
Operating Systems

Lecture 2.3 - Inter Process Communication

Golestan University

Hossein Momeni

momeni@iust.ac.ir

Classical IPC problems

 Processes frequently need to communicate with other

processes

 This is called Inter-Process Communication or IPC.

 Three problems in IPC:

1. Race Condition

2. Deadlock

3. Starvation

Operating Systems Course By: H. Momeni

3

Race Conditions

Two processes want to access shared memory at same time. What happens if

they try to access it simultaneously?

Operating Systems Course By: H. Momeni

4

Race Conditions

 Situations like this are called race conditions.

 What will happen if two processes execute the

following code?

X=0;

…

Read(x);

X++;

Write(x);

Operating Systems Course By: H. Momeni

5

Critical Regions (1)

Critical Regions solution: Mutual exclusion*

Four conditions to provide mutual exclusion
1. No two processes simultaneously in critical region (Mutual exclusion)

2. No assumptions made about speeds or numbers of CPUs (Generality)

3. No process running outside its critical region may block another process (Progress)

4. No process must wait forever to enter its critical region (Bounded waiting)

*Mutual exclusion: A collection of techniques for sharing resources so that

different uses do not conflict and cause unwanted interactions

Operating Systems Course By: H. Momeni

6

Critical Regions (2)

Mutual exclusion using critical regions

Operating Systems Course By: H. Momeni

Two ways for waiting: 1- Busy waiting 2- Blocking

7

Mutual exclusion solutions

 Approaches:
 Software approaches

 Hardware Approaches

 Operating system level
approaches

 Compiler level approaches

Operating Systems Course By: H. Momeni

 Busy Waiting
 Interrupts disable

 Lock variables

 Strict alternation

 Peterson’s solution

 TSL instruction

 Sleep and wake up
 Semaphor

 Monitor

 Message Passing

8

Interrupts disable

 CPU switches with interrupt

 When Interrupts are disable, other process are disable

 Problems

 May be interrupt not enable & system halted!

 Impossible for multi processors system

Operating Systems Course By: H. Momeni

9

Lock variables

 Lock variable idea is a software solution:

 P1:

 while Lock=1 do wait

 Lock=1

 Enter to critical region

 Lock=0

 P2:

 while Lock=1 do wait

 Lock=1

 Enter to critical region

 Lock=0

 No three conditions (Mutual exclusion, Progress, Bounded waiting)

Operating Systems Course By: H. Momeni

10

Strict alternation

Proposed solution to critical region problem

(a) Process 0. (b) Process 1.

Operating Systems Course By: H. Momeni

• No Progress condition

11

Peterson’s solution (1982)

Peterson's solution for achieving mutual exclusion

Operating Systems Course By: H. Momeni

12

Peterson’s solution

 Guarantee three conditions

 Busy waiting

 Two-Process.

Operating Systems Course By: H. Momeni

13

TSL instruction

Operating Systems Course By: H. Momeni

• No Bounded waiting and Busy waiting

• Not supported by some processor (such as Intel)

• Mutual Exclusion, Progress

14

Problems of Mutual Exclusion with Busy Waiting

 Busy Waiting problem (waiting loop)

 Priority inversion problem

 There is two processes H and L.

 H has higher priority than L.

 L is in its critical section and H becomes ready.

 What happens?

Operating Systems Course By: H. Momeni

15

Sleep and Wakeup

 Semaphores

 Monitors

 Message Passing

Operating Systems Course By: H. Momeni

16

Sleep and Wakeup

 Despite busy waiting methods which waste CPU

cycles, in this method processes may sleep or

wakeup using system calls.

 Let’s clarify this approach using an example,

namely, producers and consumers.

Operating Systems Course By: H. Momeni

17

Sleep and Wakeup

 Consider two processes which produce and

consume items from/to a buffer with size N.

Operating Systems Course By: H. Momeni

Consumer

Process

Producer

Process

18

Sleep and Wakeup

Producer-consumer problem
with fatal race condition

Operating Systems Course By: H. Momeni

19

Problems

 This solution is also wrong.

 Consider N=0

 Consumer before sleeping, CPU switch to producer

 Producer produce till count=N and go to the sleep mode.

 CPU switch to the Consumer

 Consumer go to the sleep mode

 Deadlock!!

