
The Influence of Efficient Message Passing Mechanisms on High Performance

Distributed Scientific Computing

Seyedeh Leili Mirtaheri Ehsan Mousavi Khaneghah

Computer Engineering Department Computer Engineering Department

Iran University of Science & Technology Iran University of Science & Technology

mirtaheri@comp.iust.ac.ir emousavi@comp.iust.ac.ir

 Mohsen Sharifi Mohammad Abdollahi Azgomi

Computer Engineering Department Computer Engineering Department

Iran University of Science & Technology Iran University of Science & Technology

msharifi@iust.ac.ir azgomi@iust.ac.ir

Abstract

Parallel programming and distributed

programming are two solutions for scientific

applications to provide high performance and fast

response time in parallel systems and distributed

systems. Parallel and distributed systems must

provide inter process communication (IPC)

mechanisms like message passing mechanism as

underlying platforms to enable communication

between local and especially geographically

dispersed and physically distributed processes.

Communication overhead is the major problem in

these systems and there are a lot of efforts to develop

more efficient message passing mechanisms or to

improve the network communication speed. This

paper provides hard evidence that an efficient

implementation of message passing mechanism on

multi-computers reduces the execution time of a

molecular dynamics code. A well-known program for

macromolecular dynamics and mechanics called

CHARMm is executed on a networked cluster. The

performance of CHARMm is measured with two

distributed implementations of message passing,

namely a kernel-level implementation called

DIPC2006 and a renowned library level

implementation called MPI. It is shown that the

performance of CHARMm on a DIPC2006

configured cluster is by far better than its

performance on an optimized MPI configured similar

cluster. Even ignoring the favorable points of kernel-

level implementations, like safety, privilege,

reliability, and primitiveness, the insight is twofold.

Scientists are nowadays faced with more

computational complexity and look for more efficient

systems and mechanisms. Efficient distributed IPC

mechanisms have direct effect on running

scientists’ simulations faster, and computer engineers

may try harder to develop more efficient distributed

implementations of IPC.

Keywords: High Performance Scientific Computing,

Distributed Inter Process Communication,

Distributed Systems, Operating System Kernel,

Molecular Dynamics.

1. Introduction

Distributed computing systems aim at connecting

processes to each other to obtain more computing

resources in a distributed environment using a

distributed inter process communication (IPC)

mechanism. Primary distributed inter process

communications were performed by network

message passing that deal with routing mechanisms

and machine addresses. But networks are unreliable

and writing large scale distributed applications using

network message passing protocols proved difficult

and complex [1].

To ease distributed programming, especially for

scientific application developers who are uninterested

in the intricacies of networks, inter process

communication mechanisms had been provided at

higher levels as program libraries, as middleware and

as operating system kernel level primitives. These

mechanisms present some primitives to programmers

for sending and receiving messages, while low level

operations and complexities are handled by the

mechanisms in a way transparent to programmers and

users.

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.131

663

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.131

663

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.131

663

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.131

663

Generally speaking, higher level implementations

of IPC are more flexible but less efficient, while

lower level ones are in contrast less flexible but more

efficient. It is thus up to the programmers and users

to choose an appropriate level depending on whether

high performance or flexibility is paramount. In this

paper we try to back up this belief that high

performance is more critical to scientific applications

that in turn require the most efficient IPC

implementations, i.e. kernel level implementations.

Programs need to be parallelized either manually

by programmers or automatically by computer

software, using distributed inter process

communications like MPI [2], PVM [3] and DIPC

2006 [4], in order to be able to run with higher

performance on clusters or supercomputers. The

parallelization is however quite difficult and requires

a good understanding of the application logic in order

to reduce the communication time of running the

application in a distributed style on a cluster.

As an example, a non-hydrostatic version of the

macromolecular dynamics and mechanics, called

CHARMm [5], is selected as a scientific application

with intensive computation and large data size. In

addition, CHARMm has a noticeable amount of

computation and communication which makes it a

good candidate for testing communication and

computation primitives in inter process

communication mechanisms that are used in

scientific clusters.

