ad

0
u:;.';:"urﬁﬂ%’-
Pouall (i a1
o Olys
sigslS31 glaf3ile 5 b
(Dependable Software Design)
8153 5 (SKigdl ¥ b

595 51 (R dome 1w yke
(Mohammad Abdollahi Azgomi)

azgomi @iust.ac.ir

Software Redundancy
m Reference:

E. Dubrova, Fault-Tolerant Design: An Introduction,
Kluwer Academic Publisher (2005)

m Chapter 7: Software Redundancy

m Programs are really not much more than the
programmer’s best guess about what a system should
do.

—Russel Abbot

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Y

. =
P &

D) =
09 9 GRSl (Slw) (leadie slehad I oy Dubrova obs ;> =
] 0w &yl 5 Jguad (b5,
il 05350 Jolis a5 :((hardware redundancy) (s, 8lcsw (g 34!
(NMR ; TMR) «(passive redundancy) Jué,s ozl m
(standby sparing , duplication) :(active redundancy) Ju Sigz8l =
(NMR with spares self-purging) :(hybrid redundancy) Lls. Sigj6l =
(information redundancy) sleMb! g 381
(time redundancy) sl; (55g 34!
] oud g o (sOftware redundancy) (g l;8le s (Kig;dl o1 m
Sl ()3 dold] gaudg0 &5

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Y

Contents

m 1. Introduction

m 2. Single-version technigues
Fault detection technigues
Fault containment technigues
Fault recovery technigues

m 3. Multi-version technigues
Recovery blocks
N-version programming
N self-checking programming
Design diversity

m 4. Software Testing
Statement Coverage
Branch Coverage
Branch Coverage

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE

1. Introduction

m |n this chapter, we discuss techniques for software
fault-tolerance.

m In general, fault-tolerance in software domain is
not as well understood and mature as fault-
tolerance in hardware domain.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE o

1. Introduction

m Controversial opinions (;léow wiydis) exist on whether
reliability can be used to evaluate software.

Software does not degrade with time.
D9 s03 y b 039 yd m

Its failures are mostly due to the activation of specification or design
faults by the input sequences.

So, if afault existsin software, it will manifest (ws o ;L) itself first
time when the relevant conditions (Ls . L),3) occur.

This makes the reliability of a software module dependent on the
environment that generates input to the module over the time.

» Different environments might result in different reliability
values.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE £

1. Introduction

m Ariane 5 rocket accident is an example of how a
piece of software, safe for Ariane 4 operating
environment, can cause a disaster in the new
environment.

m As we described in Section 3.2, Ariane 5 rocket
exploded 37 seconds after its lift-off, due to complete
loss of guidance and attitude information colus wleMb))
(J)S.‘.A.C 9s

m The loss of information was caused by a fault in the
software of the inernal reference system, resulted
from violating the maximum floating point number
assumption.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE

1. Introduction

m Many current techniques for software fault tolerance
attempt to leverage (3,5 o) the experience of

hardware redundancy schemes.

For example, software N-version programming closely
resembl es hardware N-modular redundancy.

Recovery blocks (.3L;L0 skSsb) use the concept of
retrying the same operation in expectation that the
problem isresolved after the second try.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE

1. Introduction

m However, traditiona hardware fault tolerance
techniques were devel oped to fight:

permanent components faults primarily, and

transient faults caused by environmental factors
secondarily.

m They do not offer sufficient protection against design
and specification faults, which are dominant in
software.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE)

1. Introduction

m By smply triplicating a software module and voting
on its outputs we cannot tolerate a fault in the
module, because al copies have identical faults.

m Design diversity technique, described in Section
3.3, has to be applied.
It requires creation of diverse and equivalent specifications

so that programmers can design software which do not
share common faults.

