
Operating Systems

Lecture 4 - Memory Management

By: Hossein Momeni

momeni@iust.ac.ir

Operating Systems Course By: Hossein Momeni2

Contents

 Basic memory management

 Swapping

 Virtual memory

 Page replacement algorithms

 Design issues for paging systems

 Segmentation

Operating Systems Course By: Hossein Momeni3

In an ideal world…

 The ideal world has memory that is

 Very large

 Very fast

 Non-volatile (doesn’t go away when power is turned off)

 Memory management goal: make the real world look as

much like the ideal world as possible

4

Memory

 Memory is an important resource that should be

managed carefully.

 Memory Hierarchy:

 Cache: Small, expensive, fast, volatile, …

 RAM: Medium-speed, medium price, volatile,

 …

 Disk Storage: Large, slow, non-volatile, …

 What’s the role of the Operating System?

Operating Systems Course By: Hossein Momeni

Basic Memory Management

 Memory management systems can be divided into

two classes:

 Those that move processes back and forth between main

memory and disk. (Swapping and Paging)

 Those that do not. !!!

 The second class is simpler and would be discussed

first.

5 Operating Systems Course By: Hossein Momeni

6

Monoprogramming without Swapping or Paging

 An operating system with one user process

 No swapping or paging

 Three simple ways of organizing memory

 Mainframe and Mini Computer- Embedded systems,- Personal Computer (Ms-DOS)

Operating system

(RAM)

User program

(RAM)

0xFFFF 0xFFFF

0 0

User program

(RAM)

Operating system

(ROM)

Operating system

(RAM)

User program

(RAM)

Device drivers

(ROM)

Operating Systems Course By: Hossein Momeni

Mono-Programming

 When the system is organized in this way, only one

process at a time can be running.

 User types a command

 The OS copies the requested program from disk to

memory and executes it.

 When the process finishes, the OS displays a prompt and

OS waits for a new command.

 The next commands would be overwritten on the first

one.

7 Operating Systems Course By: Hossein Momeni

8

Multiprogramming with Fixed Partitions

 Fixed memory partitions

 Divide memory into fixed spaces

 Assign a process to a space when it’s free

 Mechanisms

 Separate input queues for each partition

 Single input queue: better ability to optimize CPU usage

OS

Partition 1

Partition 2

Partition 3

Partition 4

0

100K

500K

600K

700K

900K

OS

Partition 1

Partition 2

Partition 3

Partition 4

0

100K

500K

600K

700K

900K

Operating Systems Course By: Hossein Momeni

Multiprogramming – Fixed Partitions

9

 When a job arrives, it can be put into the input queue for

the smallest partition large enough to hold it.

 Since the partitions are fixed in this scheme, any space in a

partition not used by a job is wasted while that job runs

 The disadvantage of sorting the incoming jobs into

separate queues becomes apparent when the queue of a

large partition is empty but other queues are full.

 So, it would be possible to put all the jobs in one queue:

 Pick the jobs one by one.

 Search in the queue for the best job when a partition becomes empty. (What’s

the problem?)

Operating Systems Course By: Hossein Momeni

Relocation & Protection

 Multiprogramming introduces two essential

problems: relocation and protection

 Different jobs would be run at different addresses.

 Is it possible for the linker to put the right address in

the final binary code?

 This problem is known as the relocation.

 One solution is to modify the instructions as the program

is loaded into main memory.

10 Operating Systems Course By: Hossein Momeni

Relocation & Protection

 How to protect against invalid access of user

programs to main memory?

 In IBM 360, the memory was divided into blocks of 2K

and assigned a 4-bit protection code.

 On each memory access, the operating system checks the

code of the process and the one written in hardware.

11 Operating Systems Course By: Hossein Momeni

Relocation & Protection

 Another solution is to equip the machine with two

registers, base and limit.

12

Process

partition

OS
0

0xFFFF

Limit

Base

0x20000

0x9000

 Address generation

 Physical address: location in

actual memory

 Logical address: location from

the process’s point of view

 Physical address = base +

logical address

 Logical address larger than

limit => error

Operating Systems Course By: Hossein Momeni

Multiprogramming with Swapping

 Batch system: fixed partitioning is good

 Time sharing system: there is not enough main memory to

hold all the currently active processes.

