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Abstract 
 
Parallel programming and distributed 

programming are two solutions for scientific 

applications to provide high performance and fast 

response time in parallel systems and distributed 

systems. Parallel and distributed systems must 

provide inter process communication (IPC) 

mechanisms like message passing mechanism as 

underlying platforms to enable communication 

between local and especially geographically 

dispersed and physically distributed processes. 

Communication overhead is the major problem in 

these systems and there are a lot of efforts to develop 

more efficient message passing mechanisms or to 

improve the network communication speed.  This 

paper provides hard evidence that an efficient 

implementation of message passing mechanism on 

multi-computers reduces the execution time of a 

molecular dynamics code. A well-known program for 

macromolecular dynamics and mechanics called 

CHARMm is executed on a networked cluster. The 

performance of CHARMm is measured with two 

distributed implementations of message passing, 

namely a kernel-level implementation called 

DIPC2006 and a renowned library level 

implementation called MPI. It is shown that the 

performance of CHARMm on a DIPC2006 

configured cluster is by far better than its 

performance on an optimized MPI configured similar 

cluster. Even ignoring the favorable points of kernel-

level implementations, like safety, privilege, 

reliability, and primitiveness, the insight is twofold. 

Scientists are nowadays faced with more 

computational complexity and look for more efficient 

systems and mechanisms. Efficient distributed IPC  

 

 

mechanisms have direct effect on running 

scientists’ simulations faster, and computer engineers 

may try harder to develop more efficient distributed 

implementations of IPC. 
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1. Introduction 
 
Distributed computing systems aim at connecting 

processes to each other to obtain more computing 

resources in a distributed environment using a 

distributed inter process communication (IPC) 

mechanism. Primary distributed inter process 

communications were performed by network 

message passing that deal with routing mechanisms 

and machine addresses. But networks are unreliable 

and writing large scale distributed applications using 

network message passing protocols proved difficult 

and complex [1].  

To ease distributed programming, especially for 

scientific application developers who are uninterested 

in the intricacies of networks, inter process 

communication mechanisms had been provided at 

higher levels as program libraries, as middleware and 

as operating system kernel level primitives. These 

mechanisms present some primitives to programmers 

for sending and receiving messages, while low level 

operations and complexities are handled by the 

mechanisms in a way transparent to programmers and 

users. 
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Generally speaking, higher level implementations 

of IPC are more flexible but less efficient, while 

lower level ones are in contrast less flexible but more 

efficient. It is thus up to the programmers and users 

to choose an appropriate level depending on whether 

high performance or flexibility is paramount. In this 

paper we try to back up this belief that high 

performance is more critical to scientific applications 

that in turn require the most efficient IPC 

implementations, i.e. kernel level implementations. 

 

Programs need to be parallelized either manually 

by programmers or automatically by computer 

software, using distributed inter process 

communications like MPI [2], PVM [3] and DIPC 

2006 [4], in order to be able to run with higher 

performance on clusters or supercomputers. The 

parallelization is however quite difficult and requires 

a good understanding of the application logic in order 

to reduce the communication time of running the 

application in a distributed style on a cluster.  

As an example, a non-hydrostatic version of the 

macromolecular dynamics and mechanics, called 

CHARMm [5], is selected as a scientific application 

with intensive computation and large data size. In 

addition, CHARMm has a noticeable amount of 

computation and communication which makes it a 

good candidate for testing communication and 

computation primitives in inter process 

communication mechanisms that are used in 

scientific clusters.  

Two inter process communication mechanisms, 

namely, DIPC2006 and LAM/MPI [16]. DIPC2006 is 

implemented at the operating system kernel level, 

while MPI is implemented as program library. The 

CHARMm program was manually parallelized in two 

ways, once by using DIPC2006 primitives for 

distributed execution, and once by using LAM/MPI 

program library routines. The DIPC2006 version was 

run on a DIPC2006 configured cluster, and the MPI 

version was run on an optimized MPI configured 

cluster. Both clusters had the same hardware in type 

and numbers. As it will be reported in the next 

sections in this paper, the measured performances of 

program executions provides hard evidence in favor 

of kernel level implementation of distributed inter 

process communication mechanisms. 

