
Operating Systems

Lecture 2.2 - Process Scheduling

Golestan University

Hossein Momeni

momeni@iust.ac.ir

2

Scheduling

 What is scheduling?

 Goals

 Mechanisms

 Scheduling on batch systems

 Scheduling on interactive systems

 Other kinds of scheduling

 Real-time scheduling

Operating Systems Course By: H. Momeni

3

Why schedule processes?

 Bursts of CPU usage alternate with periods of I/O wait

 Some processes are CPU-bound: they don’t make many I/O

requests

 Other processes are I/O-bound and make many kernel

requests

CPU bound

I/O bound

Long CPU bursts Wait for I/O

Total CPU usage

Total CPU usage

Time

Short CPU bursts

Operating Systems Course By: H. Momeni

4

Scheduling goals

 All systems
 Fairness: give each process a fair share of the CPU

 Enforcement: ensure that the stated policy is carried out

 Balance: keep all parts of the system busy

 Batch systems
 Throughput: maximize jobs per unit time

 Turnaround time: minimize time users wait for jobs

 CPU utilization: keep the CPU as busy as possible

 Interactive systems
 Response time: respond quickly to users’ requests

 Proportionality: meet users’ expectations

 Real-time systems
 Meet deadlines: missing deadlines is a system failure!

 Predictability: same type of behavior for each time slice

Operating Systems Course By: H. Momeni

5

Measuring scheduling performance

 Throughput
 Amount of work completed per second (minute, hour)

 Higher throughput usually means better utilized system

 Response time
 Response time is time from when a command is submitted until results are

returned

 Can measure average, variance, minimum, maximum, …

 Turnaround time
 amount of time to execute a process (from delivery to execute = waiting time

for entry to memory + waiting time for entry to ready queue + run time + I/O time)

 Usually not possible to optimize for all metrics with the same
scheduling algorithm

Operating Systems Course By: H. Momeni

6

Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

Operating Systems Course By: H. Momeni

7

Context Switch

 When CPU switches to another process, the system

must save the state of the old process and load the

saved state for the new process

 Context-switch time is overhead; the system does no

useful work while switching

Operating Systems Course By: H. Momeni

8

Terminology: Preemptive vs. non-Preemptive

 Preemptive: A Process can be suspended and resumed

 Non-preemptive: A process runs until it voluntarily gives up the

CPU (waiting on I/O or terminate).

 Most modern OSs use preemptive CPU scheduling, implemented

via timer interrupts.

 Non-preemptive is used when suspending a process is

impossible or very expensive: e.g., can’t “replace” a flight crew

in middle of flight.

Operating Systems Course By: H. Momeni

9

Scheduling type:

 I/O Scheduling

 Short time scheduling

 Switch Ready to Running

 Long time scheduling

 Switch New to Ready

 Mid time scheduling

 Switch Waiting to Ready

Operating Systems Course By: H. Momeni

10

Scheduling Policies

 Batch systems:

 First Come First Served

 Shorted Job First

 Shortest Remaining Time Next

 Interactive systems:

 Round Robin

 Priority Scheduling

 Multiple Queues

 Shortest Process Next

 Guaranteed Scheduling

 Lottery Scheduling

 Fair-share Scheduling

 Real-time systems:

 Static vs. dynamic

Operating Systems Course By: H. Momeni

11

First Come, First Served (FCFS)

 Goal: do jobs in the order they

arrive

 Fair in the same way a bank teller

line is fair

 Privilege:

 Simple algorithm!

 Fairness, No Starvation, low

Overhead

 Problem: long jobs delay every

job after them

 Many processes may wait for a

single long job

 Priority is not supported

 High waiting time and TAT

 Not suitable for I/O bound process

A B C D

4 3 6 3

Current job queue

Execution order

FCFS

scheduler

A B C D

4 3 6 3

Operating Systems Course By: H. Momeni

12

Shortest Job First (SJF)

 Goal: do the shortest job first
 Short jobs complete first

 Long jobs delay every job after
them

 Jobs sorted in increasing order
of execution time
 Ordering of ties doesn’t matter

 Advantages:
 Minimum TAT and Waiting Time

 Low overhead

 Disadvantages:
 Job Execution Time

Estimation

 Starvation for long job

A B C D

4 3 6 3

AB CD

43 63

Current job queue

Execution order

SJF

scheduler

Commensurate with Batch Systems

Operating Systems Course By: H. Momeni

13

Shortest Remaining Time First (SRTF)

 Shortest Remaining Time
First (SRTF):

 preemptive form of SJF

 Problem: how does the
scheduler know how long a
job will take?

