
Operating Systems

Lecture 2.3 - Inter Process Communication

Golestan University

Hossein Momeni

momeni@iust.ac.ir



Classical IPC problems

 Processes frequently need to communicate with other 

processes

 This is called Inter-Process Communication or IPC.

 Three problems in IPC:

1. Race Condition

2. Deadlock

3. Starvation
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Race Conditions

Two processes want to access shared memory at same time. What happens if 

they try to access it simultaneously?

Operating Systems Course     By: H. Momeni



4

Race Conditions

 Situations like this are called race conditions. 

 What will happen if two processes execute the 

following code?

X=0;

…

Read(x);

X++;

Write(x);
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Critical Regions (1)

Critical Regions solution: Mutual exclusion*

Four conditions to provide mutual exclusion
1. No two processes simultaneously in critical region (Mutual exclusion)

2. No assumptions made about speeds or numbers of CPUs (Generality)

3. No process running outside its critical region may block another process (Progress)

4. No process must wait forever to enter its critical region (Bounded waiting)

*Mutual exclusion: A collection of techniques for sharing resources so that  

different uses do not conflict and cause unwanted interactions 
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Critical Regions (2)

Mutual exclusion using critical regions
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Two ways for waiting: 1- Busy waiting 2- Blocking
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Mutual exclusion solutions

 Approaches:
 Software approaches

 Hardware Approaches

 Operating system level 
approaches

 Compiler level approaches
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 Busy Waiting
 Interrupts disable 

 Lock variables

 Strict alternation

 Peterson’s solution

 TSL instruction

 Sleep and wake up
 Semaphor

 Monitor

 Message Passing
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Interrupts disable

 CPU switches with interrupt

 When Interrupts  are disable, other process are disable

 Problems

 May be interrupt not enable & system halted!

 Impossible for multi processors system
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Lock variables

 Lock variable idea is a software solution:

 P1:

 while Lock=1 do wait

 Lock=1

 Enter to critical region 

 Lock=0

 P2:

 while Lock=1 do wait

 Lock=1

 Enter to critical region 

 Lock=0

 No three conditions (Mutual exclusion, Progress, Bounded waiting )
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Strict alternation

Proposed solution to critical region problem

(a) Process 0.        (b) Process 1.
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• No Progress condition
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Peterson’s solution (1982)

Peterson's solution for achieving mutual exclusion
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Peterson’s solution

 Guarantee three conditions

 Busy waiting

 Two-Process. 
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TSL instruction
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• No Bounded waiting and Busy waiting

• Not supported by some processor (such as Intel)

• Mutual Exclusion, Progress
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Problems of Mutual Exclusion with Busy Waiting 

 Busy Waiting problem (waiting loop)

 Priority inversion problem

 There is two processes H and L.

 H has higher priority than L.

 L is in its critical section and H becomes ready.

 What happens?
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Sleep and Wakeup 

 Semaphores

 Monitors

 Message Passing
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Sleep and Wakeup

 Despite busy waiting methods which waste CPU 

cycles, in this method processes may sleep or 

wakeup using system calls. 

 Let’s clarify this approach using an example, 

namely, producers and consumers. 
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Sleep and Wakeup

 Consider two processes which produce and 

consume items from/to a buffer with size N. 
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Consumer 

Process

Producer 

Process
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Sleep and Wakeup

Producer-consumer problem 
with fatal race condition
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Problems

 This solution is also wrong. 

 Consider N=0

 Consumer before sleeping, CPU switch to producer

 Producer produce till count=N and go to the sleep mode. 

 CPU switch to the Consumer

 Consumer go to the sleep mode

 Deadlock!!
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Semaphores

 In many problems there is a need to count an event, 

like producing an item or consuming it. 

 Accessing to this counter should be protected against 

concurrent processes.

 Such a protected counter is called a semaphore

which has more features. 
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Semaphores (cont.)

 Two operators are defined on a semaphore: Down

and Up (generalizations of sleep and wakeup)

Down(int& x) {

If (x > 0) 

x--;

else 

Sleep() };

Up(int& x) {

If (there is any waiting process) 
Pick a process from queue and make it ready;

else 

x++ };
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Semaphores (cont.)

 How to protect a critical section using semaphores?

int s = 1;

Down(s);

…

Critical Section

…

Up(s); 
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Semaphores (cont.)

 Consider a resource which can be shared by 3 

processes. How accessing this device can be 

protected using semaphores?

int x = 3;

Down(x);

…

Accessing the shared resource.

…

Up(x); 
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Semaphores (cont.)

 Mutex Semaphore (Binary)

 Define 2 operation Down & Up

 Down or Wait or P (Proberen)

 Up or Signal or V (Verhogen)
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Semaphores (Cont)

 We use semaphore for:

 Mutual Exclusion (initial value=1)

 Process Synchronization (initial value=0)
 Example Synchronization: 

 We want to print AB
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P1

-----

A

Signal (s)

P2

------

wait (s)

B
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Producer & Consumer solution with Semaphores

The producer-consumer
problem using semaphores
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Monitors (Hoare 1974)

 Semaphore solution is difficult

 Semaphore solution is low level 

 Process deadlock 

 Exchange down operations in producer

 Consider the buffer is full
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Monitors (cont.)

 To make it easier to write correct programs, a higher 

level primitive called monitor is introduced. 

 It is a collection of procedures, variables and data 

structures that are all grouped in a package. 

 An important property: 

 Only one process can be active in a monitor at any time.  

Operating Systems Course     By: H. Momeni



29

Monitors model

monitor monitor_name

{ shared variable declarations

procedure p1(…) {

….

}

procedure pn(…) {

….

}

{

initialization code

}

}
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Monitors (cont.)

 Monitors are a programming language construct, so 

the compiler should handle calls to procedures. 

 When a process calls a monitor procedure, the first 

few instructions of the procedure will check to see if 

any other process is currently active or not. 

 Condition variables

 Wait and Signal operation

Operating Systems Course     By: H. Momeni



31

Producer-consumer problem with monitor

Outline of producer-consumer problem with monitors
 only one monitor procedure active at one time

 buffer has N slots
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Message Passing

 Monitor Problems:
 Not Support in some programming language such as C and Pascal

 Use in single processor systems or share memory multi processor

 Message Passing: 

 Inter process communication without share memory

 Use send & receive system call for communication (such as semaphores)

 send(destination,&message)

 receive(source,&message)

 If message is not exist: 

 Receiver is blocked until message is not reply

 Return error message
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Producer-consumer problem with N messages
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Classical IPC problems

Classical synchronization 

problems
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Dining Philosophers

 N philosophers around a table

 All are hungry

 All like to think

 N chopsticks available

 1 between each pair of 

philosophers

 Philosophers need two 

chopsticks to eat

 Philosophers alternate between 

eating and thinking

 Goal: coordinate use of 

chopsticks
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A nonsolution to the dining philosophers problem
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Solution to dining philosophers problem (part 1)
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Solution to dining philosophers problem (part 2)
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Readers and Writers

 There are two 

semaphores in this 

solution.

 One for writing to 

database.

 One for counting the 

readers. 
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