
��

�

A Case for Kernel Level Implementation of Inter Process

Communication Mechanisms

 Seyedeh Leili Mirtaheri Ehsan Mousavi Khaneghah
 Department of Computer Engineering Department of Computer Engineering

Iran University of Science & Technology Iran University of Science & Technology

 Narmak, Tehran Narmak, Tehran

 Iran Iran

���mirtaheri@comp.iust.ac.ir���emousavi@comp.iust.ac.ir

Mohsen Sharifi

Software Engineering Laboratory

Department of Computer Engineering

Iran University of Science & Technology

Narmak, Tehran

Iran

��msharifi@iust.ac.ir

Abstract
Distributed systems must provide some kind

of inter process communication (IPC)

mechanisms to enable communication

between local and especially geographically

dispersed and physically distributed

processes. These mechanisms may be

implemented at different levels of

distributed systems namely at application

level, library level, operating system

interface level, or kernel level. Upper level

implementations are intuitively simpler to

develop but are less efficient. This paper

provides hard evidence on this intuition. It

considers two renowned IPC mechanisms,

one implemented at library level, called

MPI, and the other implemented at kernel

level, called DIPC. It shows that the time

taken to calculate the Pi number by a

distributed system that uses MPI to program

and run the calculation of Pi number in

parallel is on average 35% slower than by

the same distributed system that uses DIPC

to program and run the calculation of Pi

number in parallel. It is concluded that if

distributed systems are to become an

appropriate platform for high performance

scientific computing of all kinds, it is

necessary to try harder and implement IPC

mechanisms at kernel level, even ignoring

so many other factors in favor of kernel

level implementations like safety, privilege,

reliability, and primitiveness.

Keywords: Distributed Systems, Operating

System Kernel, Inter Process

Communication (IPC), Distributed Inter

Process Communication (DIPC), High

Performance Scientific Computing.

1 Introduction

A distributed system is a type of parallel or

distributed processing system, which

consists of a collection of interconnected

stand-alone or complete computers

cooperatively working together as a single,

integrated computing resource. The general

focus nowadays is mostly on MIMD model,

using general purpose processors or multi-

computers. We only focus on multi-

computers in this paper. In contrast to

��

�

multiprocessors, multi-computers lack

physical shared memory. They rather rely

either on message passing or on distributed

shared memory. Irrespective of which one of

these interfaces they provide to the

programmers, they have to implement some

sort of inter process communication

mechanism. The crucial challenge is how

efficient these mechanisms are implemented

by distributed systems. Ignoring special

cases where efficiency is not an issue, like in

educational or research systems, efficiency

of IPC is critical to real distributed systems

that are intended for high performance

computing, like in scientific cluster

computations dealing with compute-

intensive computations. Given the

importance of IPC mechanism

implementation efficiency, the next

challenge is how best one can attain the best

degree of implementation efficiency.

Generally, IPC mechanisms in distributed

systems can be implemented at 4 levels,

namely at program level, library level,

operating system interface level, and lastly

at the lowest system level at the operating

system kernel level. The latter level is prone

to yield the best efficiency because it runs in

the privileged kernel mode of the operating

system and thus uses fewer instructions for

implementation of IPC, while other levels

run in non-privileged user mode and

consequently use more instructions for the

same purpose[13, 14].

Surely, kernel level implementation of IPC

has to be more efficient than in other levels,

but it is much harder to implement. That is

why so many implementations at other

levels are common in distributed systems,

like the Message Passing Interface (MPI [1])

that is used extensively in scientific cluster

computations.

In this paper we provide hard evidence that

kernel level implementation of IPC is more

efficient and much appreciated and needed

in high performance computations like

scientific cluster computations. To achieve

this objective, we have chosen a library level

implementation, namely MPI, and a kernel

level implementation, namely DIPC [2] that

has been developed by ourselves and

previously reported [2,3,4]. The calculation

of Pi number, as a standard benchmark

program, has been programmed and ran

using these two mechanisms on the same

distributed platform to show the superiority

of DIPC.

The rest of paper is organized as follows.

Section 2 gives a brief introduction to MPI

and DIPC. Section 3 compares the results of

runs of Pi program on MPI and DIPC.

Section 4 concludes the paper.

