

Parameters Affecting the Functionality of Memory Allocators

Ghassem Barootkoob
School of Computer Engineering

Iran University of Science and Technology
Tehran, Iran

gbarootkoob@comp.iust.ac.ir

Ehsan Musavi Khaneghah
School of Computer Engineering

Iran University of Science and Technology
Tehran, Iran

emousavi@iust.ac.ir

Mohsen Sharifi
School of Computer Engineering

Iran University of Science and Technology
Tehran, Iran

msharifi@iust.ac.ir

Seyedeh Leili Mirtaheri
School of Computer Engineering

Iran University of Science and Technology
Tehran, Iran

mirtahei@iust.ac.ir

Abstract- Parameters affecting the functionality of an operating
system’s memory management unit depend on a number of
factors such as allocation and deallocation strategies,
localization, internal and external fragmentation, regional
clustering, allocation and deallocation speeds, multi-threading,
reusability, wasted memory reusability, implementation level
and dynamicity. In this paper, we examine different memory
allocation methods used in the BSD operating system as well as
parameters affecting the functionality of its memory
management unit extracted from these methods. Besides
identifying the relationships and dependencies between these
parameters, we report our experimental measurements of the
effect of each parameter on the performance of different
memory management methods used in BSD. Our evaluations
not only provide a comparative view of different allocation
methods in BSD that have been deployed over time to
complement each other, they also put into perspective different
memory allocation methods used in different operating systems
with respect to parameters such as multithreading ability,
number of requests served and memory fragmentation rate.

Keywords: Operating System Kernel, Memory Management,
Memory Allocation Methods, Performance.

1. INTRODUCTION
Memory management unit in an operating system kernel

is responsible to provide a fair share of the limited address
space of physical memory of a computer to many contesting
execution units namely processes [1]. Due to high frequency
of access of processes to this limited address space at
runtime, the performance of memory management unit is
most detrimental on the overall performance of processes
running on this memory system. It is thus critical to identify
parameters that most affect the performance of memory
management units in operating systems.

Triggered by the lack of published public reports in
academia on the parameters affecting the functionality of
memory management units, we have selected BSD [2] as a
well-established operating system to examine its different
complementary memory management methods that it had
deployed over time. Having determined the influential

properties and parameters in BSD memory management
(specially, allocation) methods, we have rated their relative
criticality by studying memory management methods of
Linux [3], Mac [4], Solaris [5], and Sun OS [6]. The results
of this study showed that all these operating systems except
Linux have inherited their memory management methods
from BSD, making the results applicable to a wide range of
operating systems. We lastly analyzed these parameters to
find their interdependencies with respect to allocation speed,
loss rate, and localization, as well as their influence on the
performance of memory management unit.

We have organized the rest of paper as follows. Section 2
examines three BSD memory allocation methods namely
PHKmalloc [7, 8], Slab [9,10], and Jemalloc [11], and
compares their properties with those in Linux, Mac, Solaris,
and Sun OS. Based on the results of our examinations,
Section 3 presents the effective parameters on functionality
of memory management units. Section 4 contains the
conclusions and suggestions for future studies.

I. MEMORY ALLOCATION METHODS
In this section, we examine memory allocation in BSD

operating system and try to express its properties and
changes over time and also the reasons for its success among
other operating systems will be determined.

A. PHKmalloc Allocator
Most applications nowadays require as much memory

space as possible at runtime regardless of how much they
have space they have already been granted and irrespective
of similar requirements of other processes running other
applications on the memory system. This describes why most
operating systems deploy one or more dynamic memory
allocation methods.

PHKmalloc is a distinguished memory allocator in the
BSD operating system that has evolved over time and gets
full support from both the hardware and the system software.
[8, 12, 13]. Here we study its specification from different

V2-160978-981-08-9085-8/11 ©2011 IACSIT

2011 International Conference on Computer and Network Engineering (ICCNE 2011)

perspectives including its operational specification,
allocation speed, drawbacks, and performance.