 There are two solution approach:

 Swapping

 Virtual Memory

13 Operating Systems Course By: Hossein Momeni

Swapping

 Memory allocation changes as

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution

 Gray regions are unused memory

14

OS OS OS OS OS OS OS

A A

B

A

B

C

B

C

B

C

D

C

D

C

D

A

• Swap in from disk

• Swap out to disk

Operating Systems Course By: Hossein Momeni

Memory Compaction

 Fixed Partition versus Variable partition

 Swapping creates multiple holes in main memory.

 It’s possible to combine all of them into a big hole.

 This technique is called memory compaction.

 It is usually not done because it requires a lot of CPU

time.

15 Operating Systems Course By: Hossein Momeni

Swapping: leaving room to grow

 Need to allow for programs to

grow

 Allocate more memory for data

 Larger stack

 Handled by allocating more

space than is necessary at the

start

 Inefficient: wastes memory that’s

not currently in use

 What if the process requests too

much memory?

16

OS

Code

Data

Stack

Code

Data

Stack

Process

B

Process

A

Room for

B to grow

Room for

A to grow

Operating Systems Course By: Hossein Momeni

Tracking Memory Usage

 When the memory is allocated dynamically, the

operating system should manage it.

 There are two main ways to keep track of memory:

 Bit maps

 Free lists

17 Operating Systems Course By: Hossein Momeni

18

Bit Maps

 Part of memory with 5 processes, 3 holes
 tick marks show allocation units

 shaded regions are free

 Corresponding bit map

 Same information as a list

Operating Systems Course By: Hossein Momeni

Linked Lists

 Keep track of free/allocated memory regions with a linked list

 Each entry in the list corresponds to a contiguous region of memory

 Entry can indicate either allocated or free (and, optionally, owning process)

 May have separate lists for free and allocated areas

19

A B C D

16 24 32

Memory regions

A 0 6 - 6 4 B 10 3 - 13 4 C 17 9

- 29 3D 26 3

8

Operating Systems Course By: Hossein Momeni

Allocating Memory

 There are some algorithms for memory allocation in

the case of using link lists:

 First fit

 Next fit

 Best fit

 Worst fit

 Quick fit

20 Operating Systems Course By: Hossein Momeni

Swapping Problems

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented (External)

 Processes are either in memory or on disk: half

and half doesn’t do any good

21 Operating Systems Course By: Hossein Momeni

Virtual Memory

 Basic idea: allow the OS to hand out more memory
than exists on the system

 Keep recently used stuff in physical memory and
move less recently used stuff to disk

 Keep all of this hidden from processes
 Processes still see an address space from 0 – max address

 Movement of information to and from disk handled by the
OS without process help

 Overlay

 Performed by programmers

22 Operating Systems Course By: Hossein Momeni

23

Virtual and physical addresses

 Program uses virtual addresses

 Addresses local to the process

 Hardware translates virtual address

to physical address

 Translation done by the Memory

Management Unit

 Usually on the same chip as the

CPU

 Only physical addresses leave the

CPU/MMU chip

 Physical memory indexed by

physical addresses

CPU chip

CPU

Memory

Disk

controller

MMU

Virtual addresses

from CPU to MMU

Physical addresses

on bus, in memory

Operating Systems Course By: Hossein Momeni

Paging and Page Table

 Virtual addresses mapped to physical

addresses

 Unit of mapping is called a page

 All addresses in the same virtual page

are in the same physical page

 Page table entry (PTE) contains

translation for a single page

 Table translates virtual page number to

physical page number

 Not all virtual memory has a physical

page

 Example:

 64 KB virtual memory

 32 KB physical memory

24

Virtual

address

space

0–4K
4–8K
8–12K
12–16K
16–20K
20–24K
24–28K
28–32K

70–4K
44–8K

8–12K
12–16K

016–20K
20–24K
24–28K

328–32K
32–36K
36–40K

140–44K
544–48K
648–52K
-52–56K

56–60K
-60–64K

Physical

memory

-

-
-

-
-

-
-

Operating Systems Course By: Hossein Momeni

25

Single level Page Tables

Internal operation of MMU with 16 pages (4 KB)

Operating Systems Course By: Hossein Momeni

26

What’s in a page table entry?