2 Backgrounds on MPI and DIPC

2.1 Message Passing Interface - MPI

The MPI standard defines a software library

used to turn serial applications into parallel

ones that can run on distributed memory

systems. MPI has sought to make use of the

most attractive features of a number of

existing message passing systems, rather

than selecting one of them and adopting it as

the standard. MPI has been strongly

influenced by works at the IBM T. J.

Watson Research Center, Intel’s NX/2,

Express, nCUBE’s Vertex, p4, and

PARMACS. Other important contributions

have come from Zipcode, Chimp, PVM,

Chameleon, and PICL [5].

The MPI standardization effort involved

about 60 people from 40 organizations

��

�

mainly from the United States and Europe.

Most of the major vendors of concurrent

computers were involved in MPI, along with

researchers from universities, government

laboratories, and industry. The

standardization process began with the

Workshop on Standards for Message

Passing in a Distributed Memory

Environment, sponsored by the Center for

Research on Parallel Computing. The basic

MPI defines policy and codify some

standards for communication problems but

do not explain how to implement these

standards. Some vendors such as LAM [6],

ProMPI [7] and MPICH [8] have

implemented these standards [1, 9].

Several advantages are attributable to MPI

[1, 10]: universality, expressivity, well

suited to formulating parallel algorithms,

acceptable performance (explicit association

of data with process allows good use of

cache), any parallel algorithm can be

expressed in terms of the MPI paradigm,

runs on both distributed and shared-memory

systems (performance is generally good in

either environment), allows explicit control

over communication leading to high

efficiency due to overlapping

communication and computation, allows for

static task handling, data placement

problems are rarely observed, for suitable

problems it scales well to very large

numbers of processors, it is portable, and its

current implementations are efficient and

optimized.

A number of critical disadvantages have

been reported too [10]: it is harder to learn

than shared memory programming, it does

not allow incremental parallelization, its

variate implementations cannot

communicate with each other, application

development is difficult (re-fitting existing

serial code using MPI is often a major

undertaking, requiring extensive

restructuring of the serial code), it is less

useful with fine-grained problems where

communication costs may dominate, for all-

to-all type operations, the effective number

of point-to-point interactions increases as

the square of the number of processors

resulting in rapidly increasing

communication costs, dynamic load

balancing is difficult to implement, and last

but not lastly, variations exist in different

manufacturer’s implementation of the entire

MPI library, where some may not

implement all the calls, while others offer

extensions

MPI is implemented in Library Level and

provides some functions to users for parallel

programming; these functions include

system calls that are executed by the

operating system kernel. The first MPI

versions only supported parallel

programming but later ones after the MPIV2

added facilities for distributed programming.

MPI does not fully support heterogeneous

platforms. Most of its implementations are

Linux based on i386 hardware. Some of

them support windows and MAC too but

only on i386 [1, 9, 11].

It is noteworthy that most of the

aforementioned weaknesses of MPI are due

to being implemented at the non-kernel

level.

2.2 Distributed Inter-Process

Communication - DIPC

DIPC [2, 3, 4] was founded by Dr. Mohsen

Sharifi in 1993. DIPC provides the

programmers of the Linux operating system

with distributed programming facilities,

including Distributed Shared Memory

��

�

(DSM). It works by making UNIX System

V IPC mechanisms (shared memory,

message queues and semaphores) network

transparent, thus integrating neatly with the

rest of the system. The underlying network

protocol used is TCP/IP and it is targeted to

work on WANs (Wide Area Networks) and

in heterogeneous environments.

UNIX is among the platforms of choice for

writing parallel and distributed programs.

The AT&T UNIX provides what is known

as System V IPC mechanisms, consisting of

shared memories, message queues and

semaphore sets, to enable programmers to

exchange data and synchronize between

processes running on the same computer. It

should be noted that DIPC provides a set of

mechanisms, and is not concerned with

policies. The software designer determines

how these mechanisms are used.

DIPC is based on UnixWare operating

systems and support some hardware

platforms such as I386, PowerPC, Motorola,

and Sparc. DIPC’s services are accessible

via the Linux kernel, letting application

programmers to use the already familiar

System V IPC system calls to send and

receive data. So, as far as the application

programmer is concerned, there are no

major changes in DIPC’s programming

model relative to normal System V IPC

programming. There is also no need for any

modified compilers or link libraries.

