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Abstract 
Distributed systems must provide some kind 

of inter process communication (IPC) 

mechanisms to enable communication 

between local and especially geographically 

dispersed and physically distributed 

processes. These mechanisms may be 

implemented at different levels of 

distributed systems namely at application 

level, library level, operating system 

interface level, or kernel level. Upper level 

implementations are intuitively simpler to 

develop but are less efficient. This paper 

provides hard evidence on this intuition. It 

considers two renowned IPC mechanisms, 

one implemented at library level, called 

MPI, and the other implemented at kernel 

level, called DIPC. It shows that the time 

taken to calculate the Pi number by a 

distributed system that uses MPI to program 

and run the calculation of Pi number in 

parallel is on average 35% slower than by 

the same distributed system that uses DIPC 

to program and run the calculation of Pi 

number in parallel. It is concluded that if 

distributed systems are to become an 

appropriate platform for high performance 

scientific computing of all kinds, it is 

necessary to try harder and implement IPC 

mechanisms at kernel level, even ignoring 

so many other factors in favor of kernel 

level implementations like safety, privilege, 

reliability, and primitiveness. 
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1 Introduction 
 
A distributed system is a type of parallel or 

distributed processing system, which 

consists of a collection of interconnected 

stand-alone or complete computers 

cooperatively working together as a single, 

integrated computing resource. The general 

focus nowadays is mostly on MIMD model, 

using general purpose processors or multi-

computers. We only focus on multi-

computers in this paper. In contrast to 
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multiprocessors, multi-computers lack 

physical shared memory. They rather rely 

either on message passing or on distributed 

shared memory. Irrespective of which one of 

these interfaces they provide to the 

programmers, they have to implement some 

sort of inter process communication 

mechanism. The crucial challenge is how 

efficient these mechanisms are implemented 

by distributed systems. Ignoring special 

cases where efficiency is not an issue, like in 

educational or research systems, efficiency 

of IPC is critical to real distributed systems 

that are intended for high performance 

computing, like in scientific cluster 

computations dealing with compute-

intensive computations. Given the 

importance of IPC mechanism 

implementation efficiency, the next 

challenge is how best one can attain the best 

degree of implementation efficiency.  

 

Generally, IPC mechanisms in distributed 

systems can be implemented at 4 levels, 

namely at program level, library level, 

operating system interface level, and lastly 

at the lowest system level at the operating 

system kernel level. The latter level is prone 

to yield the best efficiency because it runs in 

the privileged kernel mode of the operating 

system and thus uses fewer instructions for 

implementation of IPC, while other levels 

run in non-privileged user mode and 

consequently use more instructions for the 

same purpose[13, 14]. 

 

Surely, kernel level implementation of IPC 

has to be more efficient than in other levels, 

but it is much harder to implement. That is 

why so many implementations at other 

levels are common in distributed systems, 

like the Message Passing Interface (MPI [1]) 

that is used extensively in scientific cluster 

computations. 

 

In this paper we provide hard evidence that 

kernel level implementation of IPC is more 

efficient and much appreciated and needed 

in high performance computations like 

scientific cluster computations. To achieve 

this objective, we have chosen a library level 

implementation, namely MPI, and a kernel 

level implementation, namely DIPC [2] that 

has been developed by ourselves and 

previously reported [2,3,4]. The calculation 

of Pi number, as a standard benchmark 

program, has been programmed and ran 

using these two mechanisms on the same 

distributed platform to show the superiority 

of DIPC. 

 

The rest of paper is organized as follows. 

Section 2 gives a brief introduction to MPI 

and DIPC. Section 3 compares the results of 

runs of Pi program on MPI and DIPC. 

Section 4 concludes the paper. 

 

 

2 Backgrounds on MPI and DIPC   
 

2.1 Message Passing Interface - MPI 

The MPI standard defines a software library 

used to turn serial applications into parallel 

ones that can run on distributed memory 

systems. MPI has sought to make use of the 

most attractive features of a number of 

existing message passing systems, rather 

than selecting one of them and adopting it as 

the standard. MPI has been strongly 

influenced by works at the IBM T. J. 

Watson Research Center, Intel’s NX/2, 

Express, nCUBE’s Vertex, p4, and 

PARMACS. Other important contributions 

have come from Zipcode, Chimp, PVM, 

Chameleon, and PICL [5]. 

 

The MPI standardization effort involved 

about 60 people from 40 organizations 
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mainly from the United States and Europe. 

Most of the major vendors of concurrent 

computers were involved in MPI, along with 

researchers from universities, government 

laboratories, and industry. The 

standardization process began with the 

Workshop on Standards for Message 

Passing in a Distributed Memory 

Environment, sponsored by the Center for 

Research on Parallel Computing. The basic 

MPI defines policy and codify some 

standards for communication problems but 

do not explain how to implement these 

standards. Some vendors such as LAM [6], 

ProMPI [7] and MPICH [8] have 

implemented these standards [1, 9]. 
 