Operational specification. We may summarize the
specification in eight items: 1) it is a page-based allocator, 2)
it aims to minimize access to pages for both applications and
itself in order to increase overall performance, 3) every page
is divided into equal size objects that are managed more
efficiently in order to increase overall speed and performance,
4) more pages are allocated to larger objects, 5) for objects
smaller than a half page, the object size is rounded to the
nearest power 2 and requests for a page larger than the page
size is rounded to the first power of several pages, 6) the
allocator maintains a directory of all assigned pages by
creating a bitmap containing this information at the
beginning of each small object page, 7) for allocation of
small objects a linear search of the bitmap finds the first
available place on that page, and 8) the allocator takes all
necessary supports for virtual memory from both hardware
and system software.

Allocation speed. There are three main reasons for
reasonable speed of PHKmalloc: 1) it only needs simple
conversion and rounding thus it is so fast, 2) it has a method
that calls for memory whenever the amount of free space
memory is lower than a threshold so it does not decrease the
overall performance, and 3) the rounding of several pages
leads to higher performance through improvements in data
localization operations [14].

Drawback. The most critical drawback of PHKmalloc is
its high rate of memory waste [15] caused by rounding
mentioned aove. We later explain in the last section of this
paper how this weakness can be alleviated by a tradeoff
between memory waste and other performance-wise
parameters.

Performance. There are two performance issues on this
allocator: 1) how much time is spent to search and
manipulate data structures denoting its overload?, and 2)
how well does this allocator manages the memory denoting
its quality of allocation?

B. Slab Allocator
The Slab allocator or regional is another famous allocator

in BSD designed for specific applications and not useful to
all situations [9]. This allocator has tried to resolve the
memory waste and external fragmentation problems. There
are two forms of fragmentation: external and internal.
External fragmentation is a measure, which affects the
virtual memory in a physical form. Internal fragmentation is
a measure to evaluate the amount of memory waste in single
allocation.

Objects are allocated equally and the number of objects is
a power of 2. Memory blocks are filled as much as possible.
If a block is not completely filled, it can be filled by a simple
management approach. This method suffers from internal
fragmentation because objects are considered as a power of 2
and smaller size objects requiring less memory may well
exist. Slab can perform fast in special cases where memory
space consists of a list of equal size objects (e.g. a dynamic
array of structures) [9, 10].

C. Jemalloc Allocator
BSD operating systems have tried to provide the best

support for multi-processor systems. Jemalloc allocator has
thus been developed to replace previous allocators of BSD to
specifically better support multi-processor systems [10].

We may summarize the strengths of Jemalloc in four
respects: 1) support for multi-processor programs, 2)
increased speed and efficiency of memory management in
multi-processor programs in multi-kernel environments, 3)
compatibility with PHKmalloc to run single processor
programs, and 4) achieving a fast allocation compared to
other allocators of BSD. A disadvantage of Jemalloc is its
relatively high rate of memory fragmentation although its
memory waste is less than PHKmalloc and still
comparatively reasonable.

II. MEMORY ALLOCATORS COMPARED
We study different comparisons in different papers and

present one of them as a example and summarize the other in
below tables In this workcompare and experimentally
evaluate PHKmalloc and Jemalloc thread-based BSD
allocators as well as the Linux dlmalloc allocator [16] based
on different criteria. he has selected dlmalloc as a basis for
his experimental comparison due to its wide usage in these
days and age.

Evans [11] has compared PHKmalloc, Jemalloc and
dlmalloc allocators. To do the comparisons experimentally,
he used a benchmark malloc-test[17 with two rates and five
threads on a system with four processors using the 6th
version of BSD operating system. We ran the three chosen
allocators on this platform. and however ignored many
parameters of dlmalloc in hisexperiments for brevity since
they did not affect the overall conclusions we could make
from his experimental comparisons.

