Introduction to Bridge Management Using OrientDB*

By: **M.Zakeri, M.Amirian, A.H. Sayadabdi** Iran University of Science and Technology Fall 2016

Contents at a Glance

- What is OrientDB?
- Top 10 Key Advantages
- Data Modeling
- Query Language
- Distributed Architecture
- Getting Start!

Contents at a Glance

- Bridge Management System (BMS)
- BMS Design Challenges
- Bridge Information Network as Solution
- References

What is OrientDB?

- The first Multi-Model Open Source NoSQL DBMS.
- Combines the power of **graphs** and the flexibility of **documents** into one scalable, high-performance operational database.

- Built for Speed
 - Big Data Equipped
 - OrientDB handles relationships as physical links to the records, assigned only once, when the edge is created O(1).
 - Compare this to an RDBMS that "computes" the relationship every single time you query a database O(LogN).
 - With OrientDB, traversing speed is not affected by the database size. It is always constant, whether for one record or 100 billion records.
 - This is critical in the **age of Big Data**!

Unmatched Flexibility

	DBMS			
Features & Capabilities	OrientDB	MongoDB	Neo4j	MySQL
Operational Database**		~		O
Graph Database	Ø			
Document Database		~		
Object-Oriented Concepts	Ø			
Schema-full, Schema-less, Schema mix				
User and Role Security				O
Record Level Security				
Record Level Locking				O
SQL	Ø			~

Unmatched Flexibility

ACID Transaction				~
Relationships (Linked Documents)				~
Relationship Traversing	O(1)	O(LogN)	O(1)	O(LogN)
Custom Data Types				
Embedded Documents				
Multi-Master Replication				
Sharding				
Elastic Scalability with Zero Configuration				
Server-Side Functions	Q			~
Native HTTP Rest/JSON			Ø	
Commercial Friendly License				
Embeddable with No Restrictions				

21 November 2016

- Zero-Configuration Multi-Master Architecture
 - OrientDB supports a Multi-Master + Sharded architecture.
 - All the servers are masters.
 - It provides horizontal scalability and reliability.

Zero-Configuration Multi-Master Architecture

- Easy to Install and Use
- Low Total Cost of Ownership (TCO)
- Enterprise Ready
- Unparalleled in the Market
- Solid Product Stability & Maturity
- Open Source
- Reputation of Technical Excellence

• Record

- The smallest unit that you can load from and store in the database
- Records come in four types:
 - 1. Document
 - 2. BLOB (legacy RecordBytes)
 - 3. Vertex
 - 4. Edge

Class and Cluster

- In OrientDB, **classes** define records. It is closest to the concept of a *table* in Relational databases.
- The **Cluster** is a place where a group of records are stored.
- Like the Class, it is comparable with the collection in traditional document databases, and in relational databases with the *table*.

Understanding Clusters

- Where classes in provide you with a logical framework for organizing data, clusters provide physical or inmemory space in which OrientDB actually stores the data.
- Starting from v2.2, OrientDB automatically creates multiple clusters per each class.
 - By Default the number of clusters created is equals to the number of CPU's cores available on the server to improve using of **parallelism**.

Understanding Clusters

• Record ID

- In OrientDB, each record has its own self-assigned unique ID within the database called Record ID or **RID**.
- It is composed of two parts:
 - #<cluster-id>:<cluster-position>
- Each database can have a maximum of 32,767 clusters, or **2^15 1**.
- Each cluster can handle up to 9,223,372,036,780,000 records, or **2^63**, namely 9,223,372 trillion records.

Relationships

- OrientDB supports two kinds of relationships:
 - Referenced,
 - Embedded.
- It can manage relationships in a **schema-full** or **schema-less** scenario.
- There is no JOIN in OrientDB. Instead, it uses LINK.

Data Modeling: The Document Model

Relational Model	Document Model	OrientDB Document Model
Table	Collection	Class or Cluster
Row	Document	Document
Column	Key/value pair	Document field
Relationship	not available	Link

Data Modeling: The Graph Model

Relational Model	Graph Model	OrientDB Graph Model
Table	Vertex and Edge Class	Class that extends "V" (for Vertex) and "E" (for Edges)
Row	Vertex	Vertex
Column	Vertex and Edge property	Vertex and Edge property
Relationship	Edge	Edge

Query Language: SQL

- Instead of inventing "Yet Another Query Language", it begins with the widely used and wellunderstood language of SQL.
- Why SQL?
 - SQL is ubiquitous in the database development world.
 - It is familiar and more readable and concise than its competitors, such as **Map Reduce scripts** or **JSON** based querying.

Query Language: Examples

Select

- orientdb> SELECT FROM user
- orientdb> SELECT FROM CLUSTER:user
- orientdb> SELECT FROM user WHERE name LIKE '1%'

Insert

orientdb> INSERT INTO Employee(name, surname, gender) VALUES('Jay', 'Miner', 'M')

Distributed Architecture

- OrientDB can be distributed across different servers and used in different ways to achieve the maximum of performance, scalability and robustness.
- Uses the Hazelcast Open Source project.
- Setting up a Distributed Graph Database:
 - Prior to startup, copy the specific database directory, under \$ORIENTDB_HOME/database to all servers.

Distributed Architecture: Scaling

Distributed Architecture: Replication

Distributed Architecture: Sharding

OrientDB and CAP Theorem

Bigtable, MongoDB, BerkleyDB, MemcacheDB, Hbase etc

OrientDB and CAP Theorem

- OrientDB supports both **CA** and **AP** depending of your cluster configuration.
- If you create 1 master and X slaves replicated as synchronous you have **CA**.
- If you using multi-master you could have **AP**.

Let's Start

Installation

- Use Docker
- Binary Installation
- Source Code Installation
- Run Server

OrientDB Studio

http://localhost:2480

OrientDB Studio

Bridge Management System (BMS)

- A means for managing **bridges** throughout **design**, **construction**, **operation** and **maintenance** of the bridges.
- Main part is a computer software.
- Commonly uses **RDBMS** to store and retrieve bridge data.
- Develop by each country or state.

BMS Challenges

- The challenges in design is:
 - Various information,
 - Big Data,
 - Switching from OLTP to OLAP,
 - Modeling and Decision making,
 - Data Visualization.
- What is the solution?

Bridge Information Network

- Using Multi-Model NoSQL Database
 Such as OrientDB.
- Distributed Data.
- Using Graph Model to:
 - Data Visualization and Graph Algorithms.
 - Store additional data such as Roads.
- And achieve more!

Bridge Information Network: Clustering

Bridge Information Network: The Graph

- 1. OrientDB Official Website:
 - <u>http://orientdb.com/</u>
- 2. Bridge Management a System Approach for Decision Making
 - Article by: Reginald W. Stratt

Thank you for your attention!Any questions?

- m-zakeri@live.com
- m_amirian@comp.iust.ac.ir
- sayadabdi_a@comp.iust.ac.ir