
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 1

Lecture 4

Agile Development

Instructor: Hossein Momeni
momeni@iust.ac.ir

Mazandaran University of Science and Technology

.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

The Manifesto for
Agile Software Development
“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

•Individuals and interactions over processes
and tools
•Working software over comprehensive
documentation
•Customer collaboration over contract
negotiation
•Responding to change over following a plan

That is, while there is value in the items on the
right, we value the items on the left more.”

Kent Beck et al

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

What is “Agility”?

 Effective (rapid and adaptive) response to change

 Effective communication among all stakeholders

 Drawing the customer onto the team

 Organizing a team so that it is in control of the
work performed

Yielding …

 Rapid, incremental delivery of software

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

An Agile Process

 Is driven by customer descriptions of what is
required (scenarios)

 Recognizes that plans are short-lived

 Develops software iteratively with a heavy
emphasis on construction activities

 Delivers multiple ‘software increments’

 Adapts as changes occur

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

Extreme Programming (XP)

 The most widely used agile process, originally proposed
by Kent Beck

 XP Planning
 Begins with the creation of “user stories”

 Agile team assesses each story and assigns a cost

 Stories are grouped to for a deliverable increment

 A commitment is made on delivery date

 After the first increment “project velocity” is used to help define
subsequent delivery dates for other increments

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

Extreme Programming (XP)

 XP Design
 Follows the KIS principle

 Encourage the use of CRC cards (see Chapter 8)

 For difficult design problems, suggests the creation of “spike solutions”—a
design prototype

 Encourages “refactoring”—an iterative refinement of the internal program design

 XP Coding
 Recommends the construction of a unit test for a store before coding commences

 Encourages “pair programming”

 XP Testing
 All unit tests are executed daily

 “Acceptance tests” are defined by the customer and excuted to assess customer
visible functionality

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

Extreme Programming (XP)

unit t est

cont inuous int egrat ion

accept ance t est ing

pair

programming

Release

user st ories

 values

 accept ance t est crit eria

it erat ion plan

simple design

 CRC cards

spike solut ions

 prot ot ypes

refact oring

sof tware increment

project velocity computed

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 8

Adaptive Software Development

 Originally proposed by Jim Highsmith

 ASD — distinguishing features
 Mission-driven planning

 Component-based focus

 Uses “time-boxing” (See Chapter 24)

 Explicit consideration of risks

 Emphasizes collaboration for requirements gathering

 Emphasizes “learning” throughout the process

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 9

Adaptive Software Development

adapt ive cycle planning

 uses mission st at ement

 project const raint s

 basic requirement s

t ime-boxed release plan

Requirement s gat hering

 JAD

 mini-specs

component s implement ed/ t est ed

 focus groups for feedback

 formal t echnical reviews

post mort ems

sof tware increment

adjustments for subsequent cycles

Release

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

Dynamic Systems Development Method

 Promoted by the DSDM Consortium (www.dsdm.org)

 DSDM—distinguishing features
 Similar in most respects to XP and/or ASD

 Nine guiding principles
 Active user involvement is imperative.

 DSDM teams must be empowered to make decisions.

 The focus is on frequent delivery of products.

 Fitness for business purpose is the essential criterion for acceptance of deliverables.

 Iterative and incremental development is necessary to converge on an accurate
business solution.

 All changes during development are reversible.

 Requirements are baselined at a high level

 Testing is integrated throughout the life-cycle.

http://www.dsdm.org/

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 11

Dynamic Systems Development Method

DSDM Life Cycle (with permission of the DSDM consortium)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 12

Scrum

 Originally proposed by Schwaber and Beedle

 Scrum—distinguishing features
 Development work is partitioned into “packets”

 Testing and documentation are on-going as the product is
constructed

 Work occurs in “sprints” and is derived from a “backlog” of
existing requirements

 Meetings are very short and sometimes conducted without chairs

 “demos” are delivered to the customer with the time-box
allocated

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 13

Scrum

Scrum Process Flow (used with permission)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 14

Crystal

 Proposed by Cockburn and Highsmith

 Crystal—distinguishing features
 Actually a family of process models that allow

“maneuverability” based on problem characteristics

 Face-to-face communication is emphasized

 Suggests the use of “reflection workshops” to review the
work habits of the team

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 15

Feature Driven Development

 Originally proposed by Peter Coad et al

 FDD—distinguishing features
 Emphasis is on defining “features”

 a feature “is a client-valued function that can be implemented in
two weeks or less.”

 Uses a feature template
 <action> the <result> <by | for | of | to> a(n) <object>

 A features list is created and “plan by feature” is conducted

 Design and construction merge in FDD

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 16

Feature Driven Development

Reprinted with permission of Peter Coad

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 17

Agile Modeling

 Originally proposed by Scott Ambler

 Suggests a set of agile modeling principles
 Model with a purpose

 Use multiple models

 Travel light

 Content is more important than representation

 Know the models and the tools you use to create them

 Adapt locally

