Available online at www.sciencedirect.com

SCIENCE @mngc-r» Electronic Notes in
Theoretical Computer
1 Science

et

ELSEVIER Electronic Notesin Theoretical Computer Science 110 (2004) 149-168
www.€l sevier.com/locate/entcs

An Action Environment

Mark van den Brand

Department of Software Engineering, CWI
Kruislaan 418, NL-1098 SJ Amsterdam, The Netherlands
and
Instituut voor Informatica en Electrotechniek, Hogeschool van Amsterdam
Weesperzijde 190, NL-1097 DZ Amsterdam, The Netherlands

Jorgen Iversen, Peter D. Mosses

BRICS & Department of Computer Science 1

University of Aarhus, IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

Abstract

Some basic programming constructs (e.g., conditional statements) are found in many different pro-
gramming languages, and can often be included without change when a new language is designed.
When writing a semantic description of a language, however, it is usually not possible to reuse
parts of previous descriptions without change.

This paper introduces a new formalism, ASDF, which has been designed specifically for giving
reusable action semantic descriptions of individual language constructs. An initial case study in
the use of ASDF has already provided reusable descriptions of all the basic constructs underlying
Core ML.

The paper also describes the Action Environment, a new environment supporting use and validation
of ASDF descriptions. The Action Environment has been implemented on top of the ASF4+SDF
Meta-Environment, exploiting recent advances in techniques for integration of different formalisms,
and inheriting all the main features of the Meta-Environment.

Keywords: ASF+SDF, ASDF, action semantics, modularity, reuse, language environment

1 Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

1571-0661 © 2004 Elsevier B.V. Open access under CCRY-NC-ND license
doi:10.1016/j.entcs.2004.06.005

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

150 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

1 Introduction

Action Semantics [18] is a practical framework for describing the dynamic
semantics of programming languages. The part of an action semantic descrip-
tion (ASD) concerned with any particular construct is independent of what
other constructs are included in the described language, so ASDs enjoy a high
degree of inherent modularity, and can easily be extended or modified. It is
also possible to reuse parts of the ASD of one language in the ASD of another,
without change. With the conventional modular structure of an ASD, how-
ever, it is not usually possible to reuse entire modules, so one has to copy and
paste the required parts.

Doh and Mosses [11] proposed a flatter modular structure for ASDs, with
the description of each construct being a separate module. This new structure
allows a complete language to be described simply by listing the names of
the modules for the included constructs, and fully supports explicit reuse of
parts of semantic descriptions. Doh and Mosses formulated their modules in
ASF+SDF [10], and used the ASF+SDF Meta-Environment [6] for checking
them.

The approach of Doh and Mosses was feasible, but the direct use of
ASF+4SDF carried a considerable notational overhead. In this paper, we in-
troduce a new action semantic description formalism, ASDF, which has been
designed specifically for giving reusable descriptions of individual language
constructs. We also report on the Action Environment, a new environment
supporting use and validation of ASDF descriptions. The Action Environment
has been implemented on top of the ASF4+SDF Meta-Environment, exploiting
recent advances in techniques for integration of different formalisms [5], and in-
heriting all the main features of the Meta-Environment. This was feasible due
to the open architecture of the Meta-Environment. The Meta-Environment
has a component-based architecture which allows an easy connection of new
components in a fairly easy manner. In order to transform the ASF+SDF
Meta-Environment into the Action Environment, a number of new compo-
nents had to be defined, and plugged into the Meta-Environment. The most
important ones were the components that took care of translating ASDF into
ASF+SDF. In the future, further ASDF-specific components, such as a type-
checker, interpreter, and compiler, are to be connected.

Overview:

Section 2 recalls ASF+SDF and the Meta-Environment. Section 3 gives a
brief outline of Action Semantics, focusing on modularity. Section 4 introduces
ASDF and the Action Environment. Section 5 recalls the architecture of the

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 151

Meta-Environment, and explains the novel techniques used to integrate ASDF.
Section 6 mentions some related work. Section 7 concludes.

2 ASF+4SDF

ASF+4SDF is a general-purpose, executable, algebraic specification language.
Its main application area has hitherto been in the modular definition of the
syntax and the static semantics of (programming) languages, but it has also
been used for the modular definition of (dynamic) action semantics of lan-
guages (see Section 3) and for defining translations between languages.

As the name indicates, the ASF+SDF formalism is a combination of two
previous formalisms: ASF, the Algebraic Specification Formalism [2,10], and
SDF, the Syntax Definition Formalism [12]. SDF is used to define the concrete
syntax of a language, whereas ASF is used to define conditional rewrite rules;
the combination ASF+SDF allows the syntax defined in the SDF part of a
specification to be used in the ASF part, thus supporting the use of so-called
‘mixfix notation’ in algebraic specifications. ASF+SDF allows specifications
to be divided into named modules, facilitating reuse and sharing (as in SDF).