Several advantages are attributable to MPI 

[1, 10]:  universality,  expressivity,  well 

suited to formulating parallel algorithms, 

acceptable performance (explicit association 

of data with process allows good use of 

cache), any parallel algorithm can be 

expressed in terms of the MPI paradigm, 

runs on both distributed and shared-memory 

systems (performance is generally good in 

either environment), allows explicit control 

over communication leading to high 

efficiency due to overlapping 

communication and computation, allows for 

static task handling, data placement 

problems are rarely observed, for suitable 

problems it scales well to very large 

numbers of processors, it is portable, and its 

current implementations are efficient and 

optimized. 

 

A number of critical disadvantages have 

been reported too [10]: it is harder to learn 

than shared memory programming, it does 

not allow incremental parallelization, its 

variate implementations cannot 

communicate with each other, application 

development is difficult (re-fitting existing 

serial code using MPI is often a major 

undertaking, requiring extensive 

restructuring of the serial code), it is less 

useful with fine-grained problems where 

communication costs may dominate, for all-

to-all type operations, the effective number 

of point-to-point interactions increases as 

the square of the number of processors 

resulting in rapidly increasing 

communication costs, dynamic load 

balancing is difficult to implement, and last 

but not lastly, variations exist in different 

manufacturer’s implementation of the entire 

MPI library, where some may not 

implement all the calls, while others offer 

extensions 

 

MPI is implemented in Library Level and 

provides some functions to users for parallel 

programming; these functions include 

system calls that are executed by the 

operating system kernel. The first MPI 

versions only supported parallel 

programming but later ones after the MPIV2 

added facilities for distributed programming. 

 

MPI does not fully support heterogeneous 

platforms. Most of its implementations are 

Linux based on i386 hardware. Some of 

them support windows and MAC too but 

only on i386 [1, 9, 11]. 

 

It is noteworthy that most of the 

aforementioned weaknesses of MPI are due 

to being implemented at the non-kernel 

level. 

 

 

2.2   Distributed Inter-Process 

Communication - DIPC  

DIPC [2, 3, 4] was founded by Dr. Mohsen 

Sharifi in 1993.  DIPC provides the 

programmers of the Linux operating system 

with distributed programming facilities, 

including Distributed Shared Memory 
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(DSM). It works by making UNIX System 

V IPC mechanisms (shared memory, 

message queues and semaphores) network 

transparent, thus integrating neatly with the 

rest of the system. The underlying network 

protocol used is TCP/IP and it is targeted to 

work on WANs (Wide Area Networks) and 

in heterogeneous environments. 

 

UNIX is among the platforms of choice for 

writing parallel and distributed programs. 

The AT&T UNIX provides what is known 

as System V IPC mechanisms, consisting of 

shared memories, message queues and 

semaphore sets, to enable programmers to 

exchange data and synchronize between 

processes running on the same computer. It 

should be noted that DIPC provides a set of 

mechanisms, and is not concerned with 

policies. The software designer determines 

how these mechanisms are used. 

 

DIPC is based on UnixWare operating 

systems and support some hardware 

platforms such as I386, PowerPC, Motorola, 

and Sparc. DIPC’s services are accessible 

via the Linux kernel, letting application 

programmers to use the already familiar 

System V IPC system calls to send and 

receive data. So, as far as the application 

programmer is concerned, there are no 

major changes in DIPC’s programming 

model relative to normal System V IPC 

programming. There is also no need for any 

modified compilers or link libraries. 

 

DIPC strengths lie in simplicity of the 

system (preferring simplicity of the 

algorithms whenever a conflict between that 

and the performance arises), transparency of 

the distributed facilities (doing distributed 

actions is not very different from doing the 

same actions in a single computer), 

independence from network characteristics 

(the programmer is not concerned with 

physical characteristics of the computer 

network, such as network topology, 

addresses, etc.), compatibility with legacy 

software (non-distributed programs using 

System V IPC mechanisms are able to 

coexist with other distributed programs, 

simplicity of programming (preserving the 

UNIX semantics helps those programmers 

who are already familiar with UNIX, and 

prevents the need to master some completely 

new programming models), independence 

from any specific programming tool or 

model (programmers are able to use DIPC in 

any language that can access operating 

system’s functions), ability to turn legacy 

programs into distributed ones (it is 

relatively easy to change older programs, 

using System V IPC mechanisms and run it 

on multi-processors, to take advantage of 

DIPC, thus making them distributed 

programs), ability of the programmer to 

influence program performance (the main 

performance parameters such as frequency 

and amount of data exchange between 

machines is in the hands of the 

programmer), ability to develop programs 

on inexpensive hardware (programs could 

be developed on a single computer and later 

used in a computer cluster),  making DIPC 

work on Wide Area Networks, making 

DIPC work in a heterogeneous environment. 

