Intermediate Code

CS 5300 - SJAllan Intermediate Code

Intermediate Code Generation

The front end of a compiler translates a source program
into an intermediate representation

Details of the back end are left to the back end
= Benefits include:

— Retargeting

— Machine-independent code optimization

) Static Intermediate| Intermediate Code |,
Parser Checker Code Code Generator
Generator

CS 5300 - SJAllan Intermediate Code

Intermediate Languages

= Consider the code: Assign
a=b*-c+b*-c / \
= A syntax tree graphically 2 *
depicts code / \
= Postfix notation is a !)
linearized representation / \ /
b uminus b uminus

of a syntax tree:

a b c uminus * b c uminus * +
assign

c Cc

Syntax Tree

CS 5300 - SJAllan Intermediate Code 3

Three-Address Code

» Three-address code is a sequence of
statements of the general form x :=y op z

X, Y, and z are names, constants, or
compiler-generated temporaries

= op can be any operator

Three-address code is a linearized
representation of a syntax tree

Explicit names correspond to interior nodes
of the graph

CS 5300 - SJAllan Intermediate Code 4

Three-Address Code Example

tl:=-c
t2:=b*tl
t3 :=-c
t4 :=b*13
t5:=t12+1t4
a =t5
CS 5300 - SJAllan Intermediate Code

Types of Three-Address Statements

1. Assignment statements:
a. X:=yopz whereopis abinary operator
b. x:=opy, where op is a unary operator

2. Copy statements

a. x:=y
3. The unconditional jumps:
a. gotolL

4. Conditional jumps:
a. ifxrelopygotoL
5. param x and call p, n and return y relating to procedure calls
6. Assignments:
a. x:=yli]
b. Xxi]:=y
7. Address and pointer assignments:
a. X:=&y,x:=*,and*x=y

CS 5300 - SJAllan Intermediate Code

Generating Three-Address Code

= Temporary names are made up for the interior nodes of a
syntax tree

» The synthesized attribute S.code represents the code for
the assignment S

» The nonterminal E has attributes:
— E.place is the name that holds the value of E
— E.code is a sequence of three-address statements evaluating E

= The function newtemp returns a sequence of distinct
names

= The function newlabel returns a sequence of distinct labels

CS 5300 - SJAllan Intermediate Code 7

Assignments

Production Semantic Rules

S > id:=E |S.code :=E.code || gen(id.place ":=' E.place)

E > E, + E, |E.place := newtemp;
E.code := E,.code || E,.code ||
gen(E.place "=' E,.place '+' E,.place)

E > E,*E, |E.place :=newtemp;
E.code := E,.code || E,.code ||
gen(E.place "=' E,.place *' E,.place)

CS 5300 - SJAllan Intermediate Code 8

Assignments

Production Semantic Rules
E->-E; E.place := newtemp;
E.code := E,.code || gen(E.place ":=' 'uminus'
E,.place)
E->(E) E.place := E;.place;
E.code := E,.code
E->id E.place :=id.place;

E.code :=“

CS 5300 - SJAllan

Intermediate Code

S.begin:
E.code
if E.place = 0 goto S.after
Sl.code
goto S.begin
S.after:

CS 5300 - SJAllan

While Statement

Intermediate Code

10

Example: S - while Edo S;

S.begin := newlabel;
S.after := newlabel;
S.code :=gen(S.begin ") ||
E.code ||
gen(if' E.place '=''0" 'goto’ S.after) ||
S,.code ||
gen(‘goto’ S.begin) ||
gen(S.after ")

CS 5300 - SJAllan Intermediate Code 11

Quadruples

» A quadruple is a record structure with four fields:
op, arg,, arg,, and result
— The op field contains an internal code for an operator
— Statements with unary operators do not use arg,
— Operators like param use neither arg, nor result
— The target label for conditional and unconditional jumps

are in result

» The contents of fields arg,, arg,, and result are

typically pointers to symbol table entries

— If so, temporaries must be entered into the symbol table
as they are created

— Obviously, constants need to be handled differently

CS 5300 - SJAllan Intermediate Code 12

Quadruples Example

op argl arg2 result
(0) uminus C t;
(1) * b ty t,
(2) uminus C ts
(3) * b ts t,
(4) + t, t, ts
(5) = te a
CS 5300 - SJAlan Intermediate Code 13
Triples