DIPC strengths lie in simplicity of the

system (preferring simplicity of the

algorithms whenever a conflict between that

and the performance arises), transparency of

the distributed facilities (doing distributed

actions is not very different from doing the

same actions in a single computer),

independence from network characteristics

(the programmer is not concerned with

physical characteristics of the computer

network, such as network topology,

addresses, etc.), compatibility with legacy

software (non-distributed programs using

System V IPC mechanisms are able to

coexist with other distributed programs,

simplicity of programming (preserving the

UNIX semantics helps those programmers

who are already familiar with UNIX, and

prevents the need to master some completely

new programming models), independence

from any specific programming tool or

model (programmers are able to use DIPC in

any language that can access operating

system’s functions), ability to turn legacy

programs into distributed ones (it is

relatively easy to change older programs,

using System V IPC mechanisms and run it

on multi-processors, to take advantage of

DIPC, thus making them distributed

programs), ability of the programmer to

influence program performance (the main

performance parameters such as frequency

and amount of data exchange between

machines is in the hands of the

programmer), ability to develop programs

on inexpensive hardware (programs could

be developed on a single computer and later

used in a computer cluster), making DIPC

work on Wide Area Networks, making

DIPC work in a heterogeneous environment.

It is noteworthy that most of the above good

features of DIPC are due to being

implemented at the kernel level.

A number of weaknesses of DIPC were also

reported in 1996 [2, 3, 4] such as lacking any

formal specification, suffering from SVIPC

restrictions like the number of Message,

Size of DSM, etc., lack of Fault Tolerance

support, sole reliance on operating system

for security, supporting only strict

consistency model of DSM, and lack of

support for process migration. Fortunately

��

�

none of these weaknesses affect our

argument in this paper, except the strict

consistency model that goes against DIPC in

competition with MPI.

3 DIPC and MPI Implementation

Levels Compared

Let us reiterate that the overall performance

of applications running on distributed

systems depend on the efficiency of IPC

mechanisms that are implemented by the

distributed systems. This is particularly true

in applications or systems that need or

provide high performance computing. The

reason is that computations are ideally

broken down to many parallel processes by

programmers to be run efficiently in a

distributed fashion by the distributed

systems. These processes often need to

communicate to perform and complete their

computations and thus their efficiency

depends very much on the degree of

efficiency of the provided IPC mechanisms.

The implementation of every IPC

mechanism, regardless of the level of its

implementation, entails one or more system

calls to the operating system. Each system

call traps the kernel and yields a process

context switch between user mode and

kernel mode. The switch is costly and has

lots of overhead, so it has to be avoided as

far as possible if one is interested in better

system response time.

In DIPC, UNIX System V IPC mechanisms

[12], consisting of semaphores, messages

and shared memories, are smartly modified

to function in a network environment. The

very same system calls that are used to

provide local communication between

processes running in the same computer are

allowed to be used for communication

between remote processes running on

different machines. There is no new system

call for the application programmers’ use

and programmer only use IPC system calls

like Msg-Send , Msg-Recv, etc. That is to

say, the use of IPC entails a single system

call irrespective of whether it is used for

local or remote communication between

processes.

In contrast, the MPI primitives for IPC (like

MPI_Send, and MPI_Recv) that are used by

programmers are implemented as a set of

system calls, each of which traps the kernel.

For example, 7 system calls are made to the

kernel when an MPI_Send is called by an

MPI application. This entails 7 context

switches, compared to 1 system call and

context switch when a DIPC Msg-Send is

called by a DIPC application. Considering a

whole application program that uses so

many IPC calls, one can be optimistic to get

higher performance from DIPC than MPI.

To back up the above optimism, we

conducted experiments with DIPC 2.1 and

LAM/MPI 7.1. We deployed a

homogeneous computer cluster consisting of

4 dual Intel cores with 512MB RAM each.

Each client node was equipped with at least

one network interface card, and clients were

connected to each other in a WAN.

We chose the calculation of the Pi number

as the benchmark. Since Pi is an irrational

number, it cannot be written as a simple

fraction or as an exact decimal with a finite

number of decimal places. However, one

can increase the number of digits until it

reaches a number as near to Pi as needed.

Mathematicians with computers have

calculated Pi to millions of decimal places.

Pi is used in several mathematical

calculations like in calculating the area of

circles, and the volume of spheres or cones.

��

�

We programmed the Pi calculation in C,

once with DIPC and once with MPI. In

actual fact, we chose an existing MPI

program for Pi calculation that was reported

to have good performance on MPI, but

programmed the calculation in DIPC by

ourselves.