The rest of paper is organized as follows. Section 

2 presents general approaches to reducing 

communication overhead in distributed systems. 

Section 3 gives a brief comparative study between 

DIPC2006 and MPI. Section 4 presents the parallel 

implementations of CHARMm on DIPC configured 

and MPI configured clusters, and quantitatively 

compares their performances. Given the experimental 

results and analyses and further discusses the reasons 

behind the superiority of DIPC2006 over MPI. 

Section 5 concludes the paper. 
 

2. Related Work 
 
There have been two general approaches to 

reducing communication overhead in distributed 

systems. Some have tried to optimize network 

operations and communication mechanisms at the 

lower layers of networks. Others have presented 

more and more efficient distributed inter process 

communication mechanisms at higher levels of 

networks as middleware, libraries, kernel level 

primitives. 

T. Matthey et als. [8] have evaluated the 

possibilities of one-sided communication, a new 

feature of the MPI-2 standard, on the Origin2000 for 

relatively short-range molecular dynamics (MD) 

simulations. They concluded that the use of MPI's 

one-sided communication mechanism on the 

Origin2000 is not only feasible but it improves 

performance as well. 

K. J. Bowers et als. [9] have presented several 

new algorithms and implementation techniques that 

significantly accelerate parallel MD simulations 

compared to current state-of-the-art codes. These 

include a novel parallel decomposition method and 

message-passing technique that reduces 

communication requirements, as well as novel 

communication primitives that further reduce 

communication time. 

There are a lot of researches too that have tried to 

improve distributed inter process communication 

mechanisms at higher levels than the network layer. 

One of the popular distributed inter process 

communication mechanisms is MPI. MPI is a 

standard for inter process communication that has 

been implemented by many vendors, and groups of 

researchers [5, 10, 13, 14, and 15] who have tried to 

improve its performance by reducing its 

communication overhead during distributed 

execution of large size scientific application 

programs or popular benchmarks. 

For example, M. Jiayin et als. [12] have improved 

the performance of MPI using a “multithreaded 

model to implement MPI point-to-point operations in 

order to overlap communication and computation. 

They presented theoretical and experimental results 

and compared the performance of both multithreaded 

and single threaded implementations. 

P. Werstein et als. [11] have compared the 

performance of three kinds of distributed IPC 

mechanisms, namely TreadMarks DSM, MPI and 

PVM, in three kinds of parallel applications namely, 
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merge, sort and Mandelbrot set generator. They used 

a back propagation neural network and tried to show 

the behavior of the mechanisms in these parallel 

applications. They conclude that IPC performance is 

greatly influenced by application properties. That is 

to say that IPC mechanisms demonstrate different 

performances in applications that are loosely 

synchronous, embarrassingly parallel, or 

synchronous, and also when the number of nodes 

increase. 

We believe that the resulting improvements in the 

performance directly relate to the efficiency of 

implementation of distributed inter process 

communication mechanisms. For higher level 

implementations and optimizations of distributed 

inter process communication mechanisms, namely 

those at application levels as binaries or operating 

system interface levels, performance improvements 

were lower than when these mechanisms were 

implemented at the operating system kernel level. In 

other words, the communication overhead in none 

kernel level implementations are still high for 

scientists. This paper backs this belief in a practical 

comparative implementation setting using a kernel 

level implementation of inter process 

communication, namely DIPC2006. 
 

3. A Comparative Study  
 
Some notable intricacies and characteristics of 

DIPC2006 and MPI that we have experienced in 

investigating and running CHARMm on DIPC2006 

configured and MPI configured clusters are reported 

in this section. 

To run programs under LAM/MPI, MPI demons 

must be explicitly booted in all machines in the 

cluster. But since DIPC2006 is implemented in the 

kernel of operating system, it is booted automatically 

when the operating system is booted. 