Figure 1 shows the increasing patterns of allocations per
second of the three allocators with respect to the number of
threads. malloc-test ran Three times where each run
consisted of forty million allocations and lack of allocations,
and averaged the results . The number of allocations per
second decreased by increases in the number of threads in
PHKmalloc and dlmalloc, while the number of allocations
per second increased for the first 4 threads and then reached
a steady state in Jemalloc.

Figure 2 shows the same allocators benchmarked with a
different set of queries.

V2-161

2011 International Conference on Computer and Network Engineering (ICCNE 2011)

Figure 1. The number of allocations per second versus the number of

threads [11]

Although all three methods acted similarly, they were
different in details. Both dlmalloc and PHKmalloc had a high
scattering rate enabling them to process forty or more million
queries while Jemalloc had a lower scattering rate and
standard deviation than dlmalloc and PHKmalloc. Lower
scattering rate has lead to a more stable behavior of Jemalloc
as Figure 2 shows. Jemalloc has a similar performance to
dlmalloc but with a lower fluctuation rate over time.

Figure 2. The number of queries per second versus the number of clients

[11]

All in all Jemalloc performed better than PHKmalloc in all
cases and also in some cases it performed better than
dlmalloc. As stated before, Jemalloc operates best in multi-
processor systems but it has the same performance as other
allocators in single processor systems.
 Figure 3 shows a comparison between allocators in
Linux and BSD operating systems based on the Jemalloc
method and demonstrates the superiority of BSD methods
and shows that it [17] has the ability to perform higher
number of operations per second than Linux.

Figure 3. The number of queries per second versus the number of threads

[18]

For another comparisons of this methods we refers to this
papers [9,10,11,14,15] that we will summarize in below
tables and present analysis of them.

A. Comparing different memory allocation methods in
BSD based on the effective parameters in memory
management
In our studies, we observed that BSD has used different

allocators over time for different reasons. We tried to assess
notable allocation methods BSD has used. Note that BSD
has had the best allocators in its lifetime and it has required
heavy changes to the operating system code in order to equip
itself with a super fast allocator.

In the following we compare the three main allocators,
PHKmalloc, Slab and Jemalloc, based on effective
parameters in memory management. Tables 1, 2, 3 and 4
show the results.

TABLE I. EFFECTIVE PARAMETERS IN MEMORY MANAGEMENT IN DIFFERENT
ALLOCATION METHODS

 Strategy
Parameter

Region
Clustering
Parameter

External
Fragmentation

Parameter

PhkMalloc
[8]

Minimum
access to
page[15,19,2
0]

No [14,15] Low [14,15]

Slab [9,10] Dynamic
Management

Yes [9] Low [10]

Jemalloc
[11]

Similar to
Phk and
differnet in
multi-
thereaded
[11]

Not Known Low [11]

V2-162

2011 International Conference on Computer and Network Engineering (ICCNE 2011)

TABLE II. EFFECTIVE PARAMETERS IN MEMORY MANAGEMENT IN
DIFFERENT ALLOCATION METHODS

 Internal
Fragmentation

Parameter

Locality
Parameter

Speed
Parameter

PhkMalloc[8] High[14,15,19] High
Medium
[14,15]

High[14,15]

Slab[9,10] Low[10,20] High
Medium[15]

High[10,13]

Jemalloc[11] Lower Phk[11] High
Medium
[11,15]

High[11,18]

TABLE III. EFFECTIVE PARAMETERS IN MEMORY MANAGEMENT IN
DIFFERENT ALLOCATION METHODS

 Partial
Allocation
Parameter

Implementation
Level

Parameter

Soft/Hard
Parameter

PhkMalloc[8] No[8] Kernel[11] Hybrid[12]
Slab[9,10] Yes[10] kernel[21] Soft
Jemalloc[11] No[11] User[11] Soft[11]

TABLE IV. EFFECTIVE PARAMETERS IN MEMORY MANAGEMENT IN
DIFFERENT ALLOCATION METHODS

 Dynamicity
Parameter

Alloc/
Dealloc

Paramete
r

Frag
Reuse

Parameter

Multi
Threads

Parameter

PhkMalloc[8] Yes
[8,11,12]

Yes Yes [14] No [8,11]

Slab[9,10] Yes[10] Yes Yes No[11]
Jemalloc[11] Yes [11,15] Yes Yes No[11]

 In the following, we explain the parameters we have used
in the above presented tables.