In the rest of this section, both SDF and ASF will be discussed, as well as
the interactive programming environment that supports the use of ASF+SDF:
the ASF+SDF Meta-Environment [6].

2.1 Syntax Definition Formalism

The Syntax Definition Formalism SDF is a declarative formalism used to define
concrete syntax of languages: not only programming languages, e.g., Java
and COBOL, but also specification languages, e.g., CASL, Elan, and Action
Semantics. In contrast to (E)BNF-like formalisms, SDF allows a modular
definition of grammars. Furthermore, SDF does not impose a specific class of
grammars, like LL(k), LR(k), etc., but allows arbitrary, cycle-free, context-
free grammars — the grammars may even be ambiguous. The choice of the
class of arbitrary context-free grammars enables the modular definition of
grammars, because only this class is closed under union. Although the full
power of arbitrary context-free grammars is hardly necessary when defining
the syntax of a programming language (except for languages like COBOL,
PL/I, etc.), modularity is essential for reuse of specific language constructs in
various language definitions.

An SDF definition consists of a collection of modules where modules may
import other modules. The import mechanism offers primitive parameterisa-
tion and symbol-renaming facilities. This is demonstrated in Figure 1: The
formal parameter X of the module “containers/List” is instantiated with

152 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

module ListOfIntegers
imports basic/Integers containers/List[Integer]

module containers/List[X]
imports basic/Booleans basic/Integers

Fig. 1. A small SDF definition demonstrating the parameterisation mechanism

module basic/Integers
imports basic/Booleans

exports
sorts NatCon Integer
lexical syntax
[0-9]1+ -> NatCon
context-free syntax

NatCon -> Integer

Integer "+" Integer —> Integer {left}
Integer "-" Integer -> Integer {left}
Integer "x" Integer -> Integer {left}
"(" Integer ")" -> Integer {bracket}

context-free priorities
Integer "x" Integer —> Integer >
{left: Integer "+" Integer -> Integer
Integer "-" Integer -> Integer}

lexical restrictions
NatCon -/- [0-9]

hiddens

variables
"Int"[0-9]* -> Integer

Fig. 2. An SDF module of the Integers

the actual parameter Integer. The imported modules are automatically ex-
ported; the syntax defined in the module can either be exported or hidden.

Figure 2 demonstrates the basic features for defining lexical syntax, context-
free syntax, associativities, and priorities.

2.2 Algebraic Specification Formalism

The Algebraic Specification Formalism ASF provides conditional equations,
where also negations of equations are allowed as conditions. The concrete
syntax defined in the corresponding SDF module and in the transitive closure

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 153

equations
[0 0+ Int = Int
[0 Int + 0 = Int
J1+1=2
lJ1+2=23
(0 Int x0=0
[0 Int * 1 = Int
[0 gt(Unt2, 1) = true
====>
Intl * Int2 = Intl + Intl * (Int2 - 1)

Fig. 3. Some ASF equations for the Integers

of the imported modules (only the exported sections, of course) can be used
when writing the conditional equations of an ASF module.

2.8 The ASF+SDF Meta-Environment

The development of ASF+SDF specifications is supported by an interactive
integrated programming environment, the ASF+SDF Meta-Environment [6].
This programming environment provides syntax directed editing facilities for
both the SDF and ASF parts of modules as well as for terms, well-formedness
checking of modules, and visualisation facilities of the import graph and parse
trees. The environment offers all kinds of refactoring operations at the specifi-
cation level: renaming of modules, copying of modules, etc. Furthermore, a li-
brary of predefined primitive data structures, e.g., Booleans, Integers, Strings,
Lists, Sets, etc., is available. The library contains also a growing collection of
grammars of programming and specification languages, e.g., Java, C, CASL,
SDF itself, etc.

The user interface of the ASF4+SDF Meta-Environment is shown in Fig-
ure 4. Modules defining the concrete syntax of Pico (a toy language) have
been opened. In the left part we see a tree-structured view of the modules,
whereas the right pane shows the graph with import relations of the modules.

3 Action Semantics

The main aim of Action Semantics [18] is that descriptions of programming
languages should be as easy as possible to work with. Action semantic de-
scriptions (ASDs) scale up smoothly from small idealised languages to full
languages [7,21], and they have a high degree of comprehensibility (regarding
not only perspicuity of notation, but also underlying concepts). They also

154 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

RAASF+SDF Meta-Environment

REEEE]

9 O basic mport |REEEE
D Booleans
i
[comments = AN =
[imtegers [basic/strings L"-‘ [:anguages /pico /syntax; Fico-Types
D Strings 7 \

[whitespace
@ Cllanguages
@ Cpico
@ D symax
[Pico-1demifiers
D Pico-Syntax
D Pico-Types

basic/ Whitespace

rlanguages/ pico/ syntax/Pico-Syntax:

idle [0 Log Status

Fig. 4. GUI of the ASF+SDF Meta-Environment.

have inherently good modularity, and can be extended or modified without
reformulation of the parts of the description concerned with the unchanged
constructs.

