
Portable Inter process Communication

Programming

Morteza Kashyian

Computer Engineering Department

Iran University of Science & Technology

kashyian@gmail.com

 Seyedeh Leili Mirtaheri Ehsan Mousavi Khaneghah

 Department of Computer Engineering Department of Computer Engineering

Iran University of Science & Technology Iran University of Science & Technology

mirtaheri@comp.iust.ac.ir emousavi@comp.iust.ac.ir

Abstract

Most applications are consisted of several

activities that are fulfilled by different processes.

And even processes are included different child

processes named light processes or threads. The

basic idea of dividing the whole activities to

processes is followed by the reusability and

sharing ideas. Therefore, applications need an

IPC mechanism to establish the communication

between the processes. Inter process

communication that is known as IPC is a

collection of mechanisms that meet the

communication requirements between processes.

System V defines standard for IPC mechanism

named SVIPC. Different operating systems

implement SVIPC standard in different manner.

Therefore programs that are using the IPC

mechanism have different structure in other

operating systems. On the other hand

reproducing program for various operating

systems is a time consuming activity. Porting is a

solution to writing programs with the least

changes to port them on different operating

systems. In this survey we present a brief

introduction of various IPC mechanisms in the

two operating systems and describe porting

Windows’ programs to Linux by mapping the

IPC primitives as a solution. We present the

porting as a solution to portable IPC

programming. While the program is written with

windows IPC mechanism can use our wrapper to

be able to run in Linux operating system.

Keywords: Inter process communication,

SVIPC, Linux, Windows, and Portability.

1. Introduction

One of the most important subjects in the

programming is communication between the

programs. This idea enables developers to

program on top of the existing IPC mechanisms

and uses their functionalities. But what is IPC?

Inter process Communication (IPC) is a

collection of mechanisms that provide

communication between two processes with their

different memory space. The point to consider is

the unawareness of programs from each other.

The independency causes programs are written

in different domain and communicate easily. As

a result IPC enable applications to have

concurrent task. [1]

The only problem is the lake of uniform solution

because different operating systems implement

these mechanisms on their own way like Apple

Event technology by Apple or Object Linking

and Embedding by Microsoft and Message

Passing by Linux. Some of them are common in

all operating system like Pipe, but

implementation mechanisms are different and

cause to not be portable between operating

systems.
Different communication techniques like

message passing or shared memory are used to

implement communication. On the other hand

different implementation on various operating

systems causes those written programs for a

family of operating system cannot simply run on

another family. Therefore, considering

portability feature can regulate the problem. The

objective of the following solution is to suggest a

solution to implement portable IPC in

heterogeneous environment with different

operating systems without programmer effort to

change and modify the program.

The Second International Conference on Advanced Engineering Computing and Applications in Sciences

978-0-7695-3369-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ADVCOMP.2008.38

181

Portability requirement is augmented with the

growth in high performance computing

applications and causes to increase various type

of migration. And establish to programmer a safe

programming while programmer doesn’t need to

change the program from one environment to

another environment. It includes different

methods and implementations for specific

domains with individual requirements in, other

words it requires ad hoc solutions [3].

Also portability is treated as a quality factor in

software engineering [8, 9]. Unfortunately there

is not a systematic way to identify the portability

problems.

Portability ability of the programming language

is a key point to generate portable programs or to

implement a solution to port programs.

Obviously, portability achievement with low

level languages is more accessible, i.e. more near

to machine code more flexibility to port the

program. However, with the very low level

languages, the simplicity of use is lost. In

addition chosen language should be

understandable by most machines like

FORTRAN, COBOL or C. the languages other

than C despite of standards have vast differences

on different operating systems [6]. Languages

like C, C++, Shell, Perl, Tcl, Python, Java and

Emacs Lisp are highly portable. Despite the

possibility to port the C code between UNIX

species, C binding differences on other operating

systems are the source of portability problems,

although Windows NT supports ANSI/POSIX C

API [12].

C language is suitable one because has

capabilities like typedef that isolate the

definition of machine dependent data types,

sizeof(type) construct to find the size of any of

these defined data types and the union

declaration to define the overlaying of data [5].

On the other hand C is not fully type-safe

language and that causes difficulties to declare

portability on machines.

All these portable languages have to use

operating system s system calls or API s for IPC

mechanisms and extremely are depended to

operating system. Operating systems have

different architectures.

2. MS-WIN Architecture

In the first glance to the architecture of the MS-

Win, it is consists of two major parts, kernel and

user modes (Fig 1). And the only way to access

the kernel objects is the Win32-API or other

subsystems such as POSIX. The Win32 allows

developers write applications that run on all

versions of Windows. On the other hand POSIX

provides a portable and standard-compliant

environment to run an application on different

operating systems [7]. In this area our focuses is

IPC in the Win32-API and the equivalent

mechanisms in the Linux.