DIPC2006 only adds distribution support to three 

SVIPC mechanisms, namely, semaphore, shared 

memory and message passing, and it does not change 

or modify system calls to these mechanisms. 

Programmers use these system calls as usual and do 

not require learning new functions to write share 

memory or message based distributed programs. 

MPI, on the other hand, presents new message 

passing primitives to programmers and programmers 

must learn them to write message based distributed 

programs. Furthermore, DIPC2006 programs can be 

debugged locally as any other SVIPC based program, 

but run distributed, while MPI programs can be 

debugged only in a distributed debugging 

environment.  

DIPC2006 is limited by the size of message 

queue and message size in the operating system 

kernel, while MPI has no limit on message size as it 

opens sockets to transfer messages using the 

underling network.  

DIPC2006 message features, like message size 

and the number of messages, are dependent on 

SVIPC message features. If SVIPC parameters 

change, DIPC2006 parameters also change. MPI 

parameters, on the other hand, can be changed or 

defined by programmers in their programs, or are set 

to default values by MPI pre compilers.  

MPI compilers must be up and running when MPI 

programs are executing, but DIPC2006 programs are 

once compiled with ANSI compilers like gcc and can 

run independently without requiring the presence of 

any compilers at run time. . 

DIPC2006 has been implemented on Linux 2.2.x 

kernels, and it can run on Intel i386, Motorola 680x0, 

ALPHA, PowerPC, SPARC and MIPS processors. 

MPI has different implementations too, like 

LAM/MPI and MPICH, each of them supporting 

different hardware architectures. Different 

implementations of MPI cannot interoperate and 

communicate with each other; i.e. each 

implementation can communicate only with its own 

kind of implementation. For example, LAM/MPI will 

work between just about any flavors of POSIX (with 

a few restrictions). That is to say on two completely 

different machines (e.g., a Sun machine and an Intel-

based machine), LAM will run on both of them. 

More importantly, one can run a single parallel job 

that spans both of them, while DIPC2006 allows 

interoperability on different hardware. 

Although LAM/MPI transparently converts data 

as required when data is transferred from one 

machine to a different machine, it does not support 

data types of different sizes. For example, if an 

integer is 64 bits on one machine and 32 bits on 

another, the LAM/MPI behavior is undefined. It also 

requires that floating point formats are the same on 

all machines [16]. 
 

4. Performance Analysis of CHARMm 

Based on our experiences, some of the important 

ones being noted in the previous section, we selected 

a popular research tool for computational biology in 

molecular dynamics, called CHARMm, to run on 

DIPC2006 and LAM/MPI clusters. CHARMm 

(Chemistry at HARvard Macromolecular Mechanics) 

is a program for simulating biologically relevant 

macromolecules (proteins, DNA, RNA) and 

complexes thereof [5]. It allows investigating the 

structure and dynamics of large molecules (solute) in 
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the condensed phase (solventor crystal) [5, 6]. 
CHARMm has been modified to allow 

computationally intensive simulations to be run on 

multi-machines using a replicated data model [5].  

This version, though employing a full communication 

scheme, uses an efficient divide-and-conquer 

algorithm for global sums and broadcasts. 

 

We built the physics of a Linux based cluster by 

using 16 dual AMD CPUs and a Giga-bit network. 

The CPU type was Athlon 2500+ and we used a 1 

GB/s switch and 1 GB of memory. In fact we 

constructed two clusters with the same hardware 

specification, one based on DIPC 2006 and the other 

based on MPI. We modified CHARMm to use 

DIPC2006 resulting in what we call CHARMm-

DIPC. Similarly, we modified CHARMm to use MPI 

resulting in what we call CHARMm-MPI. We then 

ran CHARMm-DIPC and CHARMm-MPI on their 

cluster and measured the execution times using 

different number of processors. 