Two inter process communication mechanisms,

namely, DIPC2006 and LAM/MPI [16]. DIPC2006 is

implemented at the operating system kernel level,

while MPI is implemented as program library. The

CHARMm program was manually parallelized in two

ways, once by using DIPC2006 primitives for

distributed execution, and once by using LAM/MPI

program library routines. The DIPC2006 version was

run on a DIPC2006 configured cluster, and the MPI

version was run on an optimized MPI configured

cluster. Both clusters had the same hardware in type

and numbers. As it will be reported in the next

sections in this paper, the measured performances of

program executions provides hard evidence in favor

of kernel level implementation of distributed inter

process communication mechanisms.

The rest of paper is organized as follows. Section

2 presents general approaches to reducing

communication overhead in distributed systems.

Section 3 gives a brief comparative study between

DIPC2006 and MPI. Section 4 presents the parallel

implementations of CHARMm on DIPC configured

and MPI configured clusters, and quantitatively

compares their performances. Given the experimental

results and analyses and further discusses the reasons

behind the superiority of DIPC2006 over MPI.

Section 5 concludes the paper.

2. Related Work

There have been two general approaches to

reducing communication overhead in distributed

systems. Some have tried to optimize network

operations and communication mechanisms at the

lower layers of networks. Others have presented

more and more efficient distributed inter process

communication mechanisms at higher levels of

networks as middleware, libraries, kernel level

primitives.

T. Matthey et als. [8] have evaluated the

possibilities of one-sided communication, a new

feature of the MPI-2 standard, on the Origin2000 for

relatively short-range molecular dynamics (MD)

simulations. They concluded that the use of MPI's

one-sided communication mechanism on the

Origin2000 is not only feasible but it improves

performance as well.

K. J. Bowers et als. [9] have presented several

new algorithms and implementation techniques that

significantly accelerate parallel MD simulations

compared to current state-of-the-art codes. These

include a novel parallel decomposition method and

message-passing technique that reduces

communication requirements, as well as novel

communication primitives that further reduce

communication time.

There are a lot of researches too that have tried to

improve distributed inter process communication

mechanisms at higher levels than the network layer.

One of the popular distributed inter process

communication mechanisms is MPI. MPI is a

standard for inter process communication that has

been implemented by many vendors, and groups of

researchers [5, 10, 13, 14, and 15] who have tried to

improve its performance by reducing its

communication overhead during distributed

execution of large size scientific application

programs or popular benchmarks.

For example, M. Jiayin et als. [12] have improved

the performance of MPI using a “multithreaded

model to implement MPI point-to-point operations in

order to overlap communication and computation.

They presented theoretical and experimental results

and compared the performance of both multithreaded

and single threaded implementations.

P. Werstein et als. [11] have compared the

performance of three kinds of distributed IPC

mechanisms, namely TreadMarks DSM, MPI and

PVM, in three kinds of parallel applications namely,

664664664664

merge, sort and Mandelbrot set generator. They used

a back propagation neural network and tried to show

the behavior of the mechanisms in these parallel

applications. They conclude that IPC performance is

greatly influenced by application properties. That is

to say that IPC mechanisms demonstrate different

performances in applications that are loosely

synchronous, embarrassingly parallel, or

synchronous, and also when the number of nodes

increase.

We believe that the resulting improvements in the

performance directly relate to the efficiency of

implementation of distributed inter process

communication mechanisms. For higher level

implementations and optimizations of distributed

inter process communication mechanisms, namely

those at application levels as binaries or operating

system interface levels, performance improvements

were lower than when these mechanisms were

implemented at the operating system kernel level. In

other words, the communication overhead in none

kernel level implementations are still high for

scientists. This paper backs this belief in a practical

comparative implementation setting using a kernel

level implementation of inter process

communication, namely DIPC2006.