Operating Systems Course By: H. Momeni

20

Semaphores

 In many problems there is a need to count an event,

like producing an item or consuming it.

 Accessing to this counter should be protected against

concurrent processes.

 Such a protected counter is called a semaphore

which has more features.

Operating Systems Course By: H. Momeni

21

Semaphores (cont.)

 Two operators are defined on a semaphore: Down

and Up (generalizations of sleep and wakeup)

Down(int& x) {

If (x > 0)

x--;

else

Sleep() };

Up(int& x) {

If (there is any waiting process)
Pick a process from queue and make it ready;

else

x++ };

Operating Systems Course By: H. Momeni

22

Semaphores (cont.)

 How to protect a critical section using semaphores?

int s = 1;

Down(s);

…

Critical Section

…

Up(s);

Operating Systems Course By: H. Momeni

23

Semaphores (cont.)

 Consider a resource which can be shared by 3

processes. How accessing this device can be

protected using semaphores?

int x = 3;

Down(x);

…

Accessing the shared resource.

…

Up(x);

Operating Systems Course By: H. Momeni

24

Semaphores (cont.)

 Mutex Semaphore (Binary)

 Define 2 operation Down & Up

 Down or Wait or P (Proberen)

 Up or Signal or V (Verhogen)

Operating Systems Course By: H. Momeni

Semaphores (Cont)

 We use semaphore for:

 Mutual Exclusion (initial value=1)

 Process Synchronization (initial value=0)
 Example Synchronization:

 We want to print AB

Operating Systems Course- By: Hossein25

P1

A

Signal (s)

P2

wait (s)

B

26

Producer & Consumer solution with Semaphores

The producer-consumer
problem using semaphores

Operating Systems Course By: H. Momeni

27

Monitors (Hoare 1974)

 Semaphore solution is difficult

 Semaphore solution is low level

 Process deadlock

 Exchange down operations in producer

 Consider the buffer is full

Operating Systems Course By: H. Momeni

28

Monitors (cont.)

 To make it easier to write correct programs, a higher

level primitive called monitor is introduced.

 It is a collection of procedures, variables and data

structures that are all grouped in a package.

 An important property:

 Only one process can be active in a monitor at any time.

Operating Systems Course By: H. Momeni

29

Monitors model

monitor monitor_name

{ shared variable declarations

procedure p1(…) {

….

}

procedure pn(…) {

….

}

{

initialization code

}

}

Operating Systems Course By: H. Momeni

30

Monitors (cont.)

 Monitors are a programming language construct, so

the compiler should handle calls to procedures.

 When a process calls a monitor procedure, the first

few instructions of the procedure will check to see if

any other process is currently active or not.

 Condition variables

 Wait and Signal operation

Operating Systems Course By: H. Momeni

31

Producer-consumer problem with monitor

Outline of producer-consumer problem with monitors
 only one monitor procedure active at one time

 buffer has N slots

Operating Systems Course By: H. Momeni

32

Message Passing

 Monitor Problems:
 Not Support in some programming language such as C and Pascal

 Use in single processor systems or share memory multi processor

 Message Passing:

 Inter process communication without share memory

 Use send & receive system call for communication (such as semaphores)

 send(destination,&message)

 receive(source,&message)

 If message is not exist:

 Receiver is blocked until message is not reply

 Return error message

Operating Systems Course By: H. Momeni

33

Producer-consumer problem with N messages

Operating Systems Course By: H. Momeni

Classical IPC problems

Classical synchronization

problems

35

Dining Philosophers

 N philosophers around a table

 All are hungry

 All like to think

 N chopsticks available

 1 between each pair of

philosophers

 Philosophers need two

chopsticks to eat

 Philosophers alternate between

eating and thinking

 Goal: coordinate use of

chopsticks

Operating Systems Course By: H. Momeni

36

A nonsolution to the dining philosophers problem

Operating Systems Course By: H. Momeni

37

Solution to dining philosophers problem (part 1)

Operating Systems Course By: H. Momeni

38

Solution to dining philosophers problem (part 2)

Operating Systems Course By: H. Momeni

39

Readers and Writers

 There are two

semaphores in this

solution.

 One for writing to

database.

 One for counting the

readers.

Operating Systems Course By: H. Momeni