As it is shown in Figure 1, the execution time of 

CHARMm-DIPC 2006 is less than that of 

CHARMm-MPI.  
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Figure 1. Execution times of CHARMm-DIPC and CHARMm-MPI  
 

We also measured and evaluated the message 

passing communication overheads of running the 

parallel version of CHARMm on DIPC2006 and 

LAM/MPI configured clusters, conducting various 

executions with different number of processors, and 

calculated the execution times of send and receive 

messages in in both clusters. But we generally know 

that  execution time is equal to communication time 

plus computation time, and any possible differences 

in execution times of send and receive messages in 

CHARMm-DIPC2006 and CHARMm-MPI are only 

attributable to communication time; the computation 

times can be fairly considered equal in both clusters. 

We can consider the communication time (C) of a 

send/receive message in both clusters as follows:  

 

C = (time spent for sending/receiving an 

empty message) + n * (time spent for 

transmission of a unit of data worldwide) 

 

where n  is the number of data to be transmitted 

over the network. The communication time for q  

messages is therefore qC. 

Since we have only replaced the MPI calls 

(MPI_send or MPI_recv) in the CHARMm-MPI 

program with equivalent calls (Msg_send or 

Msg_recv) in DIPC2006 to get the CHARMm-

DIPC2006 program, we may safely assume that the 

number of messages and the amount of data in each 

message had been the same when these programs 

were run on their respective clusters. This is to say 

that the difference in the execution times of 

CHARMm-MPI program and CHARMm-DIPC2006 

program were not due to the number of transferred 

messages or the amount of data transferred, and 

therefore the second part of the above formula is the 

same for both cases.  This is to say that the execution 

times of CHARMm-MPI and CHARMm-DIPC2006 

were only affected by the first element of C in the 

above formula, i.e. only by the time spent for 

sending/receiving an empty message. Therefore we 

only measured the message send time in CHARMm-

MPI and CHARMm-DIPC 2006 that are shown in 

Table 1. 
 

Table 1: Send times for CHARMm-DIPC 2006 and CHARMm-MPI  

Number of 

Processors 

CHARMm-

DIPC Send 

Time 

CHARMm-

MPI Send Time 

Percentage 

of 

Difference 

2 85.698 117.504 32% 

4 66.06 100.224 34% 

8 50.4 89.12 38% 

16 36.72 77.296 40% 
 
As it is shown in Table 1, increases in the number 

of processors increases the send time in both 

CHARMm-DIPC2006 and CHARMm-MPI because 

the amount of communication increases. The send 

time in CHARMm-MPI is comparatively higher than 

that in the CHARMm-DIPC2006 and the amount of 

difference improvement percentage has increased 

with increases in the number of processors.  

Table 2 shows the receive times in both 

CHARMm-DIPC2006 and CHARMm-MPI receive 

times in MPI based program is more than in 

DIPC2006 based ones. The MPI overhead has caused 

these results. 

The time spent for sending/receiving an empty 

message is in turn affected by the IPC mechanisms 

used as well as the underlying network properties. 

Given that the network had been chosen exactly 

identical in our experimentation, the differences in 

the execution times of CHARMm-MPI and 

CHARMm-DIPC2006 are only attributed to the 

implementation of IPC mechanisms used in these two 
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programs. Given that experimental results showed 

lower execution times for CHARMm-DIPC2006 

relative to execution times of CHARMm-MPI, we 

rightly concluded that the implementation of IPC is 

more efficient in DIPC2006 than in MPI. This also 

describes why the execution time of CHARMm-MPI 

got comparably worse than CHARMm-DIPC2006 

when the number of processors, and consequently the 

number of messages, were increased. 

 
Table 2: Receive times for CHARMm-DIPC 2006 and CHARMm-MPI  

Number of 

Processors 

CHARMm-

DIPC Receive 

Time 

CHARMm-MPI 

Receive Time 

Percentage 

of 

Difference 

2 99.981 153.408 53% 

4 77.07 131.848 54% 

8 54.8 110.24 55% 

16 31.84 89.192 57% 

 

We can strengthen our argument by considering 

that MPI is implemented at the application level. All 

queues that are needed for sending and receiving of 

messages reside in the user space (Figure 2). Upon 

each communication request, a lot of data should be 

copied from user space to kernel space and vice 

versa. These in and out copying increase the 

communication overhead and thus execution time of 

programs. 