Action Semantics (AS) is a hybrid of Denotational Semantics and Opera-
tional Semantics, and combines the best features of both approaches. As in a
conventional denotational description, inductively defined semantic functions
map programs (and declarations, expressions, statements, etc.) composition-
ally to their denotations, which model their behaviour. The difference is that
here, denotations are actions, and expressed in Action Notation (AN), which
is itself defined operationally (originally [18, App. C| using Structural Opera-
tional Semantics, later [19] in a more modular style).

The inherent modularity of ASDs comes from the design of AN, not from
their explicit division into named modules. For instance, applications of ac-
tion combinators remain valid (and meaningful) when the actions that they
combine are enriched with new facets of behaviour; and similarly regarding
the data processed by actions. The original version of AN [18, App. B| was
rather large, but the revised version, AN-2 [15], is much more economical, and
the size of the AN-2 kernel notation is comparable to that of the notation used
in the monadic style of denotational semantics (e.g., as used in [16]).

Although the division of an ASD into named modules is not essential for
extensibility and modifiability, the overall modular structure is of crucial sig-
nificance for reusability. Until recently, the structure was hierarchical, being a
refinement of the usual division of semantic descriptions into sections dealing

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 155

module FEzp
imports Values
exports
sorts Exp
context-free syntax
"evaluate" "[[" Exzp "11" -> Action
variables
"E"[1-9]7 -> Exp

Fig. 5. Module Exp in SDF

with abstract syntax, auxiliary semantic entities, and definitions of semantic
functions. The abstract syntax module had a submodule for each sort of con-
struct (expressions, statements, etc.), and similarly for the semantic functions;
the submodules for the auxiliary entities were similarly focused on particular
sorts of data. The implementation of a previous environment for AS based on
the ASF+SDF Meta-Environment, the ASD Tools [9], relied on this structure
to distinguish between the different kinds of submodules.

Doh and Mosses [11] realized that this conventional modular structure was
a major impediment to explicit reuse of parts of ASDs. For example, suppose
that an AS for Standard ML has already been given [21], and we are writing an
AS for Java [7], wanting to reuse the semantic equations for all the constructs
that the two languages have in common (modulo notational changes regarding
abstract syntax). We cannot import the entire module for expressions from
the ASD of ML for reuse in the ASD of Java, since this would include ML
constructs not found in Java (e.g., anonymous function abstractions). We
could of course simply copy and paste the individual semantic equations —
but this leaves no explicit indication of the fact that the two languages have
constructs in common, and readers of the two descriptions would have to
compare the details to discover exactly which the common constructs are.

Doh and Mosses proposed changing the modular structure of ASDs to sup-
port an incremental approach to semantics. The main idea was to introduce
a separate module for each individual construct, specifying both its abstract
syntax and the semantic equation defining its AS, and referring to auxiliary
modules for the required auxiliary entities. There was also a separate module
for each sort of construct, but in contrast to the previous structure, this mod-
ule did not combine a particular selection of constructs: it merely introduced
the syntactic sort, meta-variables ranging over it, and the symbol used for the
corresponding semantic function.

ASF+SDF was used for writing ASDs with the new modular structure [11],
and a demonstration involving a small case study has been given [17].

Figure 5 shows the SDF module for the sort Exp, introducing the semantic

156 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

module FEzp/if-then-else
imports Ezp
exports
context-free syntax
"if" Exp "then" FEzp "else" Fzp -> Exp
Bool -> Value

equations

[10] evaluate [[if E! then E2 else E3 1] =
evaluate [[E1]] then
select(
(given true then evaluate [[E2]1]) or
(given false then evaluate [[E3]1]))

Fig. 6. Module Exp/if-then-else in ASF+SDF

function evaluate and the meta-variables ranging over Exp. The module
introducing the sort Action is imported indirectly, via the auxiliary module
Values.

Figure 6 shows the ASF+SDF module for an ASD of the usual conditional
expression where the condition is a boolean-valued expression. It uses SDF to
introduce the mixfix notation used for the abstract syntax of the construct,
and to require Bool to be included in the sort Value. Notice that it is necessary
to import modules for all the sorts of constructs involved in the construct —
here, only Exp. The equations part uses ASF to define the action semantics
of the construct, using the notation introduced in the SDF part of the module
and that originating in imported modules.

4 ASDF

ASDF is a language specification formalism designed to make it easier to write
ASDs of single language constructs.