 Advantages:
 Minimum TAT and Waiting

Time

 Disadvantages:
 Job Execution Time

Estimation

 Starvation for long job

A B C D

4 3 6 3

AB CD

43 63

Current job queue

Execution order

SJF

scheduler

Commensurate with Batch Systems

Operating Systems Course By: H. Momeni

Highest Response Ration Next (HRRN)

 Priority

 Non-preemptive

 Aging

Response Ratio= (waiting time + CBT)/CBT

 Advantages:

 Not bad Waiting time and TAT

 No Starvation

 Fairness

 Low overhead

 Disadvantage:

 Estimation

 Increase cost

14 Operating Systems Course By: H. Momeni

15

Round Robin (RR) scheduling

 Preemptive

 Give each process a fixed Time

Slice (quantum)

 Rotate through “ready” processes

 Each process makes some progress

 No starvation, Fairness, Simple

 Context switching overhead

 High RT an WT

 Useful for CPU bound

 What’s a good quantum?
 Too short: many process switches hurt

efficiency

 Too long: poor response to interactive

requests

 Typical length: 10–50 ms

A B C D E

Time

A

B

C

D

E

Commensurate with Interactive Systems

Operating Systems Course By: H. Momeni

16

Example:

 Quantum time: 20 ms

 Context switch time: 5 ms

 Overhead cost time: 5/25 = 20%

 Quantum time: 100 ms

 Context switch time: 5 ms

 Overhead cost time: 5/105 < 5%

 Short Quantum: Low performance

 Long Quantum: High performance & bad response time

Operating Systems Course By: H. Momeni

17

Priority scheduling

 Assign a priority to each process
 “Ready” process with highest priority

allowed to run

 Running process may be interrupted after
its quantum expires

 Priorities may be assigned dynamically
 Reduced when a process uses CPU time

 Increased when a process waits for I/O
(may be set priority to 1/f, f is used time
in last quantum)

 Often, processes grouped into multiple
queues based on priority, and run round-
robin per queue

Priority 4

Priority 3

Priority 2

Priority 1

High

Low

“Ready” processes

Commensurate with Interactive Systems

Operating Systems Course By: H. Momeni

Problem  Starvation – low priority processes may never execute

Solution  Aging – as time progresses increase the priority of the process

Multilevel Queue

 Ready queue is partitioned into separate queues

 Each queue has its own scheduling algorithm

 RR

 FCFS

 Scheduling must be done between the queues

18 Operating Systems Course By: H. Momeni

Multilevel Queue Scheduling

19 Operating Systems Course By: H. Momeni

Multilevel Feedback Queue

 A process can move between the various queues;

aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the

following parameters:

 number of queues

 scheduling algorithms for each queue (RR, FCFS)

 method used to determine when to upgrade a process

 States of process at end of execution in a queue:

 Terminate

 I/O and the Upgrade

 Not complete and Downgrade

20 Operating Systems Course By: H. Momeni

Multilevel Feedback Queues

2121 Operating Systems Course By: H. Momeni

22

Lottery scheduling

 Give processes “tickets” for CPU time

 More tickets => higher share of CPU

 Each quantum, pick a ticket at random

 If there are n tickets, pick a number from 1 to n

 Process holding the ticket gets to run for a quantum(1/n)

 Over the long run, each process gets the CPU m/n of the time if

the process has m of the n existing tickets

 Tickets can be transferred

 Cooperating processes can exchange tickets

 Clients can transfer tickets to server so it can have a higher priority

Operating Systems Course By: H. Momeni

23

Scheduling in Real-Time Systems

Schedulable real-time system

 Given

 m periodic events

 event i occurs within period Pi and requires Ci seconds

 Then the load can only be handled if

1

1
m

i

i i

C

P



Operating Systems Course By: H. Momeni

24

Scheduling user-level threads

Kernel picks a process

Run-time

system

Thread

table

Process

table

 Kernel picks a process to

run next

 Run-time system (at user

level) schedules threads

 Run each thread for less than

process quantum

 Example: processes get 50ms

each, threads get 5ms each

 Example schedule:

A1,A2,A3,A1,B1,B3,B2,B3

 Not possible:

A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Runtime

system

picks a

thread

Possible scheduling of user-level threads
 50-msec process quantum

 threads run 5 msec/CPU burst

25

Scheduling kernel-level threads

 Kernel schedules each

thread

 No restrictions on ordering

 May be more difficult for

each process to specify

priorities

 Example schedule:

A1,A2,A3,A1,B1,B3,B2,B3

 Also possible:

A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Kernel picks a thread

Thread

table

Process

table