 

Figure 2. MPI communication architecture [13]   

 

In contrast, DIPC2006 is implemented at the 

kernel level and all queues reside in the kernel. There 

is no need to copy between user space and kernel 

space and bypass socket APIs (Figure 3). That is why 

DIPC2006 programs have lower communication 

overhead and execution time. 

A call to an MPI communication function 

involves some preparatory operations like searching 

and matching that are done by a process at the 

application level in the user space with limited 

privileges. The process then calls suitable socket 

APIs for transmission. These APIs are converted to 

related socket system calls in the kernel. The call to 

kernel switches the context from the user level to the 

kernel level and the kernel decides which process to 

run next that it may well not be the process just 

context switched.  This overhead is in addition to the 

conversion and preparation overheads. On the 

contrary, in DIPC2006, all these operations are in 

fact calls to the kernel that are run in the kernel space 

with high privilege. These system calls use socket 

system calls locally. The process doing the call 

immediately continues to perform the call without 

any context switch. Overall, these are other reasons 

for MPI communication mechanisms to entail more 

overhead than those in DIPC2006. 

 

Figure 3. DIPC2006 communication architecture 

 

Given all the noted differences of MPI and 

DIPC2006 in communication overheads, it becomes 

clear why communication overhead and consequently 

execution time showed up higher in case of 

CHARMm-MPI, compared to CHARMm-DIPC2006.  

The general recommendation to distributed 

application and system developers is thus to program 

applications in a way to reduce execution time by 

lowering the communication time and spending most 

of the time on application level computation. This 

can be achieved by using as few communication 

mechanisms as possible, and at the same time by 

using more efficiently implemented communication 

mechanisms like DIPC2006. 

Two points are noticeable from the study of 

experimental results of running CHARMm. First, the 

performance got better as the number of processors 

increased. This is however not always the case and it 

depends on many factors including the parallelism 

degree of application, which in this case is the 

parallelism degree of CHARMm. It is quite probable 

that the performance of CHARMm gets worse after 

the number of processors reaches a certain number, 

which in our case is higher than 16.  This is primarily 

because when the number of processors gets higher 

than the parallelism degree of the running 

application, the communication costs of running 

processes cannot be compensated by computation 

speed up. The second point that is somehow 

implicated by the first point is that the performance 

of CHARMm-DIPC2006 is better than the 

performance of CHARMm-MPI. This is due to less 

communication overheads in the CHARMm-

DIPC2006 than in the CHARMm-MPI. In other 

words, it is because the communication mechanism 

used in CHARMm-DIPC2006 is more efficient than 

its counterpart used in CHARMm-MPI.  
 

5. Conclusion 
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This paper took a close look at the 

communication overhead of two different levels of 

distributed IPC mechanism at kernel and library 

levels, namely DIPC2006 and MPI. Many parallel 

and distributed scientific codes use a layered software 

system to facilitate the programming of inter process 

communication in order to get better portability and 

performance. This paper argued in favor of kernel 

level implementations of communication 

mechanisms, in contrast to library level 

implementations, in the scope of distributed systems. 

It selected the parallel molecular dynamics program 

CHARMm as an exemplar. It showed that this 

exemplar scientific application was much better off to 

run distributed on a high performance cluster that is 

configured with DIPC2006, which is a kernel level 

distributed implementation of standard IPC, than on 

an MPI based cluster. Although the paper only 

studied the execution times on these two clusters and 

argued that one is more efficient than the other for 

distributed execution of our selected scientific 

application, it also demonstrated that the increased 

cost of communication and the loss of performance is 

strongly correlated to the amount of latency and 

overhead of IPC implementation layers. Such 

scientific applications can well benefit from security, 

reliability, openness, and availability of kernel level 

communication mechanisms too. 
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