» Triples refer to a temporary value by the position
of the statement that computes it

— Statements can be represented by a record with only
three fields: op, arg,, and arg,

— Avoids the need to enter temporary names into the
symbol table
= Contents of arg, and arg,:

— Pointer into symbol table (for programmer defined
names)

— Pointer into triple structure (for temporaries)
— Of course, still need to handle constants differently

CS 5300 - SJAllan Intermediate Code 14

Triples Example

op argl arg2
(0) uminus C
(1) * b (0)
(2) uminus C
(3) * b (2)
(4) + (1) (3)
(5) assign a (4)

CS 5300 - SJAllan Intermediate Code

Declarations

= A symbol table entry is created for every declared name

= Information includes name, type, relative address of
storage, etc.

» Relative address consists of an offset:
— Offset is from the base of the static data area for globals

— Offset is from the field for local data in an activation record for
locals to procedures

= Types are assigned attributes type and width (size)

= Becomes more complex if we need to deal with nested
procedures or records

CS 5300 - SJAllan Intermediate Code

Declarations

Production Semantic Rules
P->D offset := 0
D>D;D
D>id:T enter(id.name, T.typg, offset);
offset := offset + T.width
. T.type := integer;
T - integer
ned T width := 4
Tt = |
T > real ype rea
T.width := 8
T - array[num] of T, T.type := array(num, T,.type);
T.width := num * T,.width
T.type := pointer(T,.type);
T>1T
! T.width := 4
CS 5300 - SJAllan Intermediate Code 17

Translating Assignments

Production Semantic Rules

p := lookup(id.name);

S>id=E if p I= NULL then emit(p =" E.place)
else error
E.place := newtemp;

E>E, +E, P wemp,
emit(E.place "=' E,.place '+' E,.place)
E.place := newtemp;

E>E, *E, P P

emit(E.place =" E,.place *' E,.place)

CS 5300 - SJAllan

Intermediate Code 18

Translating Assignments

Production Semantic Rules
E.place := newtemp;
E > -E, P wemp,
emit(E.place =" 'uminus' E,.place)
E->(E) E.place := E,.place
p := lookup(id.name);
E->id if p != NULL then E.place :=p
else error
CS 5300 - SJAllan Intermediate Code 19

Addressing Array Elements

* The location of the it" element of array A is:

base + (i — low) * w

— w is the width of each element
— low is the lower bound of the subscript
— base is the relative address of A[low]
= The expression for the location can be rewritten
as: i *w + (base — low * w)
— The subexpression in parentheses is a constant
— That subexpression can be evaluated at compile time

CS 5300 - SJAllan

Intermediate Code 20

10

Two-Dimensional Arrays

= Stored in row-major form
= The address of A[i,,i,] is:
base+((i,—low,)xn,+i,—low,)xw
— Where n, = high, — low, + 1
= We can rewrite the above as:
((ipxny)+i,)xw+(base—((low, xn,)+low,)xw)
— The last term can be computed at compile time

CS 5300 - SJAllan Intermediate Code 21

Type Conversions

» There are multiple types (e.g. integer, real)
for variables and constants

— Compiler may need to reject certain mixed-type
operations

— At times, a compiler needs to general type
conversion instructions

= An attribute E.type holds the type of an
expression

CS 5300 - SJAllan Intermediate Code 22

11

Semantic Action: E 2 E; + E,

E.place := newtemp;
if E,.type = integer and E,.type = integer then
begin
emit(E.place "=' E,.place 'int+' E,.place);
E.type := integer
end
else if E,.type = real and E2.type = real then

else if E,.type = integer and E,.type = real then
begin
u := newtemp;
emit(u =""inttoreal' E,.place);
emit(E.place "='u 'real+' E,.place);
E.type :=real
end
else if E;.type = real and E,.type = integer then

else E.type := type_error;

CS 5300 - SJAllan Intermediate Code 23
Example: X .=y +1 %]
» |n this example, x and y have type real
» i and j have type integer
* The intermediate code is shown below:
t, = iint*j
t; = inttoreal t;
t, ;= y real+ tg
X:=t
CS 5300 - SJAllan Intermediate Code 24

12

Boolean Expressions

= Boolean expressions compute logical values
» Often used with flow-of-control statements

» Methods of translating boolean expression:

— Numerical methods:
= True is represented as 1 and false is represented as 0
= Nonzero values are considered true and zero values are
considered false
— Flow-of-control methods:

= Represent the value of a boolean by the position reached in a
program

= Often not necessary to evaluate entire expression

CS 5300 - SJAllan Intermediate Code 25

Numerical Representation

= Expressions evaluated left to right using 1 to
denote true and 0 to donate false

» Example: a or b and not c

t;:=notc
t,:=bandt;
t;:=aort,

= Another example:a<b
100: if a < b goto 103

101: t:=0
102: goto 104
103: t: =1
104. ...
CS 5300 - SJAllan Intermediate Code 26

13

Numerical Representation

Production Semantic Rules

E.place := newtemp;

E->E,orE, p. o P .
emit(E.place =" E,.place 'or' E,.place)
E.place := newtemp;

E-2>E,andE, p. P
emit(E.place "=' E,.place ‘and’ E,.place)
E.place := newtemp;

E - notE, p' , “p.
emit(E.place ":=''not' E,.place)

E->(E) E.place := El.place;

CS 5300 - SJAllan

Intermediate Code

27

Numerical Representation

Production

Semantic Rules

E > id, relop id,

E.place := newtemp;

emit('if' id,.place relop.op id,.place 'goto
nextstat+3);

emit(E.place =''0";

emit('goto’ nextstat+2);

emit(E.place =" "1";

E - true

E.place := newtemp;
emit(E.place =''1"

E - false

E.place := newtemp;
emit(E.place "=''0")

CS 5300 - SJAllan

Intermediate Code

28

14

Example: a<b or c<d and e<f

100: if a < b goto 103 sltt,, a, b
101: tl =0 slt ':27 c, d
102: goto 104

103: t; =1

104: if c < d goto 107
105: t,:=0

106: goto 108 MIPS code
107: t, =1

108: ife <fgoto 111
109: t;:=0

110: goto 112
111t =1

112: t,:=t,and g
113: t; =t ort,

sltt;, e, f
andt, t, t;
ortg, t, t,

CS 5300 - SJAllan Intermediate Code 29

Flow-of-Control

» The function newlabel will return a new symbolic
label each time it is called

= Each boolean expression will have two new
attributes:
— E.true is the label to which control flows if E is true
— E.false is the label to which control flows if E is false

= Attribute S.next of a statement S:

— Inherited attribute whose value is the label attached to
the first instruction to be executed after the code for S

— Used to avoid jumps to jumps

CS 5300 - SJAllan Intermediate Code 30

15

Flow-of-Control

Production Semantic Rules

E.true := newlabel;
E.false := S.next;

S>ifEthenS; S,.next := S.next;
S.code := E.code || gen(E.true ") ||
S,.code
CS 5300 - SJAllan Intermediate Code 31

Flow-of-Control

Production Semantic Rules

E.true := newlabel;

E.false := newlabel;

S,.next := S.next;

S>ifEthen S, else S, S,.next := S.next;

S.code := E.code || gen(E.true ") ||
S,.code || gen('goto’ S.next) ||
gen(E.false ") || S,.code

CS 5300 - SJAllan Intermediate Code 32

Flow-of-Control

Production Semantic Rules

S.begin := newlabel;

E.true := newlabel;

E.false := S.next;

S > whileEdo S, Sl.next := S.begin;

S.code := gen(S.begin ") || E.code ||
gen(E.true ') || S,.code ||
gen('goto’ S.begin)

CS 5300 - SJAllan Intermediate Code 33

Boolean Expressions Revisited

Production Semantic Rules

E,.true := E.true;

E,.false := newlabel;

E->E,orE, E,.true := E.true;

E,.false := E.false;

E.code := E;.code || gen(E,.false ") || E,.code
E,.true := newlabel;

E, false := E.false;

E->E,andE, E,.true := E.true;

E,.false := E.false;

E.code := E;.code || gen(E,.true ") || E,.code

CS 5300 - SJAllan Intermediate Code 34

17

Boolean Expressions Revisited

Production Semantic Rules
E 2> notE, E,.true := E.false;
E, false := E.true;
E.code := E,.code
E->(E) E,.true := E.true;
E,.false := E.false;
E.code := E,.code

E - id, relop id, E.code := gen('if' id.place
relop.op id,.place 'goto’
E.true) ||
gen(‘goto’ E.false)
E - true E.code := gen('goto’ E.true)
E - false E.code := gen(‘goto’ E.false)
CS 5300 - SJAllan Intermediate Code 35

Revisited: a<b or c<d and e<f

if a < b goto Ltrue

goto L1

L1: ifc<dgotolL2
goto Lfalse

L2: ife <fgoto Ltrue
goto Lfalse

* The code generated is inefficient

* What is the problem?
— Why was the code generated that way?