3. A Comparative Study

Some notable intricacies and characteristics of

DIPC2006 and MPI that we have experienced in

investigating and running CHARMm on DIPC2006

configured and MPI configured clusters are reported

in this section.

To run programs under LAM/MPI, MPI demons

must be explicitly booted in all machines in the

cluster. But since DIPC2006 is implemented in the

kernel of operating system, it is booted automatically

when the operating system is booted.

DIPC2006 only adds distribution support to three

SVIPC mechanisms, namely, semaphore, shared

memory and message passing, and it does not change

or modify system calls to these mechanisms.

Programmers use these system calls as usual and do

not require learning new functions to write share

memory or message based distributed programs.

MPI, on the other hand, presents new message

passing primitives to programmers and programmers

must learn them to write message based distributed

programs. Furthermore, DIPC2006 programs can be

debugged locally as any other SVIPC based program,

but run distributed, while MPI programs can be

debugged only in a distributed debugging

environment.

DIPC2006 is limited by the size of message

queue and message size in the operating system

kernel, while MPI has no limit on message size as it

opens sockets to transfer messages using the

underling network.

DIPC2006 message features, like message size

and the number of messages, are dependent on

SVIPC message features. If SVIPC parameters

change, DIPC2006 parameters also change. MPI

parameters, on the other hand, can be changed or

defined by programmers in their programs, or are set

to default values by MPI pre compilers.

MPI compilers must be up and running when MPI

programs are executing, but DIPC2006 programs are

once compiled with ANSI compilers like gcc and can

run independently without requiring the presence of

any compilers at run time. .

DIPC2006 has been implemented on Linux 2.2.x

kernels, and it can run on Intel i386, Motorola 680x0,

ALPHA, PowerPC, SPARC and MIPS processors.

MPI has different implementations too, like

LAM/MPI and MPICH, each of them supporting

different hardware architectures. Different

implementations of MPI cannot interoperate and

communicate with each other; i.e. each

implementation can communicate only with its own

kind of implementation. For example, LAM/MPI will

work between just about any flavors of POSIX (with

a few restrictions). That is to say on two completely

different machines (e.g., a Sun machine and an Intel-

based machine), LAM will run on both of them.

More importantly, one can run a single parallel job

that spans both of them, while DIPC2006 allows

interoperability on different hardware.

Although LAM/MPI transparently converts data

as required when data is transferred from one

machine to a different machine, it does not support

data types of different sizes. For example, if an

integer is 64 bits on one machine and 32 bits on

another, the LAM/MPI behavior is undefined. It also

requires that floating point formats are the same on

all machines [16].

4. Performance Analysis of CHARMm

Based on our experiences, some of the important

ones being noted in the previous section, we selected

a popular research tool for computational biology in

molecular dynamics, called CHARMm, to run on

DIPC2006 and LAM/MPI clusters. CHARMm

(Chemistry at HARvard Macromolecular Mechanics)

is a program for simulating biologically relevant

macromolecules (proteins, DNA, RNA) and

complexes thereof [5]. It allows investigating the

structure and dynamics of large molecules (solute) in

665665665665

the condensed phase (solventor crystal) [5, 6].
CHARMm has been modified to allow

computationally intensive simulations to be run on

multi-machines using a replicated data model [5].

This version, though employing a full communication

scheme, uses an efficient divide-and-conquer

algorithm for global sums and broadcasts.

We built the physics of a Linux based cluster by

using 16 dual AMD CPUs and a Giga-bit network.

The CPU type was Athlon 2500+ and we used a 1

GB/s switch and 1 GB of memory. In fact we

constructed two clusters with the same hardware

specification, one based on DIPC 2006 and the other

based on MPI. We modified CHARMm to use

DIPC2006 resulting in what we call CHARMm-

DIPC. Similarly, we modified CHARMm to use MPI

resulting in what we call CHARMm-MPI. We then

ran CHARMm-DIPC and CHARMm-MPI on their

cluster and measured the execution times using

different number of processors.