 Each entry in the page table contains
 Valid bit: set if this logical page number has a corresponding physical frame

in memory
 If not valid, remainder of PTE is irrelevant

 Page frame number: page in physical memory

 Referenced bit: set if data on the page has been accessed

 Dirty (modified) bit :set if data on the page has been modified

 Protection information (read, write, Executable)

Page frame numberVRDProtection

Valid bitReferenced bitDirty bit
(modified)

Operating Systems Course By: Hossein Momeni

Address translation architecture

27

page number

p d

page offset

0

1

p-1

p

p+1

f

f d

Page frame number

.

.

.

physical memory

0

1

.

.

.

f-1

f

f+1

f+2
.
.
.

Page frame number

CPU

Operating Systems Course By: Hossein Momeni

28

Example:

• 4 KB (=4096 byte) pages

• 32 bit logical addresses

p d

2d = 4096 d = 12

12 bits

32 bit logical address

32-12 = 20 bits

Mapping logical => physical address

 Split address from CPU into

two pieces

 Page number (p)

 Page offset (d)

 Page number

 Index into page table

 Page table contains base

address of page in physical

memory

 Page offset

 Added to base address to get

actual physical memory

address

 Page size = 2d bytes

Operating Systems Course By: Hossein Momeni

29

Multi level Page Tables

 32 bit address with 2 page table fields

 Two-level page tables

Second-level page tables

Top-level

page table

Operating Systems Course By: Hossein Momeni

30

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

Two-level paging: example

 System characteristics
 8 KB pages

 32-bit logical address divided into 13 bit page offset, 19 bit page number

 Page number divided into:
 10 bit page number

 9 bit page offset

 Logical address looks like this:
 p1 is an index into the 1st level page table

 p2 is an index into the 2nd level page table pointed to by p1

Operating Systems Course By: Hossein Momeni

31

...

...

2-level address translation example

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

...

0

1

p1

...

0

1

p2

19

physical address

1st level page table

2nd level page table

main memory

0

1

frame

number

13

Page

table

base

...

...

Operating Systems Course By: Hossein Momeni

Inverted page table

 Reduce page table size further: keep one entry for each frame in memory

 PTE contains

 Virtual address pointing to this frame

 Information about the process that owns this page

 Search page table by

 Hashing the virtual page number and process ID

 Starting at the entry corresponding to the hash result

 Search until either the entry is found or a limit is reached

 Page frame number is index of PTE

 Improve performance by using more advanced hashing algorithms

32 Operating Systems Course By: Hossein Momeni

Inverted page table

33 Operating Systems Course By: Hossein Momeni

TLBs – Translation Lookaside Buffers

34

 All the page table would be kept on main memory.

 Effective Access Time:

 TAccess =TTLB +(1-HTLB)*(Tmemory)+ Tmemory

Operating Systems Course By: Hossein Momeni

 Based on Locality of Reference

 A hardware in MMU

Page Replacement Algorithms

 Page fault forces a choice

 No room for new page

 Which page must be removed to make room for an

incoming page?

 How a page is removed from physical memory?

 If the page is unmodified, simply overwrite it: a copy

already exists on disk

 If the page has been modified, it must be written back to

disk: prefer unmodified pages?

35 Operating Systems Course By: Hossein Momeni

Page Faults

36 Operating Systems Course By: Hossein Momeni

Optimal Page Replacement

 What’s the best we can possibly do?

 Assume perfect knowledge of the future

 Not realizable in practice (usually)

 Useful for comparison: if another algorithm is within 5% of optimal,

not much more can be done…

 Algorithm: replace the page that will be used furthest in the future

 Only works if we know the whole sequence!

 Can be approximated by running the program twice

 Once to generate the reference trace

 Once (or more) to apply the optimal algorithm

 Nice, but not achievable in real systems!

37 Operating Systems Course By: Hossein Momeni

Example 1

 Replace the page that will not be used for longest

period of time

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5, 4, 3, 2,1

 Used for measuring how well your algorithm

performs

38 Operating Systems Course By: Hossein Momeni

Example 2

 The reference string of a process has been depicted

here.

39 Operating Systems Course By: Hossein Momeni

First-In, First-Out (FIFO) Algorithm

 Maintain a list of all pages

 Maintain the order in which they entered memory

 Page at front of list would be replaced

 Advantage: (really) easy to implement

 Disadvantage: old pages in memory may still be in

use heavily.