3. IPC in MS-WIN

MS-Win provide a wide range of IPC

mechanisms such as Clipboard, Data Copy,

Winsock and others to send and receive the

messages between two processes or copy the

data in a shared section in memory or file. In the

following nine IPC mechanisms supported by

MS-Win are mentioned briefly.

In Clipboard mechanism coupling between the

processes is low and the drawback is that the

processes must agree on the data format. It can

be used between applications and within an

application. A memory object can be any data

format (clipboard format). By Data Copy the

data is being copied to the destination memory

space from the source memory space after that

communication is established by sending request

message (WM_COPYDATA) to the destination

process and identification of the sender by

receiver. Dynamic Data Exchange does not

define any restriction on the exchanged data

format as previously mentioned one.

In contrary to the Clipboard that is one-time

response to user command the DDE is a

continual data exchange. It can be used between

tight coupled application by customize the DDE

data format to implement special purpose IPC. In

the File Mapping the contents of a file can be

mapped to a virtual memory. Mailslot enable

processes to communicate each other in a one-

way channel. Server is the process that creates

the mailslot and mailslot clients by writing

messages to their mailslots can communicate

with the server. It is suitable one for

asynchronous communication. Pipes are

supported about in all operating systems. MS-

Win supports two types of pipes, named and

anonymous. The later one enable the related

processes like the child process to exchange the

data with their parents. To provide a duplex

operation the processes need to create two

anonymous pipes, one from client to server and

the other one for the reverse direction. In

contrary to the anonymous, the named pipes do

182

not have any restriction in the communication

between non-related processors. A named pipe

server is identified by the name of the pipe (well

named pipe) and data will be transferred after

both the server and the client connect to named

pipe. Winsock is the MS-Win implementation of

sockets popularized by Berkeley Software

Distribution (BSD). It uses the communication

capabilities of the underlying protocol. Therefore

it provides a protocol-independent interface such

that an application using Winsock can

communicate with other applications using

different socket implementation on other

systems. It is very helpful to implement the

communication between heterogeneous

operation systems. Remote Procedure Call

enables applications to call functions of the other

applications remotely. The RPC facility provided

by Windows is compliant with the Open

Software Foundation (OSF) Distributed

Computing Environment (DCE). Therefore

applications on different operating systems that

support DCE can communicate each other. Since

the RPC handle communication between

different hardware architecture, it has to support

automatic data conversion [8].

It has to be mentioned that the only Data Copy,

Pipe Anonymous and File Mapping do not

support remote communication and the others

can be used in the remote environments.

4. Linux Architecture

Unlike Windows, Linux does not have

subsystems in the user mode. Kernel resources

like IPC mechanisms are available for

developers to implement communication

between processes [7].

5. IPC in Linux

Linux provides different kind of Inter process

communication mechanisms and some of them

are the same as MS-Windows does. For example

they are included RPC, message queue, pipe,

socket and IPC (semaphore and shared memory).

Pipe mechanism is divided to three types,

half/full duplex and named pipe. Half duplex is a

one way connection of the standard output to the

standard input of different processes. It is most

beneficial in the creation of child processes in

multi process communication because it inherits

file descriptors from its parent. Named pipe does

not have the communication limitation between

parent and child. And it is a special file in the file

system. So it can be reused after doing all I/O

operations. Full duplex pipe is a bidirectional

stream based connection. System V IPC

introduces three communication mechanisms

(message queues, semaphores, and shared

memory). To use the System V IPC it is

sufficient to obtain the unique id of the IPC

object. Message queue is a linked list in the

address space of the kernel. On the other hand

semaphore is an integer to lock the shared

resources in a multiple process environment. As

a matter of fact message queue is a linked list

within the address space of the kernel. Messages

are sent to the queue in order and can be

retrieved in different ways. Semaphore acts as a

counter and is used by processes to control

access to shared resources. For example to

prevent writing to a memory segment in shared

memory. It implements locking mechanism. For

example, to prevent writing to a same memory

segment more than more than one in shared

memory mechanism. A mapped and shared area

of memory by multiple processes is called shared

memory. A process can create a segment and

share it by other processes [9].

6. Related Works

Portable inter process communication enable

different processes on a network establish

communication without restriction to the

physical location type of family of operating

systems. Therefore porting part of software or a

module between different operating systems is

possible by communicating processes.

Although most of the operating systems provide

IPC primitives, an IPC base application cannot

be simply ported because of lack of standards in

their implementations. In addition each

implementation has own particular objectives

that are not generic. IPC mechanisms establish

communication between processes locally or

remotely. There are a lot of researches to develop

portable local IPC mechanism or remote IPC

mechanism.