As it is shown in Figure 1, the execution time of

CHARMm-DIPC 2006 is less than that of

CHARMm-MPI.

0

50

100

150

200

250

300

350

2 4 8 16

T

i

m

e

(

S

e

c)

Number of Processors

CHARMm - DIPC

CHARMm - MPI

Figure 1. Execution times of CHARMm-DIPC and CHARMm-MPI

We also measured and evaluated the message

passing communication overheads of running the

parallel version of CHARMm on DIPC2006 and

LAM/MPI configured clusters, conducting various

executions with different number of processors, and

calculated the execution times of send and receive

messages in in both clusters. But we generally know

that execution time is equal to communication time

plus computation time, and any possible differences

in execution times of send and receive messages in

CHARMm-DIPC2006 and CHARMm-MPI are only

attributable to communication time; the computation

times can be fairly considered equal in both clusters.

We can consider the communication time (C) of a

send/receive message in both clusters as follows:

C = (time spent for sending/receiving an

empty message) + n * (time spent for

transmission of a unit of data worldwide)

where n is the number of data to be transmitted

over the network. The communication time for q

messages is therefore qC.

Since we have only replaced the MPI calls

(MPI_send or MPI_recv) in the CHARMm-MPI

program with equivalent calls (Msg_send or

Msg_recv) in DIPC2006 to get the CHARMm-

DIPC2006 program, we may safely assume that the

number of messages and the amount of data in each

message had been the same when these programs

were run on their respective clusters. This is to say

that the difference in the execution times of

CHARMm-MPI program and CHARMm-DIPC2006

program were not due to the number of transferred

messages or the amount of data transferred, and

therefore the second part of the above formula is the

same for both cases. This is to say that the execution

times of CHARMm-MPI and CHARMm-DIPC2006

were only affected by the first element of C in the

above formula, i.e. only by the time spent for

sending/receiving an empty message. Therefore we

only measured the message send time in CHARMm-

MPI and CHARMm-DIPC 2006 that are shown in

Table 1.

Table 1: Send times for CHARMm-DIPC 2006 and CHARMm-MPI

Number of

Processors

CHARMm-

DIPC Send

Time

CHARMm-

MPI Send Time

Percentage

of

Difference

2 85.698 117.504 32%

4 66.06 100.224 34%

8 50.4 89.12 38%

16 36.72 77.296 40%

As it is shown in Table 1, increases in the number

of processors increases the send time in both

CHARMm-DIPC2006 and CHARMm-MPI because

the amount of communication increases. The send

time in CHARMm-MPI is comparatively higher than

that in the CHARMm-DIPC2006 and the amount of

difference improvement percentage has increased

with increases in the number of processors.

Table 2 shows the receive times in both

CHARMm-DIPC2006 and CHARMm-MPI receive

times in MPI based program is more than in

DIPC2006 based ones. The MPI overhead has caused

these results.

The time spent for sending/receiving an empty

message is in turn affected by the IPC mechanisms

used as well as the underlying network properties.

Given that the network had been chosen exactly

identical in our experimentation, the differences in

the execution times of CHARMm-MPI and

CHARMm-DIPC2006 are only attributed to the

implementation of IPC mechanisms used in these two

666666666666

programs. Given that experimental results showed

lower execution times for CHARMm-DIPC2006

relative to execution times of CHARMm-MPI, we

rightly concluded that the implementation of IPC is

more efficient in DIPC2006 than in MPI. This also

describes why the execution time of CHARMm-MPI

got comparably worse than CHARMm-DIPC2006

when the number of processors, and consequently the

number of messages, were increased.

Table 2: Receive times for CHARMm-DIPC 2006 and CHARMm-MPI

Number of

Processors

CHARMm-

DIPC Receive

Time

CHARMm-MPI

Receive Time

Percentage

of

Difference

2 99.981 153.408 53%

4 77.07 131.848 54%

8 54.8 110.24 55%

16 31.84 89.192 57%

We can strengthen our argument by considering

that MPI is implemented at the application level. All

queues that are needed for sending and receiving of

messages reside in the user space (Figure 2). Upon

each communication request, a lot of data should be

copied from user space to kernel space and vice

versa. These in and out copying increase the

communication overhead and thus execution time of

programs.