Regional clustering. As its name implies, this parameter
works in the memory management and allocation using the
area clustering and tries to break areas into several parts and
place them into clusters because when the areas are clustered
the amount of memory waste is decreased and therefore
localization is increased. So this parameter indirectly affects
localization.

Support of multi-threading systems. This parameter
states whether an allocator can be used in new modern
systems or not? Multi-threading in a system means that the
system has requirement for rapid execution of programs.
This parameter is extremely effective in improving both
allocation speed and memory retrieval. Fragmentation
reuse. This is a parameter that affects allocators and shows if
wasted memory can be used again or not? If wasted memory
can be used again it shows that the amount of memory loss is
lower in that allocator that other allocators. So this parameter
indirectly affects the waste of memory.

Fragmentation. This parameter includes the internal and
external fragmentation parameters and generally shows the
amount of memory waste for an allocator.

Implementation level. Implementation level is another
parameter that is considered in this field and is divided into
two parts.

Hardware/Software Support. This parameter shows
whether an allocator uses hardware or software supports in

its implementation or not? Hardware-based allocators are. In
turn, software-based allocators are more flexible. It is
possible to use any of them or a combination of hardware
and software supports in implementing an allocator.

Kernel/User. Another issue is the implementation level
of an allocator. Kernel-level implementations are faster.

Memory deallocation. This parameter helps to retrieve
allocated memory spaces according to some algorithms and
affects the speed and the amount of memory waste based on
the proposed algorithm. For example, if memories are
retrieved using FIFO, the system may suffer from high
memory waste specially when faced with sudden large
memory releases and reallocate of released memory because
the best memory space might not have been selected for
retrieval.

Partial allocation. Another effective parameter in
memory waste is the ability to retrieve allocated memory but
this parameter is only used in methods with a structured
allocation method, for example in our tables only Slab has
this characteristic. This parameter indirectly affects wasted
memory and localization parameters.

Strategy This parameter determines the strategy used in
allocating and retrieving memory. Many parameters are
affected by this parameter.

Dynamicity. Another parameter is the implementation
dynamics. This helps the dynamic allocator of memory to
change based on the selected strategy to make the best
decisions to speed up and reduce memory waste.

Having analyzed the above parameters and evaluated
their effects on the three main parameters, localization,
memory waste and speed, it is necessary to investigate the
effects of these main parameters on each other. Three
different cases are considered.

Speed versus fragmentation. Different studies [20, 21]
have shown that there is an inverse relation between these
two parameters. Allocators with high speed act extremely
bad in memory waste parameter. For example we can name
dlmalloc with high speed but extremely bad memory waste.
This refers to the used strategies because strategies express
the rate of memory waste. The more a strategy bounds itself
to speed, the more it is forced to accept memory waste
because in order to find the fastest possible solution it has to
use simpler search algorithms.

Localization versus speed. Studies have shown [15] that
the localization has an inverse relation with speed parameter
because in order to increase localization, allocator must
search more to find smaller areas and this affects the search
algorithms and therefore it is time-wasting.

Fragmentation versus localization. These two
parameters are also against each other. From the localization
parameter point of view, decreasing the memory waste rate
causes less memory blocks to be available to be searched
because the localization request of available memory is
requested at runtime. Any effort to reduce the memory waste
rate reduces localization too. Indeed when the availability of
memory increases, the possibility to place related parts near
each other increases too and this enhances localization.