 This algorithm forces pages out regardless of their usage

 Usage may be helpful in determining which pages to keep

40 Operating Systems Course By: Hossein Momeni

FIFO Example

 Example: FIFO replacement on reference string
0 1 2 3 0 1 4 0 1 2 3 4

 Page replacements highlighted in yellow

41

Page referenced 0 1 2 3 0 1 4 0 1 2 3 4

Youngest page 0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

Oldest page 0 1 2 3 0 0 0 1 4 4

Operating Systems Course By: Hossein Momeni

Belady’s Anomaly

42

Page referenced 0 1 2 3 0 1 4 0 1 2 3 4

Youngest page 0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

Oldest page 0 0 0 1 2 3 4 0 1

Operating Systems Course By: Hossein Momeni

 What will happen if we use 4 page frames

instead of 3?

 more frames  more page faults

 This is called Belady’s Anomaly

 Stack algorithms have not Belady Anomaly

FIFO and Belady’s anomaly

43 Operating Systems Course By: Hossein Momeni

Least Recently Used (LRU)

 Assume pages which are used recently will be used

again soon

 Throw out page that has been unused for longest time

 Implementation method: Counter, Matrix, Linked list

 Keep a counter in each page table entry

 Global counter increments with each instruction

 Copy global counter to PTE counter on a reference to the

page

 For replacement, evict page with lowest counter value

 What happens when the counter reaches Max?

44 Operating Systems Course By: Hossein Momeni

LRU Example

45 Operating Systems Course By: Hossein Momeni

 Some efforts related to LRU:
 NRU

 Second Chance

 Clock

Not Recently Used (NRU)

 Pages are classified into four classes
 0: not referenced, not dirty (0 0)

 1: not referenced, dirty (0 1)

 2: referenced, not dirty (1 0)

 3: referenced, dirty (1 1)

 NRU removes a page at random form lowest numbered nonempty class.

 Clear reference bit for all pages periodically

46

Page frame no.VRDProt.

Valid bitReferenced bitDirty bit
(modified)

Operating Systems Course By: Hossein Momeni

Not Recently Used (NRU)

 Easy to implement

 Efficient

 Easy to understand

 And certainly not optimal.

47 Operating Systems Course By: Hossein Momeni

Second Chance Algorithm

 Modify FIFO to avoid throwing out heavily used pages

 If reference bit is 0, throw the page out

 If reference bit is 1

 Reset the reference bit to 0

 Move page to the tail of the list

 Continue search for a free page

 Still easy to implement, and better than plain FIFO

48

A

t=0

referenced unreferenced

B

t=4

C

t=8

D

t=15

E

t=21

F

t=22

G

t=29

A

t=32

H

t=30

Operating Systems Course By: Hossein Momeni

Clock Algorithm

 Same functionality as second

chance

 In Second Chance Add and

Remove have const!

 Simpler implementation

 “Clock” hand points to next page

to replace

 If R=0, replace page and advance

the clock hand

 If R=1, set R=0 and advance the

clock hand

 No overhead for moving pages.

49

A

t=0 B

t=4

C

t=8

D

t=15E

t=21

F

t=22

G

t=29

H

t=30

A

t=32 B

t=32

C

t=32

J

t=32

referenced unreferenced

Operating Systems Course By: Hossein Momeni

Aging Algorithm

 Simulation of LRU in software

 Algorithm is:
 Every clock tick, shift all counters right by 1 bit

 On reference, Copy the reference bit to the counter at the clock tick

 Clear reference bit all page

50

10000000

00000000

10000000

00000000

10000000

10000000

Tick 0

11000000

10000000

01000000

00000000

01000000

11000000

Tick 1

11100000

01000000

00100000

00000000

10100000

01100000

Tick 2

01110000

00100000

10010000

10000000

11010000

10110000

Tick 3

10111000

00010000

01001000

01000000

01101000

11011000

Tick 4
Referenced

this tick

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Operating Systems Course By: Hossein Momeni

51

Counting Algorithms

 Keep a counter of the number of references that

have been made to each page

 LFU Algorithm: (Least Frequently Used)

 replaces page with smallest count

 MFU Algorithm: (Most Frequently Used)

 based on the argument that the page with the smallest

count was probably just brought in and has yet to be used

Operating Systems Course By: Hossein Momeni

52

Thrashing

 If a process does not have “enough” pages, the

page-fault rate is very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the

degree of multiprogramming

 another process added to the system

 Thrashing  a process is busy swapping pages

in and out

Operating Systems Course By: Hossein Momeni

53

Thrashing (Cont.)

