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Agile Development
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The Manifesto for 
Agile Software Development
“We are uncovering better ways of developing 
software by doing it and helping others do it.  
Through this work we have come to value: 

•Individuals and interactions over processes 
and tools 
•Working software over comprehensive 
documentation 
•Customer collaboration over contract 
negotiation 
•Responding to change over following a plan

That is, while there is value in the items on the 
right, we value the items on the left more.”

Kent Beck et al
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What is “Agility”?

 Effective (rapid and adaptive) response to change

 Effective communication among all stakeholders

 Drawing the customer onto the team

 Organizing a team so that it is in control of the 
work performed

Yielding …

 Rapid, incremental delivery of software
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An Agile Process

 Is driven by customer descriptions of what is 
required (scenarios)

 Recognizes that plans are short-lived

 Develops software iteratively with a heavy 
emphasis on construction activities

 Delivers multiple ‘software increments’

 Adapts as changes occur
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Extreme Programming (XP)

 The most widely used agile process, originally proposed 
by Kent Beck

 XP Planning
 Begins with the creation of “user stories”

 Agile team assesses each story and assigns a cost

 Stories are grouped to for a deliverable increment

 A commitment is made on delivery date

 After the first increment “project velocity” is used to help define 
subsequent delivery dates for other increments
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Extreme Programming (XP)

 XP Design
 Follows the KIS principle

 Encourage the use of CRC cards (see Chapter 8)

 For difficult design problems, suggests the creation of “spike solutions”—a 
design prototype

 Encourages “refactoring”—an iterative refinement of the internal program design

 XP Coding
 Recommends the construction of a unit test for a store before coding commences

 Encourages “pair programming”

 XP Testing
 All unit tests are executed daily

 “Acceptance tests” are defined by the customer and excuted to assess customer 
visible functionality
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Extreme Programming (XP)
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Adaptive Software Development

 Originally proposed by Jim Highsmith

 ASD — distinguishing  features
 Mission-driven planning

 Component-based focus

 Uses “time-boxing” (See Chapter 24)

 Explicit consideration of risks

 Emphasizes collaboration for requirements gathering

 Emphasizes “learning” throughout the process
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Adaptive Software Development

adapt ive cycle planning 

  uses mission st at ement  

  project  const raint s 

  basic requirement s 

t ime-boxed release plan

Requirement s gat hering 

   JAD 

   mini-specs

component s implement ed/ t est ed 

   focus groups for feedback 

   formal t echnical reviews 

post mort ems

sof tware increment

adjustments for subsequent  cycles

Release



These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided 
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

Dynamic Systems Development Method

 Promoted by the DSDM Consortium (www.dsdm.org)

 DSDM—distinguishing features
 Similar in most respects to XP and/or ASD

 Nine guiding principles
 Active user involvement is imperative. 

 DSDM teams must be empowered to make decisions.

 The focus is on frequent delivery of products. 

 Fitness for business purpose is the essential criterion for acceptance of deliverables.

 Iterative and incremental development is necessary to converge on an accurate 
business solution.

 All changes during development are reversible.

 Requirements are baselined at a high level

 Testing is integrated throughout the life-cycle.

http://www.dsdm.org/
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Dynamic Systems Development Method

DSDM Life Cycle (with permission of the DSDM consortium)
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Scrum

 Originally proposed by Schwaber and Beedle

 Scrum—distinguishing features
 Development work is partitioned into “packets”

 Testing and documentation are on-going as the product is 
constructed

 Work occurs in “sprints” and is derived from a “backlog” of 
existing requirements

 Meetings are very short and sometimes conducted without chairs

 “demos” are delivered to the customer with the time-box 
allocated
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Scrum

Scrum Process Flow (used with permission)
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Crystal

 Proposed by Cockburn and Highsmith

 Crystal—distinguishing features
 Actually a family of process models that allow 

“maneuverability” based on problem characteristics

 Face-to-face communication is emphasized

 Suggests the use of “reflection workshops” to review the 
work habits of the team
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Feature Driven Development

 Originally proposed by Peter Coad et al

 FDD—distinguishing features
 Emphasis is on defining “features”

 a feature “is a client-valued function that can be implemented in 
two weeks or less.”

 Uses a feature template
 <action> the <result> <by | for | of | to> a(n) <object>

 A features list is created and “plan by feature” is conducted

 Design and construction merge in FDD
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Feature Driven Development

Reprinted with permission of Peter Coad
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Agile Modeling

 Originally proposed by Scott Ambler

 Suggests a set of agile modeling principles
 Model with a purpose

 Use multiple models

 Travel light

 Content is more important than representation

 Know the models and the tools you use to create them

 Adapt locally