 

It is noteworthy that most of the above good 

features of DIPC are due to being 

implemented at the kernel level. 

 

A number of weaknesses of DIPC were also 

reported in 1996 [2, 3, 4] such as lacking any 

formal specification, suffering from SVIPC 

restrictions like the number of Message, 

Size of DSM, etc., lack of Fault Tolerance 

support, sole reliance on operating system 

for security,  supporting only strict 

consistency model of DSM, and lack of 

support for process migration. Fortunately 
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none of these weaknesses affect our 

argument in this paper, except the strict 

consistency model that goes against DIPC in 

competition with MPI. 

 

 

3 DIPC and MPI Implementation 

Levels Compared 

Let us reiterate that the overall performance 

of applications running on distributed 

systems depend on the efficiency of IPC 

mechanisms that are implemented by the 

distributed systems. This is particularly true 

in applications or systems that need or 

provide high performance computing. The 

reason is that computations are ideally 

broken down to many parallel processes by 

programmers to be run efficiently in a 

distributed fashion by the distributed 

systems. These processes often need to 

communicate to perform and complete their 

computations and thus their efficiency 

depends very much on the degree of 

efficiency of the provided IPC mechanisms. 

  

The implementation of every IPC 

mechanism, regardless of the level of its 

implementation, entails one or more system 

calls to the operating system. Each system 

call traps the kernel and yields a process 

context switch between user mode and 

kernel mode. The switch is costly and has 

lots of overhead, so it has to be avoided as 

far as possible if one is interested in better 

system response time.  

 

In DIPC, UNIX System V IPC mechanisms 

[12], consisting of semaphores, messages 

and shared memories, are smartly modified 

to function in a network environment. The 

very same system calls that are used to 

provide local communication between 

processes running in the same computer are 

allowed to be used for communication 

between remote processes running on 

different machines. There is no new system 

call for the application programmers’ use 

and programmer only use IPC system calls 

like Msg-Send , Msg-Recv, etc. That is to 

say, the use of IPC entails a single system 

call irrespective of whether it is used for 

local or remote communication between 

processes. 

 

In contrast, the MPI primitives for IPC (like 

MPI_Send, and MPI_Recv) that are used by 

programmers are implemented as a set of 

system calls, each of which traps the kernel. 

For example, 7 system calls are made to the 

kernel when an MPI_Send is called by an 

MPI application. This entails 7 context 

switches, compared to 1 system call and 

context switch when a DIPC Msg-Send is 

called by a DIPC application. Considering a 

whole application program that uses so 

many IPC calls, one can be optimistic to get 

higher performance from DIPC than MPI. 

 

To back up the above optimism, we 

conducted experiments with DIPC 2.1 and 

LAM/MPI 7.1. We deployed a 

homogeneous computer cluster consisting of 

4 dual Intel cores with 512MB RAM each. 

Each client node was equipped with at least 

one network interface card, and clients were 

connected to each other in a WAN.  

 

We chose the calculation of the Pi number 

as the benchmark. Since Pi is an irrational 

number, it cannot be written as a simple 

fraction or as an exact decimal with a finite 

number of decimal places. However, one 

can increase the number of digits until it 

reaches a number as near to Pi as needed. 

Mathematicians with computers have 

calculated Pi to millions of decimal places.  

Pi is used in several mathematical 

calculations like in calculating the area of 

circles, and the volume of spheres or cones.  
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We programmed the Pi calculation in C, 

once with DIPC and once with MPI. In 

actual fact, we chose an existing MPI 

program for Pi calculation that was reported 

to have good performance on MPI, but 

programmed the calculation in DIPC by 

ourselves.  

 

Figure 1 shows the Wall Time of executing 

the two programs 20 times under the same 

conditions on the test bed cluster; wall time 

is the sum of user and system time. Figure 2 

shows the average wall time of both 

program runs, implicating a near 35% better 

performance in favor of DIPC. 
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Figure 1. Wall times of Pi calculation using 

DIPC and LAM/MPI 
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Figure 2. Average wall times of Pi calculation 

using DIPC and LAM/MPI 

 

4 Conclusion 
This paper put forward the consensus that 

kernel level implementations of inter 

process communication mechanisms are 

favorable to those that implement such 

mechanisms at other non-kernel levels. It 

showed that a given bench program run in 

parallel in a distributed cluster in WAN is 

more efficient when programmed and ran 

under a kernel level implementation of IPC, 

namely DIPC, than when programmed and 

ran under a non-kernel level implementation 

of IPC, namely MPI. However, although the 

case is for the kernel level implementation 

of IPC, other parameters which may be 

important to high performance computation 

apart from efficiency of IPC, like 

extensibility, security, ease of use, etc., need 

further investigation. 
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