4.1 Formalism

We have previously used plain ASF+SDF for writing ASDs, as described in
Section 3. The advantage of using ASF4+SDF was that it allowed ASDs to
be prototyped using the Meta-Environment. Furthermore other tools, like an
action interpreter, action type-checker, etc., could be connected to the Meta-
Environment. However, using ASF+SDF for writing small modules describing
single language constructs was not optimal, and this prompted the develop-
ment of ASDF. The main problems with using ASF+SDF were related to the

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

Ezxp

Dec =

Ide | if Ezp then Ezp else Ezp |
Ezp Ezp | fn Ide => Exzp
val Ide = Ezp | Dec Dec

Fig. 7. Small subset of ML

cumbersome notation:

157

When using a syntactic sort, e.g., Exp, in a production rule, the module
introducing the syntactic sort had to be explicitly imported (see Figure 6).
Also modules describing AN had to be imported, since it was not part of

the SDF language.

The declaration of metavariables ranging over sorts is somewhat tedious

(see Figure 5).

ASF+SDF requires many keywords and can be misleading, e.g., the sig-
nature of a semantic function is introduced by the words ‘context-free

syntax’.

ASDF solves these problems, making specifications easier both to write and
read.

module SmallML
imports

Ezp/Ide
Ezp/Cond
Ezp/App-Seq
Exp/Abs
Dec/Bind-Val
Dec/Accum

Module 1

module Ezxp
requires
E : Exp
Datum ::= Val
semantics

evaluate: Exp -> Action

Module 2

module Ezp/Ide
syntax Ezp ::= val(lde)
semantics

evaluate val(l) =
give the val bound-to [

Module 3

module Ezp/Cond
syntax Erp ::= cond(Exzp, Ezxp, Exp)

requires Val ::= Bool

semantics

evaluate cond(F1, E2, E3) =
evaluate E1 then
maybe check the boolean then
evaluate E2 else
evaluate E3

Module 4

158 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

module Ezp/App-Seq module Erp/Abs

syntax Ezp ::= app-seq(Fzp, Eazp) syntax Ezp ::= abs(Ide, Exp)
requires Val ::= Func | func-no-apply requires Val ::= Func
semantics .

semantics

evaluate app-seq(FE1,E2) =
evaluate E1 and-then
evaluate E2 then

(apply(action(the func#1), the val#2)
else (throw func-no-apply))

evaluate abs(I, E) =
give func(closure(
furthermore bind(/, the val)
scope evaluate E))

Module 5 Module 6
module Dec
. module Dec/Bind-Val
requires
D : Dec syntax Dec ::= bind-val(lde, Ezxp)
Datum ::= Bindings semantics
b declare bind-val(l, E) =
semantics evaluate E then bind(/, the val)
declare : Dec -> Action Module 8
Module 7

module Dec/Accum

syntax Dec ::= accum(Dec+) module Data/Func
semantics .
requires
declare accum(D) = declare D Func ::= func(action: Action)
declare accum(D D+) = Module 10

declare D before declare accum(D+)

Module 9

A semantic description of a language consists of a collection of ASDF
modules and a mapping from the concrete syntax used in the language to the
abstract syntax described in the modules. Figure 7 shows a small subset of
ML and the Modules 2 to 10 can be used to describe the constructs found in
the ML subset. The import-relation between the modules can be seen in the
screenshot in Figure 8, where the modules at one level import the modules on
the lower level, if there is an edge connecting them.

Comparing Module 4 with the module found in Figure 6 one immediately
notices that we use abstract syntax with prefix constructors instead of con-

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 159

¢ ACUONSDF Envirenment -ax
File 120%
% Cluaa import | parsetres |
[ool
[func SmallML
¢ (A pec e —~
M Accum il S,
[Bina-va = = = ===
[y vec Dec/Accum[lDecf‘Bind-Val |Exp]Abs| [ExplApp-Squ |EprCmﬂj Expflde|
& exp ™~
e]
[smaimL -~
Dyval Data/Bool

dle O Log Status

Fig. 8. The Action Environment

equations

.[cl:c.md] map(if E1 then E2 else E3) =
cond(map(E1), map(E2), map(ES3))

[let] map(fn I => E) = abs(I, map(E))

i:ée.zq] map(D1 D2) = accum(map(D1) map(D2))

Fig. 9. Mapping concrete to abstract syntax

crete syntax, when describing constructs in ASDF. The advantage of using
prefix constructors for abstract syntax is greater reusability. For instance, a
description of the if-then-else expression from Standard ML might be reused
for describing the ‘7:" expression in Java, since they have the same composi-
tional structure and intended interpretation even though their concrete syntax
differs. Part of the definition of the function map that maps from concrete
ML syntax to abstract syntax is shown in Figure 9.

An ASDF module consists of a name (after the keyword module) and
three optional sections. The syntax section defines the abstract syntax of
the construct. This is illustrated in Module 3 with the identifier expression
constructor val, which takes an Identifier (Ide) as argument. When writing
production rules the separator ‘::=’ is used, instead of the unfamiliar ‘—’
found in SDF.