Figure 1 shows the Wall Time of executing

the two programs 20 times under the same

conditions on the test bed cluster; wall time

is the sum of user and system time. Figure 2

shows the average wall time of both

program runs, implicating a near 35% better

performance in favor of DIPC.

�

�	�

�	�

�	�

�	�

�	�

�	�

�	

� � � � � �
 � � �� �� �� �� �� �� �� �
 �� �� ��

�

�

�

�

�

�

�

�

�	�
���
������������

����

����������

���������

����������

��

Figure 1. Wall times of Pi calculation using

DIPC and LAM/MPI

�

�	�

�	�

�	�

�	�

�	�

�	��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����������������

����� �����
���

����� �����

!�"#"��

Figure 2. Average wall times of Pi calculation

using DIPC and LAM/MPI

4 Conclusion
This paper put forward the consensus that

kernel level implementations of inter

process communication mechanisms are

favorable to those that implement such

mechanisms at other non-kernel levels. It

showed that a given bench program run in

parallel in a distributed cluster in WAN is

more efficient when programmed and ran

under a kernel level implementation of IPC,

namely DIPC, than when programmed and

ran under a non-kernel level implementation

of IPC, namely MPI. However, although the

case is for the kernel level implementation

of IPC, other parameters which may be

important to high performance computation

apart from efficiency of IPC, like

extensibility, security, ease of use, etc., need

further investigation.

�

�

 References

[1] Message Passing Interface Forum, “MPI: A

Message-Passing Interface Standard”,

Supported in Part by ARPA and NSF under

Grant ASC-9310330, the National Science

Foundation Science and Technology Center

Cooperative, 2003.

[2] M. Sharifi, K. Karimi, “DIPC: A System

Software Solution for Distributed

Programming”, International Conference on

Parallel and Distributed Processing

Techniques and Applications (PDPTA 97),

Georgia University, U.S.A., April 1997.

[3] M. Sharifi, K. Karimi, “DIPC: A

Heterogeneous Distributed Programming

System”, In Proceedings of the 3rd Annual

Int. Computer Conference of the Computer

Society of Iran, Iran University of Science

and Technology, Tehran, 1997.

[4] M. Sharifi, K. Karimi, “DIPC: The Linux

Way of Distributed Programming”, Linux

Journal, Issue 57, 1999. pp. 10-17.

[5] V. Bala and S. Kipnis, ” Process Groups: a

Mechanism for the Coordination of and

Communication Among Processes in the

Venus Collective Communication Library”,

Technical Report, IBM T. J. Watson

Research Center, October 1992.

[6] LAM/MPI Team, “LAM/MPI User’s Guide

Version 7.1.2”, Open Systems Lab,

http://www.lam-mpi.org/ , 2006.

[7] “Verari System Software Inc”,

http://www.verarisoft.com/mpi_pro_2.php ,

2007.

[8] William Gropp. MPICH2: A new start for

MPI implementations. In Dieter

Kranzlm¨uller, Peter Kacsuk, Jack

Dongarra, and Jens Volkert, editors, Recent

Advances in Parallel Virtual Machine and

Message Passing Interface, Number

LNCS2474 in Lecture Notes in Computer

Science, 2006.

[9] J. J. Dongarra, S. W. Otto, M. Snir and D.

Walker, “An Introduction to the MPI

Standard” Technical Report UT-CS-95-274,

University of Tennessee, 1995.

[10] G. Jost, H. Jin, “Comparing the

OpenMP, MPI, and Hybrid Programming

Paradigms on an SMP Cluster”, NASA

Ames Research Center, Fifth European

Workshop on OpenMP (EWOMP03) in

Aachen, Germany, 2003.

[11] Voltaire®HCA 400, Release Notes,

“Linux InfiniBand Stack for Voltaire® HCA

400 Revisions 3.0.0”, Document No.

399Z30200, 2005.

[12] Stallings William, "Operating Systems:

Internals and Design Principles" (5th

Edition), Hardcover, 2004.

[13] T. Maeda, “Safe Execution of User

Programs in Kernel Mode Using Typed

Assembly Language”, Ms Thesis, The

Graduate School of The University of

Tokyo, 2002.

[14] O. Gl¨uck, J. Lamotte, A. Greiner, $%&��

�������������'()��������)���*��������+�)����

%&�������������������������)����,)�� ���

-������
"�������������������������./

,�����)��(��. & M. Curie LIP6 Laboratory,

2002.

