not evaluated at W(x;p+△p).

Suppose that ESDIS is evaluated at W(x;p+△p), rewriting eq. (10) based

on this assumption yields:

∑
x

ESDIS(W(x;p+△p)).[I(W(x;p+△p))− T (x)]2 (A.1)

Performing a first order Taylor expansion on ESDIS(W(x;p+△p)) and

I(W(x;p+△p)) gives:

SSD =
∑
x

[ESDIS(W(x;p))+∇ESDIS
∂W

∂p
△p].[I(W(x;p))+∇I ∂W

∂p
△p−T (x)]2

(A.2)

It should be mentioned that according to [12], ESDIS is differentiable. Find-

ing the optimum value of △p can be done by differentiating (A.2) with

respect to △p, setting the result to equal zero and solving it:

∂SSD

∂△p
=

∑
x

(
[∇ESDIS

∂W

∂p
]T [I(W(x;p)) +∇I ∂W

∂p
△p− T (x)]2+

2[∇I ∂W
∂p

]T [I(W(x;p)) +∇I ∂W
∂p
△p− T (x)][ESDIS(W(x;p))+

∇ESDIS
∂W

∂p
△p]

)
(A.3)
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For simplicity of driving we define the following terms:

A = [ESDIS(W(x;p)) +∇ESDIS
∂W

∂p
△p]

B = [I(W(x;p)) +∇I ∂W
∂p
△p− T (x)]

I = I(W(x;p))

T = T (x)

E = ESDIS(W(x;p))

e = I(W(x;p))− T (x)

SE = [∇ESDIS
∂W

∂p
] ,Steepest descent image of E

SI = [∇I ∂W
∂p

] ,Steepest descent image of I (A.4)

Hence equation (A.3) can be simplified as follows:

∂SSD

∂△p
=

∑
x

[
ST
EB

2 + 2BST
I A

]
=

∑
x

[
(ST

EB + 2ST
I A)B

]
(A.5)

The above factorization is legal; because the distribution of multiplication

over addition is hold for ’.’ operator (which denotes ’.*’ operator in MAT-

LAB) :

X.Z + Y.Z = (X + Y ).Z (A.6)
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For simplicity we temporary drop the summation operator
∑

x, from276

equation (A.5); B = 0 or (ST
EB + 2AST

I ) = 0 are the sufficient conditions277

such that ∂SSD
∂△p

= 0.278

If B = 0 then from our definitions in (A.4) and regarding the summation,

we will have:

△p = − e

SI

=

∑
x[T (x)− I(W(x;p))]∑

x[∇I
∂W
∂p

]T
(A.7)

which is non-acceptable, because the the size of denominator is n × 1 and279

hence it is not invertible.280

If (ST
EB + 2ST

I A) = 0, we will have:

ST
EB + 2ST

I A = 0 ⇒

[∇ESDIS
∂W

∂p
]T [I(W(x;p)) +∇I ∂W

∂p
△p− T (x)]

+2[∇I ∂W
∂p

]T [ESDIS(W(x;p)) +∇ESDIS
∂W

∂p
△p] = 0 ⇒

ST
E [I + SI△p− T ] + 2ST

I [E + SE△p] = 0 ⇒

ST
EI + ST

ESI△p− ST
ET + 2ST

I E + 2ST
I SE△p = 0 ⇒

ST
EI − ST

ET + 2ST
I E + (ST

ESI + 2ST
I SE)△p = 0 ⇒

△p = −ST
E(I − T ) + 2ST

I E

ST
ESI + 2ST

I SE

= − ST
Ee+ 2ST

I E

ST
ESI + 2ST

I SE

(A.8)

Based on the definitions in (A.4) and regarding the summation, we will281
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have:282

△p = −H−1
∑
x

(
[∇ESDIS

∂W

∂p
]T [I(W(x;p))− T (x)] + 2[∇I ∂W

∂p
]TESDIS

)
(A.9)

where H is:

H =
∑
x

(
[∇ESDIS

∂W

∂p
]T [∇I ∂W

∂p
] + 2[∇I ∂W

∂p
]T [∇ESDIS

∂W

∂p
]
)

(A.10)

But our implementation based on (A.10) did not produce satisfactory283

results. The reason may be due to non homogeneous nature of SE and SI284

(and also E and e) in (A.9). This makes the computations to be wrong and285

even affects the singularity of H in some examples.286
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