Figure 2. MPI communication architecture [13]

In contrast, DIPC2006 is implemented at the

kernel level and all queues reside in the kernel. There

is no need to copy between user space and kernel

space and bypass socket APIs (Figure 3). That is why

DIPC2006 programs have lower communication

overhead and execution time.

A call to an MPI communication function

involves some preparatory operations like searching

and matching that are done by a process at the

application level in the user space with limited

privileges. The process then calls suitable socket

APIs for transmission. These APIs are converted to

related socket system calls in the kernel. The call to

kernel switches the context from the user level to the

kernel level and the kernel decides which process to

run next that it may well not be the process just

context switched. This overhead is in addition to the

conversion and preparation overheads. On the

contrary, in DIPC2006, all these operations are in

fact calls to the kernel that are run in the kernel space

with high privilege. These system calls use socket

system calls locally. The process doing the call

immediately continues to perform the call without

any context switch. Overall, these are other reasons

for MPI communication mechanisms to entail more

overhead than those in DIPC2006.

Figure 3. DIPC2006 communication architecture

Given all the noted differences of MPI and

DIPC2006 in communication overheads, it becomes

clear why communication overhead and consequently

execution time showed up higher in case of

CHARMm-MPI, compared to CHARMm-DIPC2006.

The general recommendation to distributed

application and system developers is thus to program

applications in a way to reduce execution time by

lowering the communication time and spending most

of the time on application level computation. This

can be achieved by using as few communication

mechanisms as possible, and at the same time by

using more efficiently implemented communication

mechanisms like DIPC2006.

Two points are noticeable from the study of

experimental results of running CHARMm. First, the

performance got better as the number of processors

increased. This is however not always the case and it

depends on many factors including the parallelism

degree of application, which in this case is the

parallelism degree of CHARMm. It is quite probable

that the performance of CHARMm gets worse after

the number of processors reaches a certain number,

which in our case is higher than 16. This is primarily

because when the number of processors gets higher

than the parallelism degree of the running

application, the communication costs of running

processes cannot be compensated by computation

speed up. The second point that is somehow

implicated by the first point is that the performance

of CHARMm-DIPC2006 is better than the

performance of CHARMm-MPI. This is due to less

communication overheads in the CHARMm-

DIPC2006 than in the CHARMm-MPI. In other

words, it is because the communication mechanism

used in CHARMm-DIPC2006 is more efficient than

its counterpart used in CHARMm-MPI.

5. Conclusion

667667667667

This paper took a close look at the

communication overhead of two different levels of

distributed IPC mechanism at kernel and library

levels, namely DIPC2006 and MPI. Many parallel

and distributed scientific codes use a layered software

system to facilitate the programming of inter process

communication in order to get better portability and

performance. This paper argued in favor of kernel

level implementations of communication

mechanisms, in contrast to library level

implementations, in the scope of distributed systems.

It selected the parallel molecular dynamics program

CHARMm as an exemplar. It showed that this

exemplar scientific application was much better off to

run distributed on a high performance cluster that is

configured with DIPC2006, which is a kernel level

distributed implementation of standard IPC, than on

an MPI based cluster. Although the paper only

studied the execution times on these two clusters and

argued that one is more efficient than the other for

distributed execution of our selected scientific

application, it also demonstrated that the increased

cost of communication and the loss of performance is

strongly correlated to the amount of latency and

overhead of IPC implementation layers. Such

scientific applications can well benefit from security,

reliability, openness, and availability of kernel level

communication mechanisms too.

6. References

[1] A. Tanenbaum, Distributed Operating Systems,

Prentice Hall, 2005.