CS 5300 - SJAllan Intermediate Code 36

18

Another Example

L1: if a <b goto L2

goto Lnext
L2: ifc<dgoto L3
while a < b do goto L4
if c <d then :> L3: ti=y+z
X=y+z X:=t,
else goto L1
X=y-z L4: t,=y-z
X:=t,
goto L1
Lnext:
CS 5300 - SJAllan Intermediate Code 37

Mixed-Mode Expressions

Boolean expressions often have arithmetic
subexpressions, e.g. (a+b)<c
If false has the value 0 and true has the value 1

— arithmetic expressions can have boolean
subexpressions

— Example: (a<b) + (b <a) has value O if a and b are
equal and 1 otherwise

Some operators may require both operands to be

boolean

Other operators may take both types of
arguments, including mixed arguments

CS 5300 - SJAllan Intermediate Code 38

19

Revisited: E 2 E; + E,

E.type := arith;
if E1.type = arith and E2.type = arith then
begin

/* normal arithmetic add */

E.place := newtemp;

E.code := E;.code || E,.code ||
gen(E.place ":=' E,.place '+' E,.place)

end
else if E1.type := arith and E2.type = bool then
begin

E2.place := newtemp;

E2.true := newlabel;

E2.flase := newlabel;

E.code := El.code || E2.code ||
gen(E2.true "' E.place "=' El.place + 1) ||
gen('goto’ nextstat+1) ||
gen(E2.false "' E.place =" El.place)

else if ...
CS 5300 - SJAllan Intermediate Code 39

Case (Switch) Statements

» Implemented as:
— Sequence of if statements
—Jump table

CS 5300 - SJAllan Intermediate Code 40

Labels and Goto Statements

= The definition of a label is treated as a declaration
of the label

= Labels are typically entered into the symbol table
— Entry is created the first time the label is seen

— This may be before the definition of the label if it is the
target of any forward goto

» When a compiler encounters a goto statement:

— It must ensure that there is exactly one appropriate label
in the current scope

— If so, it must generate the appropriate code; otherwise,
an error should be indicated

CS 5300 - SJAllan Intermediate Code 41

Procedures

» The procedure is an extremely important,
very commonly used construct

» Imperative that a compiler generates good
calls and returns

= Much of the support for procedure calls is
provided by a run-time support package
S > call id (Elist)

Elist & Elist, E
Elist > E

CS 5300 - SJAllan Intermediate Code 42

21

Calling Sequence

= Calling sequences can differ for different
implementations of the same language

= Certain actions typically take place:

— Space must be allocated for the activation record of the
called procedure

— The passed arguments must be evaluated and made
available to the called procedure

— Environment pointers must be established to enable the
called procedure to access appropriate data

— The state of the calling procedure must be saved
— The return address must be stored in a known place
— An appropriate jump statement must be generated

CS 5300 - SJAllan Intermediate Code 43

Return Statements

= Several actions must also take place when a
procedure terminates

— If the called procedure is a function, the result
must be stored in a known place

— The activation record of the calling procedure
must be restored

— A jump to the calling procedure's return address
must be generated

= NO exact division of run-time tasks between
the calling and called procedure

CS 5300 - SJAllan Intermediate Code 44

22

Pass by Reference

» The param statements can be used as
placeholders for arguments

» The called procedure is passed a pointer to the
first of the param statements

= Any argument can by obtained by using the proper
offset from the base pointer
= Arguments other than simple names:

— First generate three-address statements needed to
evaluate these arguments

— Follow this by a list of param three-address statements

CS 5300 - SJAllan Intermediate Code 45

Using a Queue

Production Semantic Rules
for each item p on queue do
emit('param’ p); emit('call’ id.place)

S - callid (Elist)

Elist > Elist, E push E.place to queue

Elist > E initialize queue to contain E

» The code to evaluate arguments is emitted first,
followed by param statements and then a call

» |f desired, could augment rules to count the
number of parameters

CS 5300 - SJAllan Intermediate Code 46