Among them we can mention Adaptive

Communication Environment (ACE), ACE

provides an object oriented framework for

developing concurrent communication software.

The ACE wrappers are at the application level

and don not say anything about low level system

call mapping [13].

Portable IPC that is implemented on Vanilla

UNIX, consider that all the processes in a tree

have an ancestor to enable communication

183

between the processes that are not parent and

child by pipe mechanism. The main objective of

that is to help clients IPC channels on servers

[11].

Sun Microsystems developed ONC RPC as part

of the Network File System project to leverage

the RPC in heterogeneous environment. As a

matter of fact ONC RPC designed for network

programming and distributed system. ONC RPC

enable modules call function of other modules

on different operating systems. Because it is

based on the RPC mechanism, the programs

communication is tightly dependent on port

number. Porting programs on a different

operating system especially between two most

famous operating systems, UNIX and

MSWindows is an interesting topic. Wine and

Cygwin are the two instances of the porting

algorithms. In 1993 the Wine project has been

started to run Win3.1 programs on UNIX and

now it is capable to run Win32 programs. Wine

is a translation layer that can run windows

programs on POSIX compatible operating

systems. Basically, Wine implements the

windows system calls on the UNIX. Wine does

not support different IPC mechanisms. Programs

can use DDE and Socket with limitation. Cygwin

is collection of the software tools to simulate the

Windows on the POSIX compatible operating

systems like UNIX, BSD or LINUX. Unlike the

Wine, Cygwin recompile the program by using

the header files. Cygwin was started in 1995 by

Steve Chamberlin when he found WinNT uses

the COFF. It is reimplementation of the GCC to

generate the Windows programs.

Mono and .Net are other instances. They provide

platforms to port the applications from Windows

to LINUX specially written based on .Net

framework. They like Java Virtual Machine do

not enable developer to access the low level

system calls so that they are complex for

programming for clusters [14].

7. Wrapper

As a matter of fact software components are

created with different purposes, and the common

sense is using existence component capabilities

although components have different internal

technology. Wrapper is software pattern to

leverage the capabilities of component, object or

even a library without involving the internal

complexities of the used component. In this

scenario the wrapper is used to implement the

compatibility between IPC mechanisms in two

different operating systems in one side, and the

simplicity of the programming model for

developer on the other side. The wrapper

implementation can be done in different layers

like kernel, application and user. Obviously, the

kernel level implementation needs the

modification of the kernel that is not our concern

because of the closed source operating systems

do not allow modifying the kernel like open

source operating systems simply. On the other

hand the application level implementation

depends on the type and the requirements of the

specific application. The user level

implementation of wrapper provides the

transparency. And it provides a mechanism that

can be tailored to any unpredictable

requirements. The wrapper mechanism presented

here unlike the normal behavior of wrappers hide

the incompatibility between the IPC mechanisms

in two operating systems. Therefore the written

programs by using the wrapper in the Windows

environment do not need to modify their code to

be compatible with the Linux.

In the absence of the wrapper, process continues

the normal behavior and invokes system calls to

perform local and remote IPCs. The local

system, for example MS-Win, has responsibility

to establish the Inter process communication (Fig

4).

Fig 4- process in normal behavior

In case the process with the wrapper linked, the

system calls requested by the process is

redirected to the wrapper, then the remote inter

process communication is established by the

wrapper between the local process and the

remote process on the different environments

(Fig 5). Data conversion, IPC compatibility and

diagnosing IPC mechanism dynamically, are the

wrapper responsibilities.

The Wrapper consists of header files which

enable the programs especially on closed source

operating systems to communicate with the open

source operating systems like Linux.

Local System (Windows)

Process
System call (remote

IPC)

System call (local

IPC)

184

Fig 5- process in conjunction with Wrapper

With Wrapper, the program base on windows

pipe convert to a program base on Linux pipe

and can be run in Linux environment and

wrapper transmit the program to Linux

Table 1: Pipe mechanism mapping

environment and after run it, the result transmit

to windows.

The wrapper module is written in C++ language

compatible with the WIN32-API on MSWin and

in C language compatible with System V API on

LINUX. The communication model is base on

common remote IPC like RPC, pipe or socket,

therefore it is not restricted to communication

between MSWin and LINUX and it can be

deployed on a cluster included pure MSWin

operating system. The most important objective

of the wrapper module is simplicity of usage. It

is enough to add the wrapper like any other

header files to the source without any changes to

the source. This feature enables developers to

use the existing programming model.

7.1 Wrapper s Structure

In the proposed solution we chose MSWin and

LINUX operation systems. Mapping analysis of

system calls between the two operating systems

is required as the first step of porting.

