Control Flow

Here we discuss the uses of Boolean expressions to alter the flow of control. We will learn about a new non-terminal B for the same.

Boolean Expressions:

	Boolean expressions are composed of Boolean operators like &&,!!,! for AND, OR , NOT respectively. Here we consider the Boolean expressions generated by the following grammar:
	B	->	B || B | B && B | ! B | (B) | E rel E | true | false
We use rel.op to represent which of the six comparison operators <, <=, =, !=, >, or >= is represented by rel. As is customary, we assume that || and && are left –associative, and that || has the lowest precedence, then &&, then !.

Short Circuit Code:

	In this type of code the Boolean operators like &&, !! or ! are translated into jumps. Instead of appearing as code, they are shown by a position in the code sequence.
	Example: Consider the expression given below.
		If (x < 100 || x > 200 && x != y) x = 0;
	Translation:
		If x < 100 goto L2
If False x > 200 goto L1
If false x != y goto L1
	L2:	x = 0
	L1:

Flow of control statements:

	Now we consider the conversion of Boolean expression into three-address code in the context of statement such as those generated by the following grammar:
				S	->	if (B) S1
				S	->	if (B) S1 else S2
				S	->	while (B) S1
In the above expressions, non-terminal B represents a Boolean expression and S represents a statement. Now let us try to translate the above code.
	The translation of if (B) S1 consists of B.code followed by S1.code, as illustrated in Fig. 6.35(a). Within B.code are jumps based on the value of B. If B is true, control follows to the first instruction of S1.code, and if B is false, control flows to the instruction immediately following S1.code

			For if statement
			B.code -> to B.true
		 -> to B.false
B.true:	S1.code	
		B.false: …..

			For if-else statement
			B.code -> to B.true
		 -> to B.false
B.true:	S1.code	
			Goto S.next
B.false: S2.code
		S.next: ……

			For while statement
		begin :	B.code -> to B.true
		 -> to B.false
B.true:	S1.code	
			Goto begin
B.false: S2.code

The labels for the jumps in B.code and S.code are managed using inherited attributes

Type Checking

	
To do type checking a compiler must assign a type expression to each component of the source program. The compiler must then determine that these type expressions conform to a collection of logical rules that is called the type system for the source language.

1. Assign type with individual construct { stmt if-else while }
2. Rule -> if validation -> Error
Associated type information with expressions:
	E -> E1 + E2 { Type }	E-> id { E.Type = lookup(id)Type }
	E -> E1 + E2 		{
E->Type = if (E1.Type = int & E2.type = int)
 => E.Type = int
	Else Type error
}
	S -> id = E		S.type =
				If (id.Type matches with E.Type)
				S.type = null
	S -> if (B) S1		if (B.Type = Boolean)
				S.type = S1.type
[bookmark: _GoBack]
	