The requires section is used for introducing data sorts, operators, and
variables used in the semantics section. This is illustrated in Module 6, where
the sort Val is extended with the sort Func, such that actions can produce
functions. The syntax for declaring variables is illustrated in Module 7, where
‘D : Dec’ declares the variable D to range over the syntactic sort Dec. When

160 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

declaring the variable X to range over a sort S the variables Xn, X* and
X+, where n is a positive integer, are automatically declared to range over
the sorts S, §*, and ST. The use of these variables is illustrated in Module 4
and Module 9.

Module 10 illustrates how data sorts and operators are introduced. The
declaration ‘Func ::= func(action: Action)’, results in the type Func, and
the data operators func and action becoming available in actions, such that we
can write actions as ‘give the func’ and ‘give action(...)’ (the syntax of
the action give is ‘give DataOp’, where DataOp contains among other terms
‘the Sort’). The operator func is a data constructor, and action selects the
action component of such data.

The semantic function, mapping the abstract syntax construct introduced
in the syntax section to an action, is defined, using an equation, in the se-
mantics section. In the equation, terms from AN and imported modules can
be used. For instance, in Module 5 the semantic function contains action
combinators and constants, together with the value func-no-apply from the
requires section, and the action semantics sort func, declared in the imported
module Data/Func. Notice that it is possible to define the function using more
than one equation, as illustrated in Module 9. The semantics section can
also contain the signature of a semantic function, as we see in Modules 2 and
7. It is required that the signature of a function, used in a module, is defined
in the same module or an imported module. Since the syntax of a semantic
function depends on the syntax declared in other parts of the module, parsing
a module must be done in two steps, where the first step builds a parsetable
based on the syntax and requires section. More about this in Section 4.2
and 5.2.

Syntactic sorts used in the syntax section result in implicit imports, so for
instance in Module 8 the modules Dec (Module 7), Ide (not shown), and Exp
(Module 2) are automatically imported. Implicit imports are also generated
from the sorts used in the requires section, with the difference that only
syntactic sorts used on the right hand side of the production results in imports,
and the imported modules always start with Data/, for instance Module 6
imports Data/Func (Module 10). The automatically imported modules, like
Ezp or Data/Func, may provide further sorts than those that caused their
importation.

ASDF also allows explicit imports. This is mostly used in the top module
that imports all the modules used to describe a language (see Module 1).
Another rarely used feature is the “back door” for including raw SDF, the
sdf-section.

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 161

The modules, presented in this section, are simplified versions of the mod-
ules used in a semantic description of core ML, which can be found at [14]. The
description contains both ASDF modules and ASF+SDF modules mapping
ML concrete syntax to abstract syntax.

4.2 Environment

Being built on top of the ASF+SDF Meta-Environment, the Action Environ-
ment inherits most of its features (described in Section 2.3).

On the surface the differences between the Meta-Environment and the
Action Environment seem negligible. A few menus have changed, because
we have not yet implemented all the operations available for ASF+SDF for
ASDF (e.g., changing module name and imports). When editing a module one
notices more differences, since the syntax directed editor now uses an ASDF
grammar for parsing. Furthermore, the grammar defined in a module (and
in the modules it imports) is used when parsing the semantic equations in a
module. This means that when highlighting a piece of syntax in a semantic
function, the editor displays its sort according to the grammar defined in the
syntax- and requires-sections of the same module (and imported modules). As
in the Meta-Environment, it is possible to employ the given language specifi-
cation for parsing and rewriting terms over the language. Due to the way we
implemented the Action Environment, everything concerning terms works as
in the Meta-Environment.

Combining the ASF+SDF Meta-Environment and the Action Environ-
ment gives us tool support for mapping the concrete syntax of a language to
actions. The idea is that one describes a mapping from concrete syntax to
abstract syntax in ASF+SDF (see Figure 9), and the mapping from abstract
syntax to actions is described using ASDF as we have already seen.

We are planning to implement support for working simultaneously with
ASF+4SDF and ASDF modules in the Action Environment such that full
language descriptions are supported. Future plans also include integrating
different tools into the Action Environment. Integrating an existing action
evaluator will allow us to evaluate programs written in a language that we are
designing. An action compiler will turn the environment into a compiler gen-
erator. Integration of an existing type-checker for action semantic functions
will give us a better check of the well-formedness of the ASDF modules, and
thereby the correctness of the ASD of the language. All in all, the Action
Environment combined with other tools should provide a particularly useful
environment for developing semantic descriptions and documenting the design
of programming languages.

162 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

5 Implementation Overview

The Action Environment is built on top of the ASF+SDF Meta-Environment.
Discussing the implementation details of the Action Environment involves
discussing the architecture of the Meta-Environment.