Operating Systems Course By: Hossein Momeni

54

Demand Paging and Thrashing

 Bring a page into memory when it’s requested by
the process

 Why does demand paging work?
Locality model
 Process migrates from one locality to another

 Localities may overlap

Operating Systems Course By: Hossein Momeni

Working Set Model

 Locality of Reference:

 during any phase of execution, the process references

only a relatively small fraction of its pages.

 Working Set:

 The set of pages that a process is currently using.

 Prepaging

 w(k,t)

55 Operating Systems Course By: Hossein Momeni

56

Working set

 How many pages are needed?

 Could be all of them, but not likely

 Instead, processes reference a small set of pages at any given time -

locality of reference

 Set of pages can be different for different processes or even different

times in the running of a single process

 Set of pages used by a process in a given interval of time is

called the working set

 If entire working set is in memory, no page faults!

 If insufficient space for working set, thrashing may occur

 Goal: keep most of working set in memory to minimize the number of

page faults suffered by a process

Operating Systems Course By: Hossein Momeni

57

Working set example

Operating Systems Course By: Hossein Momeni

58

How big is the working set?

 Working set is the set of pages used by the k most recent

memory references

 w(k,t) is the size of the working set at time t

 Working set may change over time

 Size of working set can change over time as well…

k

w(k,t)

Operating Systems Course By: Hossein Momeni

59

Working set page replacement algorithm

(=current virtual time-

time of last use)

Operating Systems Course By: Hossein Momeni

60

Working Set example

 Example:  = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of all

reference bits to 0

 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time

units

Operating Systems Course By: Hossein Momeni

61

Page replacement algorithms: summary

Algorithm Comment

OPT (Optimal) Not implementable, but useful as a benchmark

NRU (Not Recently Used) Crude

FIFO (First-In, First Out) Might throw out useful pages

Second chance Big improvement over FIFO

Clock Better implementation of second chance

LRU (Least Recently Used) Excellent, but hard to implement exactly

NFU (Not Frequently Used) Poor approximation to LRU

Aging Good approximation to LRU, efficient to implement

Working Set Somewhat expensive to implement

WSClock Implementable version of Working Set

Operating Systems Course By: Hossein Momeni

62

Global & Local Allocation

14A0

12A1

8A2

5A3

10B0

9B1

3B2

16C0

12C1

8C2

5C3

4C4

Page

Last access time

A4A4

Local

allocation

A4
Global

allocation

 Global replacement

process selects a replacement frame

from the set of all frames; one

process can take a frame from

another

 Local replacement

each process selects from only its

own set of allocated frames

Operating Systems Course By: Hossein Momeni

63

Page fault rate & allocated frames

 Local allocation may be more “fair”

 Don’t penalize other processes for high page fault rate

 Global allocation is better for overall system performance

 Take page frames from processes that don’t need them as much

 Reduce the overall page fault rate (even though rate for a single

process may go up)

Operating Systems Course By: Hossein Momeni

64

Control overall page fault rate

 Despite good designs, system may still thrash

 Most (or all) processes have high page fault rate

 Some processes need more memory, …

 but no processes need less memory (and could give some up)

 Problem: no way to reduce page fault rate

 Solution :

Reduce number of processes competing for memory

 Swap one or more to disk, divide up pages they held

 Reconsider degree of multiprogramming

Operating Systems Course By: Hossein Momeni

65

How big should a page be?

 Smaller pages have advantages

 Less internal fragmentation

 Better fit for various data structures, code sections

 Less unused physical memory (some pages have 20 useful bytes and

the rest isn’t needed currently)

 Larger pages are better because

 Less overhead to keep track of them

 Smaller page tables

 TLB can point to more memory (same number of pages, but more

memory per page)

 Faster paging algorithms (fewer table entries to look through)

 More efficient to transfer larger pages to and from disk

Operating Systems Course By: Hossein Momeni

Page Size

 s: the average process size

 p: page size

 e: PTE size

Overhead = se/p + p/2

What’s the optimum page size?

66 Operating Systems Course By: Hossein Momeni

