
Operating Systems

Lecture 2.2 - Process Scheduling

Golestan University

Hossein Momeni

momeni@iust.ac.ir

2

Scheduling

 What is scheduling?

 Goals

 Mechanisms

 Scheduling on batch systems

 Scheduling on interactive systems

 Other kinds of scheduling

 Real-time scheduling

Operating Systems Course By: H. Momeni

3

Why schedule processes?

 Bursts of CPU usage alternate with periods of I/O wait

 Some processes are CPU-bound: they don’t make many I/O

requests

 Other processes are I/O-bound and make many kernel

requests

CPU bound

I/O bound

Long CPU bursts Wait for I/O

Total CPU usage

Total CPU usage

Time

Short CPU bursts

Operating Systems Course By: H. Momeni

4

Scheduling goals

 All systems
 Fairness: give each process a fair share of the CPU

 Enforcement: ensure that the stated policy is carried out

 Balance: keep all parts of the system busy

 Batch systems
 Throughput: maximize jobs per unit time

 Turnaround time: minimize time users wait for jobs

 CPU utilization: keep the CPU as busy as possible

 Interactive systems
 Response time: respond quickly to users’ requests

 Proportionality: meet users’ expectations

 Real-time systems
 Meet deadlines: missing deadlines is a system failure!

 Predictability: same type of behavior for each time slice

Operating Systems Course By: H. Momeni

5

Measuring scheduling performance

 Throughput
 Amount of work completed per second (minute, hour)

 Higher throughput usually means better utilized system

 Response time
 Response time is time from when a command is submitted until results are

returned

 Can measure average, variance, minimum, maximum, …

 Turnaround time
 amount of time to execute a process (from delivery to execute = waiting time

for entry to memory + waiting time for entry to ready queue + run time + I/O time)

 Usually not possible to optimize for all metrics with the same
scheduling algorithm

Operating Systems Course By: H. Momeni

6

Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

Operating Systems Course By: H. Momeni

7

Context Switch

 When CPU switches to another process, the system

must save the state of the old process and load the

saved state for the new process

 Context-switch time is overhead; the system does no

useful work while switching

Operating Systems Course By: H. Momeni

8

Terminology: Preemptive vs. non-Preemptive

 Preemptive: A Process can be suspended and resumed

 Non-preemptive: A process runs until it voluntarily gives up the

CPU (waiting on I/O or terminate).

 Most modern OSs use preemptive CPU scheduling, implemented

via timer interrupts.

 Non-preemptive is used when suspending a process is

impossible or very expensive: e.g., can’t “replace” a flight crew

in middle of flight.

Operating Systems Course By: H. Momeni

9

Scheduling type:

 I/O Scheduling

 Short time scheduling

 Switch Ready to Running

 Long time scheduling

 Switch New to Ready

 Mid time scheduling

 Switch Waiting to Ready

Operating Systems Course By: H. Momeni

10

Scheduling Policies

 Batch systems:

 First Come First Served

 Shorted Job First

 Shortest Remaining Time Next

 Interactive systems:

 Round Robin

 Priority Scheduling

 Multiple Queues

 Shortest Process Next

 Guaranteed Scheduling

 Lottery Scheduling

 Fair-share Scheduling

 Real-time systems:

 Static vs. dynamic

Operating Systems Course By: H. Momeni

11

First Come, First Served (FCFS)

 Goal: do jobs in the order they

arrive

 Fair in the same way a bank teller

line is fair

 Privilege:

 Simple algorithm!

 Fairness, No Starvation, low

Overhead

 Problem: long jobs delay every

job after them

 Many processes may wait for a

single long job

 Priority is not supported

 High waiting time and TAT

 Not suitable for I/O bound process

A B C D

4 3 6 3

Current job queue

Execution order

FCFS

scheduler

A B C D

4 3 6 3

Operating Systems Course By: H. Momeni

12

Shortest Job First (SJF)

 Goal: do the shortest job first
 Short jobs complete first

 Long jobs delay every job after
them

 Jobs sorted in increasing order
of execution time
 Ordering of ties doesn’t matter

 Advantages:
 Minimum TAT and Waiting Time

 Low overhead

 Disadvantages:
 Job Execution Time

Estimation

 Starvation for long job

A B C D

4 3 6 3

AB CD

43 63

Current job queue

Execution order

SJF

scheduler

Commensurate with Batch Systems

Operating Systems Course By: H. Momeni

13

Shortest Remaining Time First (SRTF)

 Shortest Remaining Time
First (SRTF):

 preemptive form of SJF

 Problem: how does the
scheduler know how long a
job will take?