5.1 ASF+SDF Meta-Environment Architecture

The Meta-Environment has a layered architecture as displayed in Figure 10.
In this section we will discuss each of these layers in more detail. The first
step towards a layered design of the ASF+SDF Meta-Environment is discussed
in [5]. That paper discusses how ASF can be replaced by another rewriting
formalism. This development has been taken a step further, resulting in the
architecture discussed here.

Kernel layer

The kernel of the Meta-Environment is completely language independent.
It consists of the software coordination architecture, the ToolBus [3], which
takes care of all the communication between the components that make up
the Meta-Environment. The ToolBus allows a full separation of coordination
and computation, it is a programmable software bus where the coordination
between the components is formally described using a Process Algebra based
formalism. The computation is performed within the connected components,
which can be implemented in any programming language. The exchange of
data between the components is based on a representation format, ATerms [4],
specially designed for representing tree-like data structures. This formalism
provides maximal subterm sharing and efficient linearisation operations.

Besides the ToolBus the kernel of the Meta-Environment consists of a
parser, text and structure editors, graphical user interface components, a term
store to store parse tables and parse trees, a component which takes care
of the communication with the file system, etc. Each of the components is
fully language independent and will be instantiated via the next layer, which
provides language specific functionality. The kernel is fully prepared to deal
with modular languages and specification formalisms.

SDF layer

The next layer instantiates the kernel Meta-Environment with SDF func-
tionality. This is achieved by adding SDF-specific components to the kernel
and by adding actions, via buttons and clickable icons in the user interface,
to activate editors for SDF modules. Examples of SDF-specific components

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 163

Kernel-Meta

SDF

Fig. 10. The layered architecture of the ASF+SDF Meta-Environment

are the SDF parse table, the import relation calculator, and the parse table
generator. The latter is needed because of the fact that SDF is designed to
describe syntax of programming languages, and in order to use these language
descriptions it is necessary to generate parse tables for parsing programs. Fur-
thermore, the term store has to be instantiated in such a way that both the
parse trees of SDF modules and their corresponding parse tables can be stored.

ASF layer

This layer extends the SDF Meta-Environment with ASF functionality.
Again this is achieved by adding ASF-specific components and actions to
activate for instance editors for ASF modules. An example of an ASF-specific
component is a component, which extends every SDF specification with the
syntax rules to parse the ASF equations; in this way the user defined syntax
in the equations is obtained. Using SDF in combination with ASF poses some
restrictions on the grammar rules one can write in SDF, e.g., the separator in
a list may only be a literal and not an arbitrary symbol. These restrictions are
checked by an ASF+SDF-syntax-checker. Finally, this layer provides an ASF
checker to check the well-formedness of the equations, and an ASF interpreter
and compiler are added to the SDF Meta-Environment. The term store has to
be extended to store ASF modules, corresponding parse tables, etc., as well.

Implementation

Figure 11 shows an abstraction of the kernel Meta-Environment with each
of the extensions described above. In this section we will briefly describe how
we achieve these extensions in a flexible way:.

The messages that can be received by the kernel layer are known in ad-
vance, simply because this part of the system is fixed. The reverse is not true:
the generic part can make no assumptions about the functionality provided
by the other layers.

We identify messages that are sent from the kernel of the Meta-Environment
to the extensions as so-called hooks. The SDF layer can and will introduce
new hooks for the next layers. Each instance of the environment should at

164 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

Hook Description

environment-name (Name) The main GUI window will display this name

extensions(Sig, Sem, Term) Declares the extensions of different file types

stdlib-path(Path) Sets the path to a standard library

top-sort (Sort) Declares the top non-terminal of a specification
Table 1

The Meta-Environment hooks: hooks that parameterise the GUI

ASF ASF
Interpreter Compiler

|

\A

Parsetable SDF
Generator Operations

Text Structure
Editor Editor

— 7 T

I
I
I
I
I
3
KerneMNViet ironfen __:
1
1
1
1
1
1
1
1
1
]
1
I
I
I
I
I

GUI

ASF

S R

Term Button
Store Interpreter

]

ASF+SDF ASF
Checker Checker

Relation SDF

Parser Calculator Parsetable

|
1
|
1
1
|
i
T
1
1
1
1
1
1
1
1
1
1
!
[
1
|
1
1
|
1

Fig. 11. The layered implementation of the ASF+SDF Meta-Environment

least implement a receiver for each of these hooks. Implementing these hooks
involves writing small pieces of ToolBus specifications. Table 1 shows a few
kernel hooks. They are all related to the GUI and editors. The dashed arrows
in the Figure 11 between the kernel layer and the ASF or SDF layer denote
the hooks and the service requests.

Adding a layer involves some implementation effort. Of course, the compo-
nents themselves have to be implemented. In a number of cases it is necessary
to write ToolBus scripts, but the kernel Meta-Environment also provides a
powerful button language, which can be used to connect new components and
functionality. The button language enables a flexible way of adding buttons
and icons to the GUI and adding buttons to the various types of editors.

