
Semantic DesignsSM Automated Tools
for Software Engineering

Code Search (Find, Follow), Analysis (Metrics, Static, Dynamic) and Change (Modernization, Migration,
Generation, Optimization, Rearchitecting)

Home
Services

Automated Migration
Custom Analysis and Transformation
Custom Development Toolkit
Application Modernization
Software Quality Analysis
Understanding Software Structure

Products
DMS®
By Language

C
C++
Java
COBOL
C#/.Net
PHP
VHDL
Verilog
More...

By Tool
Search Engine
Clone Detection
Test Coverage
Formatters
Obfuscators
Metrics
Profilers
Smart Differencer
More...

By Application
Hogan (Banking) Analysis
More Effective Testing
Detecting Infringement
Agile Testing

Why Buy
Prices
Register
Downloads

Company
About SD
Success Stories
News and Events
Partners

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

1 of 7 9/29/2016 12:43

Customers
Careers
Papers
Visions

Support
Support Policies
Register
Downloads

Contact

DMS® Software Reengineering Toolkit™
... is a sophisticated set of infrastructure and highly customizable tools for automating:

source program analysis
modification of source code
generation of software

DMS/SRT (or just "DMS") can operate at large scale, on arbitrary mixtures of domains (computer
languages, e.g., C++, Java, COBOL, SQL, HTML, Verilog, ...).
The purpose of DMS is to provide sufficient infrastructure so that a custom tool builder can spend her time
working on the custom tool details, rather than trying to build the necessary infrastructure machinery from
the ground floor up. This can save the tool builder literally years of engineering by leveraging the
man-century already invested by SD. Sophisticated infrastructure enables the tool builder to produce more
effective results than what could be obtained from a custom standalone tool.
The term "software" for DMS is very broad and covers any formal notation, including programming
languages, markup languages, hardware description languages, design notations, data descriptions, and
domain-specific languages. This toolkit is the first step towards the implementation of the Design
Maintenance System®, an ambitious vision of a 21st Century software engineering environment that
supports the incremental construction and maintenance of large application systems, driven by semantics
and captured designs.

DMS: Generalized Compiler Infrastructure
A very simple model (see Figure below) of DMS is that of an extremely generalized compiler, having

a parser (producing compiler-like data structures capturing code),
a set of semantic analyzers,
including a variety of pattern matching (using surface syntax) engines
a set of compiler data structure modification engines,
including a source-to-source program transformation engine (using surface syntax)
and final output formatting components (converting compiler data structures back to valid source
code rather than binary code),

parameterized by descriptions of computer languages to process.
Unlike a conventional compiler, in which each component is specific to its task of translating one source
language to one target machine language, each DMS component is highly parameterized by the desired
task, enabling a stunningly wide variety of effects. This means one can change the input language, change

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

2 of 7 9/29/2016 12:43

the analysis, change the transforms, and change the output in arbitrary ways.
DMS can be used "just" to construct analyzers that generate reports. Or, it can be used to find and fix
coding and structural issues. using analyzer output (analysis focus arc) to locate issues, and choose/apply
transformations to resolve them.
Unlike a conventional compiler, DMS can process thousands of files from multiple languages at the same
moment, allowing analyses and/or consistent code changes across complex systems of files.
An interesting property is that DMS reads formal descriptions of languages, analyses and transforms. DMS
is consequently used to support itself, including producing new language descriptions.

See a comparison of DMS to other well-known types of compiler technologies.
The Software Reengineering Toolkit can be used to implement a wide variety of program enhancing tools.
A very simple, but detailed example, shows how DMS can be easily used to define and manipulate a
notation system that is equivalent to standard algebra. A white paper on how DMS can be used to enhance
software quality is available (PDF, 100Kb). Think of DMS as Life After Parsing.
Our CloneDR is an example of a DMS-enabled custom reengineering application. The CloneDR has a
particular DMS configuration designed to find exact and almost-identical blocks of code ("clones") in large
systems, and remove them by replacing them with invocations of abstractions (macros, procedures, etc.).
The technology is generic enough so we have applied it to COBOL, C/C++, Java, Fortran 90, and to
VHDL. You can download a demo COBOL clone detector/reporter.

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

3 of 7 9/29/2016 12:43

DMS Capabilities
DMS provides a large set of robust, integrated facilities for building software analysis and modification
tools, proven on dozens of real languages:

Full UNICODE-based parser and lexer generation with automatic error recovery.
Accepts/generates files encoded in UTF-8 and UTF-16, 7 bit ASCII (ISO-646-US), 8 bit ASCII
(ISO-8859-1 thru -16), EBCDIC (CP-37, CP-500), a number of Microsoft code pages (CP-1250 thru
-1258), and Japanese Shift-JIS (CP-932 and JIS-0208). Standard support is included for reading
multiple source files to enable INCLUDE file management and construct suitable preprocessors. The
parser technology is based on GLR, and can handle any context-free language, even with ambiguities
(much stronger than YACC/LALR). (See details here.)
Automatic construction of abstract (not concrete) syntax trees (non-value-carrying terminals and
unit productions are suppressed; syntax-lists are converted into AST list nodes). Literal values
(numbers, escaped strings) are converted to native, normalized binary values for fast internal
manipulation. Source comments are captured and attached to AST nodes. (See details here.)
Pretty-printer generation converts ASTs back to nicely formatted legal source file form, according
to a specified layout information, including source comments. In fidelity-printing mode, comments,
spacing and lexical formatting information of unchanged code is preserved. (See details here.)
Customizing allows generation of source code HTML form, or even as obfuscated source text. Trees
may be output directly in XML format.
Multi-pass attribute-evaluator generation from grammar, to allow arbitrary analysis (including
name/type analysis procedures) to be specified in terms of the concrete grammar provided. Attributes
may be local or long-distance. (See details here.)
Sophisticated symbol-table construction facilities for global, local, inherited, overloaded and other
language-dependent name lookup and namespace management rules. This handles even the
complexity of C++14.
Control-flow graph construction including traditional entry/exit/action/condition nodes, but also
fork/join nodes to model parallelism and/or indeterminate order (e.g., C sequence points). There
predefined analyzers for constructing (post) dominators, and inducing structured control-flow
regions. Additional machinery can compute compilation-unit local and system/global call graphs.
Data flow analysis framework, to allow data-flow analysis problems to be posed and answered,
including predefined analyzers for constructing use-def and def-use chains. (See sample control and
data flow graphs)
Points-to analysis for computing local or global points-to data, tested on systems of 13+ million
lines of code.
Symbolic Range Analysis computing range constraints on program variables in terms of other
variables. This is useful to detecting array-access errors, determining which switch case is selected,
... in conjunction with other analyses.
Binary- (and Finite) Decision Diagrams are used to construct and combine symbolic boolean
formulas (or formulas over exclusive sets of choices) efficiently. It is straightforward to convert an
AST representing a boolean formula to a BDD, and vice-versa.
Multiple domains (notations/languages) can be represented at the same time. This enables
processing or generating systems composed of parts from more than one domain (COBOL and JCL,
C and Makefiles, etc.), and/or translation from one domain language to another.
Transforms and patterns can be written directly in surface-to-surface domain syntax form. Patterns
can be matched against syntax trees and return bindings for parameter subtrees. Alternatively,
procedural code can implement transforms, or refer to existing transforms and patterns to enable
construction of very sophisticated transforms. (See details here.)
A full Associative/Commutative rewrite engine that operates on trees and DAGs, which can be
used to apply sets of transforms.

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

4 of 7 9/29/2016 12:43

A metaprogramming language, XCL, provides the ability to control the sequencing of the
application of transforms and sets of transforms. (Future Release)
An algebraic specification subsystem can be used to specify arbitrary algebras (this is just a DMS
domain!). The axioms can be treated as a set of rewrite rules. (This allows one to code arbitrary
simplification procedures. (We have done simplification on boolean equations that are essentially 1
million terms in size; we have also modeled optimization of transistor [not gates!] circuits this way).

A technical paper detailing these facilities was published at the 2004 International Conference of Software
Engineering. You can get a paper reprint and the corresponding slides. To get a concrete feel for DMS, we
provide an example of how aspects of DMS are specified for the Oberon language.

Industrial Scale
These foundations have been used for an amazing variety of industrial tasks, including quality analysis,
restructuring, automated porting, pretty printing and highly optimized code generation.
DMS is designed to work on large scale source systems

with up to several million lines of source code or specification
across tens of thousands of source files
having multiple languages at the same time

DMS is implemented using our parallel language, PARLANSE, to provide computational horsepower
consistent with this scale. While DMS runs on a single processor system at unit speed, it also runs on
symmetric multiple processor workstations with enhanced performance. As an example, the attribute
evaluation process is automatically parallelized, and can often provide a linear speedup on an N-way SMP
system.
DMS is hosted on Windows (any version) using Intel or AMD single or symmetric multiprocessing (SMP)
hardware. Using Wine, DMS runs on Linux, Solaris and MAC OS X.
If you are still reading, you will probabably like this invited Google Tech Talk video on DMS.

Available Languages
While complex legacy grammars can be defined quickly to enable DMS to operate on source programs in
those languages, SD already has language modules and grammars available for many languages.

Business Focus
We are primarily interested in training our customers to use DMS for their own purposes, whether that be
for internal applications or external services. SD will provide expert advice and implementation support as
desired by the customer.
While we can train interested customers to use DMS, for some customers this may not be appropriate.
Semantic Designs will contract DMS-related service activities for customers.
Semantic Designs offers training classes on DMS. SD also offers a number of public tutorials about
program transformation systems in general, including some discussion of DMS. Research licenses are also
available.

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

5 of 7 9/29/2016 12:43

Platform
DMS is designed to run on symmetric multiple processor x86 architectures.

The Intel logo is a registered trademark of Intel Corporation.

Topics
Re-engineering
Documentation
Assessment
Improvement
Code Generation
Hardware Description Languages
All Topics

Language:
Product:

Semantic Designs- Our Goal
To enable our customers to produce and maintain timely, robust and economical software by providing
world-class Software Engineering tools using deep language and problem knowledge with high degrees of
automation.
For more information: info@semanticdesigns.com Follow us at Twitter: @SemanticDesigns
Copyright 1995-2016 Semantic Designs, Incorporated
DMS, "Design Maintenance System" and Refactor++ are registered trademarks of Semantic Designs, Inc.
The SD logo and "Semantic Designs" are registered service marks of Semantic Designs, Inc.
CloneDR, PARLANSE, JOVIAL2C, Thicket, Smart Differencer are trademarks of Semantic Designs, Inc.
The OMG logo is a registered trademark of the Object Management Group, Inc. in the United States and
other countries.
To view our Privacy Policy, click here
Comments or problems: webmaster@semanticdesigns.com

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

6 of 7 9/29/2016 12:43

DMS
Software Reengineering Toolkit

DMS Software Reengineering Toolkit http://www.semdesigns.com/Products/DMS/DMSToolkit.html?Hom...

7 of 7 9/29/2016 12:43