[2] Message Passing Interface Forum, “MPI: A Message-

Passing Interface Standard”, Supported in Part by

ARPA and NSF under Grant ASC-9310330, the

National Science Foundation Science and Technology

Center Cooperative, 2003.

[3] A. Geist, A. Beguelin, J, Dongarra, W, Jiang, R.

Manchek and V, Sunderam “PVM: Parallel Virtual

Machine”, A User’s Guide and Tutorial for Networked

Parallel Computing, MIT Press. Available at:

“http://www.netlib.org/”, Last Accessed on January

2008.

[4] M. Sharifi, et als., “DIPC: A System Software

Solution for Distributed Programming”, International

Conference on Parallel and Distributed Processing

Techniques and Applications, PDPTA 97, Georgia

University, U.S.A., 1997.
[5] M. Taufer, E. Perathoner, A. Cavalli, A. Caflish and

T. Stricker, “Performance Characterization of a

Molecular Dynamics Code on PC Clusters, Is there

any easy parallelism in CHARMm?”, IPDPS 2002,

IEEE/ACM International Parallel and Distributed

Processing Symposium, Florida, USA, 2002.

[6] E. M. Boczko and C. L. Brooks III, First-Principles

Calculation of the Folding Free Energy of a Three-He.

Science, 269:393–396, 1995.

[7] M. Iwasaki, H. Chiba, N. Utsunomiya, K. Sonoda, S.

Yoshizawa and M. Yamauchi, “Method for Inter

Processor Communication”, US Patent 5867656,

February 1999.

[8] T. Matthey1 and J. P. Hansen, “Evaluation of MPI's

One-Sided Communication Mechanism for Short-

Range Molecular Dynamics on the Origin2000”,

PARA 2000, LNCS 1947, pp. 356-365, 2001.

[9] K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P.

Eastwood, B.A. Gregersen, J.L. Klepeis, I.

Kolossvary, M.A. Moraes, F.D. Sacerdoti, J.K.

Salmon, Y. Shan and D.E. Shaw, “Scalable

Algorithms for Molecular Dynamics Simulations on

Commodity Clusters”, SC2006, Tampa, Florida, USA,

2006.

[10] P. Husbands, J. C. Hoe, “MPIStarT: Delivering

Network Performance to Numerical Applications”,

SC98. IEEE/ACM Conference, USA, 1998.

[11] P. Werstein, M. Pethick and Z. Huang, “A

Performance Comparison of DSM, PVM, and MPI”,

The 4th International Conference on Parallel and

Distributed Computing, Applications and

Technologies, China, 2003.

[12] M. Jiayin, S. Bo, W. Yongwei, and Y. Guangwen,

“Overlapping Communication and Computation in

MPI by Multithreading”, PDPTA 2006: 52-57, Las

Vegas, USA, 2006.

[13] M. Matsuda, T. Kudoh, H, Tazuka and Y. Ishikawa

“The Design and Implementation of an Asynchronous

Communication Mechanism for the MPI

Communication Model”, International Journal of IPSJ

Transactions on Computer Vision and Applications,

Vol.45, PP: 14-23, 2004.

[14] William Gropp. “MPICH2: A New Start for MPI

Implementations”, In Dieter Kranzlm¨uller, Peter

Kacsuk, Jack Dongarra, and Jens Volkert, editors,

Recent Advances in Parallel Virtual Machine and

Message Passing Interface, Lecture Notes in

Computer Science, Number LNCS 2474, 2002.

[15] M. Sharifi, L. Mirtaheri and E. Mousavi Khanegah,

“A Case for Kernel Level Implementation of Inter

Process Communication Mechanisms”, IEEE Third

International Conference on Information &

Communication Technologies: from Theory to

Applications (ICTTA2008), Syria, Damascus, 2008.

[16] LAM/MPI Team, “LAM/MPI User’s Guide Version

7.1.2”, Open Systems Lab, March 2006, Available at:
http://www.lam-mpi.org/, Last Accessed on 2008.

668668668668