5.2 The Action Environment

In the Action Environment the layered design of the Meta-Environment is
extended with an extra layer, the ASDF layer, illustrated in Figure 12. Notice
that we do not replace any parts of the ASF+SDF Meta-Environment, we
just extend it with an extra layer on the top. The alternative to this approach
would be to replace the ASF and the SDF layer with an ASDF layer, similar
to what was described in [5], but with our approach we reuse advanced tech-
nologies and thereby save implementation effort. Another way of viewing the

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 165

ASDF ‘External |

I
3 Support ' Tools
I

,,,,

,,,:::::::::i:‘:::::i// H

} ASDF ASDF to
|

Parser ASF+SDF

Fig. 12. The ASDF layer

ASDF layer is as an ASDF interface to the ASF+SDF Meta-Environment.

The ASDF layer consists of several components: an ASDF parser, tools for
retrieving the module name and imported modules from an ASDF module,
and two ASDF to ASF+4+SDF mappings. As with the other layers we also
have to extend the term store, in this case to hold ASDF modules. Based
on the grammar of the ASDF language, a parse table has been generated,
which is used in the ASDF parser. The tools for getting the module name and
imported modules from an ASDF module are implemented in ASF+SDF and
are almost trivial (this is the ASDF Support component in the illustration).
Here we shall focus on the generation of ASF4+SDF and the possibility of
adding external tools in the future.

Mapping ASDF to ASF+SDF

The Action Environment contains two mappings of ASDF to ASF+SDF.
The result of one mapping is used for parsing and rewriting terms. By mapping
every ASDF module to an ASF+SDF module we get the same effect, with
respect to working with terms, as if we had opened the generated ASF+SDF
modules in the Meta-Environment, so editing of terms is independent of the
ASDF layer. The result of the other mapping is used for the second parse
of the ASDF module itself (the parse that allows us to parse the semantic
equations with the grammar defined in the same module). Figure 13 gives
some examples, which are included in both mappings. Generating ASF+SDF
makes imports explicit, for instance using the sorts S7 and S5 in a production
rule results in imports of the modules S; and S;. The ASF+SDF is generated
on demand (i.e., when we need to parse a term or a module), and has to
be regenerated for an ASDF module every time the module changes. The
mappings to ASF+SDF are implemented in ASF4+SDF; this was an obvious
choice since a grammar for ASF4+SDF already exists, which made it easy to

166 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

construct a type-safe translation.

Integration of external tools

Due to the configurability of the Meta-Environment, it is possible to attach
external tools, like an action type-checker or interpreter. This is an easy task
using the button language, under the assumption that the tools just take the
contents of an editor as input, and return a text string as result. It becomes
more complicated when the tool needs global information (like a semantic
function type-checker, which might need all defined function signatures to
check a function definition), and in these cases we need to traverse the import
graph to collect the necessary information from each module.

6 Related Work

An enormous amount of work has been performed in the field of defining the
syntax and semantics of programming languages and systems supporting the
development of such language definitions. We refer to Heering and Klint [13]
for a fairly complete and up-to-date overview.

In the discussion of related work we will focus on environments which can
be used to describe single language constructs in a modular way, or to give
ASDs of languages.

The Gem-Mex system [1] allows description of languages using a collection
of MonTages, a formalism based on Abstract State Machines. The idea of
describing single language constructs in separate modules is encouraged by
GeEM-MEX, but due to the lacking modularity of the syntax formalism used (the

imports S S

Sy =Sy =
context-free syntax

SQ—>Sl

imports S

V.S N context-free syntax
“V7[0-9]7 — S
uv*av — S*
LAV_’_N N S+

L:S —S = LS —5

Fig. 13. Examples of mapping ASDF to SDF

M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168 167

semantic descriptions of individual constructs are based on concrete syntax,
and the collected syntax has to be LALR(1)) a MonTaGE is not often reusable
in practice.

The ABaco system [20] is an AS tool for programming language designers.
The main components of ABaco are an algebraic specification compiler, spec-
ification editors, action libraries, action editors, and a GUI. Furthermore, it
offers a help system, an action debugger and facilities to export specifications
to readable output. The main component is the algebraic specification com-
piler, which provides syntax checking of specifications and interpretation. The
ABaco system and the Action Environment have a strong resemblance, but
the Action Environment offers more flexibility in adding external components
by means of openness of the underlying architecture.

The action semantics of individual constructs can be presented with an
object-oriented perspective [8]. Then the introduction of each syntactic sort
and its corresponding semantic function is given as a class definition; the
syntax of an individual construct and its action semantics are defined in a
subclass that extends the class defining the sort of the construct. The use of
conventional object-oriented class definitions does not allow as much to be left
implicit as in ASDF, but otherwise the collections of class and subclass defi-
nitions are directly comparable to collections of modules in ASDF. However,
tool support for the approach has not yet been provided.