V2-163

2011 International Conference on Computer and Network Engineering (ICCNE 2011)

III. CONCLUSIONS
We analyzed the memory management methods in BSD
operating systems to identify the parameters affecting the
performance of memory management, memory allocation
and the relationship between these parameters. To assess
different memory management methods in BSD, their
characteristics, strengths and weaknesses, we extracted these
parameters. Parameters include allocation and retrieving
speed, waste rate, localization, strategies of allocation and
retrieving, implementation level, support for multi-threading,
support for retrieving allocated memory, area clustering,
paging and dynamicity. We identified the dependency of
these parameters and their effects on each other. We showed
that speed, the amount of memory waste and localization
were the most important parameters affecting the
performance of memory management. A reasonable tradeoff
between these three parameters in the design of memory
managers can lead to a high performance general memory
manager.

REFRENCES
[1] A. S. Tanenbaum. Modern Operating Systems, Second Edition,

Prentice-Hall, 2001.
[2] M.K. McKusick and G.V. Neville-Neil, The Design and

Implementation of the FreeBSD Operating System, Addison Wesley,
2004.

[3] M.Gorman,Understanding the Linux Virtual Memory Manager,
Prentice- Hall, 2004.

[4] A.Singh, Mac OS X Internals: A Systems Approach, Addison Wesley,
2006.

[5] G.Mann,The Solaris Book of New Science Fiction: Volume 2 ,
Addison Wesley, 2008

[6] B.D.Heslop and D.Angell,Mastering Sunos, Prentice-Hall, 1990.
[7] M. K. McKusick and M. J. Karels, “Design of a General Purpose

Memory Allocator for the 4.3BSD UNIX† Kernel,” Proceedings of
the San Francisco USENIX Conference, pp. 295-303, 1988.

[8] P. H. Kamp, “Malloc(3) revisited.” In USENIX 1998 Annual
Technical Conference: Invited Talks and FREENIX Track pp 193–
198, 1998.

[9] J Bonwick. “The Slab Allocator: An Object−Caching Kernel Memory
Allocator.” Usenix Conference, pp. 87−98, 1994.

[10] J Bonwick and J Adams ,Extending the Slab Allocator to Many CPUs
and Arbitrary Resources. USENIX Annual Technical Conference,
2001.

[11] J Evans, A Scalable Concurrent malloc(3) Implementation for
FreeBSD, BSDConference, 2006.

[12] W.Li, S.P.Mohanty and K.Kavi, “A Page-based Hybrid (Software-
Hardware) Dynamic Memory Allocator,” IEEE Computer
Architecture Letters 2006.

[13] J.M. Chang and E.F.Gehringer, A High-Performance Memory
Allocator for Object-oriented Systems, IEEE Transactions on
Computers, pp 357-366, 1996.

[14] Y.Feng and E.Berger , A Locality-Improving Dynamic Memory
Allocator. MSP, 2005.

[15] A Jula and L Rauchwerger, “Balancing Allocation Speed, Locality
and Fragmentation in a Locality Improving Allocator,” Technical
Report TR08-002 Parasol Lab Department of Computer Science
Texas A&M University College Station, TX 77843-3112, 2008.

[16] Doug Lea, A Memory Allocator,
http://g.oswego.edu/dl/html/malloc.html, see at 2011

[17] C.Lever , and D Boreham, “malloc() Performance in a Multithreaded
Linux Environment.” In USENIX 2000 Annual Technical Conference:
2000

[18] K. Kennaway,Memory allocation performance on FreeBSD and
Linux with ebizzy , Technical Report FreeBSD Org, 2008.

[19] A. Jula and L.Rauc, “Two Memory Allocators that Use Hints to
Improve Locality,” International Symposium on Memory
Managemen, Dublin, Ireland 2009

[20] P. R Wilson, M.S. Johnstone, M. Neely, and D.Boles. “Dynamic
Storage Allocation: A Survey and Critical Review.” ’95: Proceedings
of the International Workshop on Memory Management, pages 1–
116, London, UK, 1995. Springer-Verlag.

[21] M.S. Johnstone and P.R. Wilson. “The Memory Fragmentation
Problem: Solved?”’98 Symposium on Memory Management, pages
26–36, NewYork, NY, USA, 1998.

V2-164

2011 International Conference on Computer and Network Engineering (ICCNE 2011)