We can divide the system calls to two types. The

first one can be mapped to each other by

parameters, returned type and such. The second

one depends on the context of the operating

system and they may map or not, because for

some functionality there are more than one

equivalent and for some there is not any [10].

Pipe mechanism is supported by the two

operating systems. Table 1 shows the

equivalency of some functions of the named pipe

in the two operating systems.

Named pipe in LINUX acts like as a regular pipe

and is a kind of FIFO with these differences [9]:

1.Exist as a device special file in the file

system.2.Different ancestry processes can share

data through a named pipe. 3. The named pipe

remains in the file system for later use after all

I/O. and in the Windows have the following

characteristics [8]. 4. One-way or duplex pipe,

one for server and another for client. 5. While

each instance of the name pipe has its buffer and

handle they share the same named pipe. 6.

Multiple clients can use the same named pipe

simultaneously.

 There is not one to one equivalency between the

implementation in two operating systems for

pipe mechanism. Considering the first

characteristic of the named pipe, functions that

do not have any equivalent can be simulate to

combination of function on files like blocking

equal to SetNamedPipeHandleState() or

obtaining information equal to

GetNamedPipeInfo().

7.2 Wrapper s Features

The following features are thought in the

requirement analysis phase and have been

considered in the structure design phase:

• The least changes in the existing programs

or even without changes.

• Compatibility with the MS-Win architecture

which provide the high level performance.

• Deployment on the Linux cluster, Windows

cluster or combination of both of them (x86, x64,

IA64).

• Robust and reliable in the industrial domain.

• Simplicity in configuration and installation.

windows Linux

CallNamedPipe() open()

ConnectNamedPipe()

CreateNamedPipe() mknod()

DisconnectNamedPipe() close()

GetNamedPipeHandleState()

GetNamedPipeInfo()

PeekNamedPipe()

SetNamedPipeHandleState() BLOCK

TransactNamedPipe()

WaitNamedPipe()

ReadFile() read()

WriteFile() write()

Local System (Windows)

Process

System call

(remote IPC)

WRAPPE

R

System call

(remote & local

IPC)

185

• Scalability to support thousands of the

processes.

• Integrating to system resource management

and analysis tools.

• Run by the wide range of C/C++ compilers

and debuggers.

8. Conclusion

The wrapper s solution followed the portability

of IPC base processes and converts programs

base on Windows pipe IPC to Linux pipe IPC

and transmits the program in Linux environment

and after run, returns the results to Windows.

Wrapper project s important purpose is easy of

programming in IPC programming and firstly

chose pipe inter process mechanism. Wrapper

project want to extend to all IPC mechanism and

convert all kind of them to each other.

9. References

[1] L. Lamport, “On Interprocess Communication”, Springer-

Verlag, 1986.

[2] J. D. Mooney, “Bringing Portability to the Software

Proocess”, The Department of Computer Science and

Electrical Engineering at West Virginia University, 2001.

[3] S.R. Schach,”Classical and Object-Oriented Software

Engineering (3rd ed.)”Richard D. Irwin, Chicago IL, 1996.

[4] I. Sommerville, “Software Engineering (5th ed.)”

Addison-Wesley, Reading MA, 1996.

[5] T. L. Lyion, “Inter-Unix Portability”, in B .A. Tague,

editor, "C Language Portability", Bell Labs Internal

Memorandum, September 1977.

[6] S. C. Johnson, D. M. Ritchie, “Portability of C Programs

and the UNIX System*”, The Bell System Technical Journal,

Vol. 57, No. 6, Part 2, July-August 1978, pp 2021-2048.

[7] L. Twork, L. Mead, B. Howison, JD Hicks, L. Brodnax, J.

McMicking, R. Sakthivel, D. Holder, J. Collins, B. Loeffler,

“UNIX Application Migration Guide”, Chapter 2, Microsoft

Corporation, October 2002.

[8] Microsoft Developer Network, “Interprocess

Communications”, http://msdn.microsoft.com/en-

us/library/aa365574(VS.85).aspx

[9] S. Goldt, S. van der Meer, S. Burkett, M. Welsh, “The
Linux Programmer's Guide”, Version 0.4, March 1995

[10] S. S. Muthuswamy, K. Varadarajan, “Port Windows IPC

apps to Linux”, IBM, 14 Apr 2005.

[11] M. Rain, “Portable IPC on Vanilla Unix”, ACM

Publisher, Volume 24 , Issue 5, May 1989

[12] E. S. Raymond, “The Art of Unix Programming”,

Copyright © 2003

[13] S. D. Huston, J. CE. Johnson, U. Syyid, “ACE

Programming’s Guide, The: Practical Design Patterns For

Network and Systems Programming”, Addison Wesely, Nov

14, 2003

[14] A. Merta, “MONO: an alternative for the .NET

framework”, Software 2.0 magazine, February 2005.

186