The ASD toolset [9] supported the creation, editing, checking, and use
of ASDs. This toolset had a very strong relation with an older version of
ASF+SDF, and its implementation has become obsolete.

7 Conclusions and Future Work

In this paper, we have presented ASDF, a new formalism for action semantic
descriptions supporting reuse of descriptions of individual constructs. We have
also reported on the Action Environment, a new environment supporting the
use of ASDF, and explained how it is implemented on top of the ASF+SDF
Meta-Environment. Two of the authors have already carried out an initial
case study in the use of ASDF and the Action Environment, providing ASDF
modules for all the basic constructs underlying Core ML (submitted for pub-
lication).

Plans for future work include further case studies in the use of ASDF, and
the integration in the Action Environment of existing type-checkers, inter-
preters, and ultimately, compiler generation.

168 M. van den Brand et al. / Electronic Notes in Theoretical Computer Science 110 (2004) 149-168

References

[1] M. Anlauff, P. W. Kutter, and A. Pierantonio. Enhanced control flow graphs in Montages. In
PSI’99, LNCS Vol. 1755, pages 40-53. Springer, 2000.

[2] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press Frontier
Series. Addison-Wesley, 1989.

[3] J. A. Bergstra and P. Klint. The discrete time ToolBus — A software coordination architecture.
Sci. Comput. Programming, 31(2-3):205-229, 1998.

[4] M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient Annotated Terms.
Software, Practice €& Experience, 30:259-291, 2000.

[5] M. G. J. van den Brand, P. Moreau, and J. J. Vinju. Environments for term rewriting engines
for free! In RTA 2003, LNCS Vol. 2706, pages 424-435. Springer, 2003.

[6] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: A component-based language development environment. In CC
2001, LNCS Vol. 2027, pages 365-370. Springer, 2001.

[7] D. Brown and D. A. Watt. JAS: A Java action semantics. In 45799, BRICS NS-99-3, pages
43-55. Dept. of Computer Science, Univ. of Aarhus, 1999.

[8] C. Carvilhe and M. Musicante. An object-oriented view of action semantics. In AS 2002,
BRICS NS-02-8, pages 45—64. Dept. of Computer Science, Univ. of Aarhus, 2002.

[9] A. van Deursen. Erecutable Language Definitions: Case Studies and Origin Tracking
Techniques. PhD thesis, Univ. of Amsterdam, 1994.

[10] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An Algebraic
Specification Approach. AMAST Series in Computing Vol. 5. World Scientific, 1996.

[11] K.-G. Doh and P. D. Mosses. Composing programming languages by combining action-
semantics modules. Sci. Comput. Programming, 47(1):3-36, 2003.

[12] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF:
Reference manual. SIGPLAN Notices, 24(11):43-75, 1989.

[13] J. Heering and P. Klint. Semantics of programming languages: A tool-oriented approach.
SIGPLAN Notices, 35(3):39-48, 2000.

(14] J. Iversen and P. D. Mosses. Core ML action semantics description.
http://www.brics.dk/Projects/AS/LDTA-2004/ .

[15] S. B. Lassen, P. D. Mosses, and D. A. Watt. An introduction to AN-2, the proposed new
version of Action Notation. In AS 2000, BRICS NS-00-6, pages 19-36. Dept. of Comput. Sci.,
Univ. of Aarhus, 2000.

(16] S. Liang and P. Hudak. Modular denotational semantics for compiler construction. In
ESOP’96, LNCS Vol. 1058, pages 219-234. Springer, 1996.

[17] P. Mosses. Action Semantics and ASF+SDF. In Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier, 2002.

(18] P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Computer Science 26.
Cambridge University Press, 1992.

[19] P. D. Mosses. A modular SOS for Action Notation. BRICS RS-99-56, Dept. of Comput. Sci.,
Univ. of Aarhus, 1999.

[20] H. Moura, L. C. Menezes, M. Monteiro, P. Sampaio, and W. Cansangdo. The ABACO system:
An action tool for programming language designers. In AS 2002, BRICS NS-02-8, pages 1-8.
Dept. of Computer Science, Univ. of Aarhus, 2002.

[21] D. A. Watt. The static and dynamic semantics of SML. In AS’99, BRICS NS-99-3, pages
155-172. Dept. of Computer Science, Univ. of Aarhus, 1999.

http://www.brics.dk/Projects/AS/LDTA-2004/

	Introduction
	ASF+SDF
	Syntax Definition Formalism
	Algebraic Specification Formalism
	The ASF+SDF Meta-Environment

	Action Semantics
	ASDF
	Formalism
	Environment

	Implementation Overview
	ASF+SDF Meta-Environment Architecture
	The Action Environment

	Related Work
	Conclusions and Future Work
	References