 Advantages:
 Minimum TAT and Waiting

Time

 Disadvantages:
 Job Execution Time

Estimation

 Starvation for long job

A B C D

4 3 6 3

AB CD

43 63

Current job queue

Execution order

SJF

scheduler

Commensurate with Batch Systems

Operating Systems Course By: H. Momeni

Highest Response Ration Next (HRRN)

 Priority

 Non-preemptive

 Aging

Response Ratio= (waiting time + CBT)/CBT

 Advantages:

 Not bad Waiting time and TAT

 No Starvation

 Fairness

 Low overhead

 Disadvantage:

 Estimation

 Increase cost

14 Operating Systems Course By: H. Momeni

15

Round Robin (RR) scheduling

 Preemptive

 Give each process a fixed Time

Slice (quantum)

 Rotate through “ready” processes

 Each process makes some progress

 No starvation, Fairness, Simple

 Context switching overhead

 High RT an WT

 Useful for CPU bound

 What’s a good quantum?
 Too short: many process switches hurt

efficiency

 Too long: poor response to interactive

requests

 Typical length: 10–50 ms

A B C D E

Time

A

B

C

D

E

Commensurate with Interactive Systems

Operating Systems Course By: H. Momeni

16

Example:

 Quantum time: 20 ms

 Context switch time: 5 ms

 Overhead cost time: 5/25 = 20%

 Quantum time: 100 ms

 Context switch time: 5 ms

 Overhead cost time: 5/105 < 5%

 Short Quantum: Low performance

 Long Quantum: High performance & bad response time

Operating Systems Course By: H. Momeni

17

Priority scheduling

 Assign a priority to each process
 “Ready” process with highest priority

allowed to run

 Running process may be interrupted after
its quantum expires

 Priorities may be assigned dynamically
 Reduced when a process uses CPU time

 Increased when a process waits for I/O
(may be set priority to 1/f, f is used time
in last quantum)

 Often, processes grouped into multiple
queues based on priority, and run round-
robin per queue

Priority 4

Priority 3

Priority 2

Priority 1

High

Low

“Ready” processes

Commensurate with Interactive Systems

Operating Systems Course By: H. Momeni

Problem Starvation – low priority processes may never execute

Solution Aging – as time progresses increase the priority of the process

Multilevel Queue

 Ready queue is partitioned into separate queues

 Each queue has its own scheduling algorithm

 RR

 FCFS

 Scheduling must be done between the queues

18 Operating Systems Course By: H. Momeni

Multilevel Queue Scheduling

19 Operating Systems Course By: H. Momeni

Multilevel Feedback Queue

 A process can move between the various queues;

aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the

following parameters:

 number of queues

 scheduling algorithms for each queue (RR, FCFS)

 method used to determine when to upgrade a process

 States of process at end of execution in a queue:

 Terminate

 I/O and the Upgrade

 Not complete and Downgrade

20 Operating Systems Course By: H. Momeni

Multilevel Feedback Queues

2121 Operating Systems Course By: H. Momeni

22

Lottery scheduling

 Give processes “tickets” for CPU time

 More tickets => higher share of CPU

 Each quantum, pick a ticket at random

 If there are n tickets, pick a number from 1 to n

 Process holding the ticket gets to run for a quantum(1/n)

 Over the long run, each process gets the CPU m/n of the time if

the process has m of the n existing tickets

 Tickets can be transferred

 Cooperating processes can exchange tickets

 Clients can transfer tickets to server so it can have a higher priority

Operating Systems Course By: H. Momeni

23

Scheduling in Real-Time Systems

Schedulable real-time system

 Given

 m periodic events

 event i occurs within period Pi and requires Ci seconds

 Then the load can only be handled if

1

1
m

i

i i

C

P

Operating Systems Course By: H. Momeni

24

Scheduling user-level threads

Kernel picks a process

Run-time

system

Thread

table

Process

table

 Kernel picks a process to

run next

 Run-time system (at user

level) schedules threads

 Run each thread for less than

process quantum

 Example: processes get 50ms

each, threads get 5ms each

 Example schedule:

A1,A2,A3,A1,B1,B3,B2,B3

 Not possible:

A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Runtime

system

picks a

thread

Possible scheduling of user-level threads
 50-msec process quantum

 threads run 5 msec/CPU burst

25

Scheduling kernel-level threads

 Kernel schedules each

thread

 No restrictions on ordering

 May be more difficult for

each process to specify

priorities

 Example schedule:

A1,A2,A3,A1,B1,B3,B2,B3

 Also possible:

A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Kernel picks a thread

Thread

table

Process

table

