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INTRODUCTION

� For the sake of completeness, we repeat here the 

fundamental equations of CTMC analysis. 
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CUMULATIVE PROBABILITIES

� Sometimes cumulative probabilities are of 

interest, so we will have:
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TIME-AVERAGE BEHAVIOR

� Closely related to the vector of cumulative state 

probabilities is the vector describing the time-

average behavior of the CTMC:  
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MRMS

� MRMs have long been used in Markov decision 

theory to assign cost and reward structures to 

states of Markov processes for an optimization.

� Meyer adopted MRMs to provide a framework for 

an integrated approach to performance and 

dependability characteristics. 

� He coined the term performability to refer to 

measures characterizing the ability of fault-

tolerant systems, that is, systems that are subject 

to component failures and that can perform 

certain tasks in the presence of failures.
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ASSIGNING REWARDS

� With MRMs, rewards can be assigned to states or 

to transitions between states of a CTMC. 

� In the former case, these rewards are referred to 

as reward rates and in the latter as impulse 

rewards. 

� In this text we consider state-based rewards only.
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REWARDS

� The reward rates are defined based on the 

system requirements, be it availability-, 

reliability-, or task-oriented performance. 

� Let the reward rate ri, be assigned to state i€S.

� Then, a reward ri ti is accrued during a sojourn of 

time Ti in state i.
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REWARD RATES

� Let { X ( t ) , t >= 0} denote a homogeneous finite-

state CTMC with state space S.

� Then, the random variable Z(t) refers to the 

instantaneous reward rate of the MRM at time t.
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ACCUMULATED REWARD

� The accumulated reward Y ( t ) in the finite time 

horizon [0, t ) is given by:
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EXAMPLE
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PERFORMABILITY

� Based on the definitions of X(t), Z(t) and Y(t) 

which are non-independent random variables, 

various measures can be defined. 

� The most general measure is referred to as the 

performability:
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PERFORMABILITY

� Unfortunately, the performability is difficult to 

compute for unrestricted models and reward 

structures.

� Smaller models can be analyzed via double 

Laplace transform.

� The same mathematical difficulties arise if the 

distribution Ф(y, t ) of the time-average 

accumulated reward is to be computed:
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EXPECTED REWARD RATE

� The expected instantaneous reward rate can be 

computed from the following equation:

6
/1
4
/2
0
0
8

١٣

M
a
rk
o
v
 R
e
w
a
rd
 M

o
d
e
ls



CASE STUDY
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SYSTEM AVAILABILITY

� Availability measures are based on a binary 

reward structure. 
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AVAILABILITY

� The instantaneous availability is given by:
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UNAVAILABILITY

� Unavailability can be calculated with a reverse 

reward assignment to that for availability. 

� The instantaneous unavailability, therefore, is 

given by:
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CALL TO REPAIRS

� Transient average number of repair calls N1(t)

� Steady state average number of repair calls N2(t)
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RELIABILITY

� Again, a binary reward function r is defined that 

assigns reward rates 1 to up states and reward 

rates 0 to (absorbing) down states, as given:
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RELIABILITY

� Reliability can be expressed as:
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� Where the random variable T characterizes the 

time to the next occurrence of an unwanted 

(failure) event.



MTTA & MTTF

� With a known reliability function R(t), the mean 

time to the occurrence of an unwanted (failure) 

event is given by
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MTTF and MTTA are acronyms for mean time to 

failure and mean time to absorption.



CATASTROPHIC EVENTS

� Related to reliability measures, we would often 

be interested in knowing the expected number of 

catastrophic events C(t) to occur in a given time 

interval [0, t ) . To this end
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PERFORMANCE

� For computing availability and reliability most of 

the reward functions were binary ones.

� In this section, other examples would be 

considered. 
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TASK COMPLETION PROBABILITY

� Suppose there is a task which consumes x time units 
to be completed. 

� We allow task requirement to be state dependent as 
well so that in state 2 the task requires x2 time units 
to complete and likewise for state 1
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Task interruption probability:



TASK COMPLETION PROBABILITY

� Interruption probability IP(x1 , x2 ) of a task of 

length x1 , x2 , respectively is computed with 

E[Z]:
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CONCLUSION

� MRMs as an extension to the Markov chains.

� Using MRMs to compute:

� Availability

� Reliability

� Performance

� Reward Networks can be used as a high level 

modeling language to obtain MRMs.

� There exists also other high-level models to 

generate Reward Networks. 
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