Thisiswidely accepted to be a difficult task.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Ve

1. Introduction

m A software system usually has a very large number
of states.

m For example, a collision avoidance system required
on most commercia aircraft in the U.S., has 1040
states.

m L arge number of states would not be a problem if the
states exhibited adequate regularity to allow
grouping them into equivalence classes.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \A

1. Introduction

m Unfortunately, software does not exhibit the
regularity (cl,6 4 k) commonly found in digital

hardware.

m The large number of states implies that only a very
small part of software system can be verified for
correctness.

m Traditiona testing and debugging methods are not
feasible for large systems.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE \AS

1. Introduction

m The recent focus on using formal methods to
describe the required characteristics of the software
behavior promises higher coverage,

however, due to their extremely large computational
complexity formal methods are only applicable in
specific applications.

m Due to incomplete verification, some design faults
are not diagnosed and are not removed from the
software.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE "W

1. Introduction

m Software fault-tolerance techniques can be
divided into two groups:

single-version and

multi-version.

m Single version techniques aim to improve fault
tolerant capabilities of a single software module by
adding fault detection, containment and recovery
mechanisms to its design.

m Multi-version techniques employ redundant software
modules, developed following design diversity
rules.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \Ai

1. Introduction

m As in hardware case, a number of possibilities has to be
examined to determine at which level the redundancy needs to
be provided and which modules are to be made redundant.

The redundancy can be applied to a procedure, or to a process, or
to the whole software system.

m Usually, the components which have high probability of faults
are chosen to be made redundant.

m Asin the hardware case, the increase in complexity caused by
redundancy can be quite severe (cs.) and may diminish ()
the dependability improvement, unless redundant resources
are allocated in a proper way.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A4

2. Single-Version Technigques

m Single version techniques add to a single software
module a number of functional capabilities that are
unnecessary in afault-free environment.

m Software structure and actions are modified to be
able to detect a fault, isolate it and prevent the
propagation of its effect throughout the system.

m In this section, we consider how fault detection,
fault containment and fault recovery are achieved
in software domain.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE \ld

Fault Detection Technigues

m Asinthe hardware case, the goal of fault detection in
software is to determine that a fault has occurred
within a system.

m Single-version fault tolerance techniques usually use
various types of acceptance tests to detect faults.

m Theresult of aprogram is subjected to atest.

If the result passes the test, the program continues its
execution. A failed test indicates a fault.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE v

Fault Detection Techniques
m A test is most effective if it can be calculated in a
simple way and if it is based on criteria (b ke acgoxxo)
that can be derived independently of the program
application.

m The existing techniques include:
timing checks (céy adass sl),
coding checks (¢ ,)i5sS claaw)),
reversal checks (cuis p (b,),
reasonableness checks (34 Joize (sl) @Nd
structural checks (¢,ks b (sl)-

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A

Fault Detection Technigues

m Timing checks are applicable to systems whose
specification include timing constrains (gl ; 4.3).

m Based on these constrains, checks can be devel oped
to indicate a deviation from the required behavior.

Watchdog timer is an example of atiming check.

Watchdog timers are used to monitor the performance of a
system and detect lost or locked out modules.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE AR

Fault Detection Techniques

m Coding checks are applicable to systems whose data
can be encoded using information redundancy
techniques.

Cyclic redundancy checks (CRC) can be used in cases
when the information is merely transported from one
module to another without changing it content.

Arithmetic codes can be used to detect errors in
arithmetic operations.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Ye

"

Fault Detection Technigues

m [N some systems, it is possible to reverse the output
values and to compute the corresponding input
values. For such system, reversal checks can be

applied.

m A reversal check compares the actua inputs of the
system with the computed ones. A disagreement
indicates afault.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \A

Fault Detection Techniques

m Reasonableness checks use semantic properties of
data to detect fault.

For example, a range of data can be examined for
overflow or underflow to indicate a deviation from
system’ s requirements.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yy

VY

Fault Detection Technigues

m Structural checks are based on known properties of
data structures.

For example, a number of elements in a list can be
counted, or links and pointers can be verified.

Structural checks can be made more efficient by adding
redundant data to a data structure, e.g. attaching counts on
the number of itemsin alist, or adding extra pointers.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yy

Fault Containment Techniques

m Fault containment (W& sass) in software can be
achieved by modifying the structure of the system
and by putting a set of restrictions defining which
actions are permissible within the system.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Yy

VY

Fault Containment Techniques

m |n this section, we describe four techniques for fault
containment:

modularization,
partitioning,
system CloSUre (i (43,5 yqnaxe) @aNd

atomic actions.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yo

Fault Containment Techniques

m |t is common to decompose a software system into
modules with few or no common dependencies
between them.

m Modularization attempts to prevent the propagation
of faults by limiting the amount of communication
between modules to carefully monitored messages
and by eliminating shared resources.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE \id

)¢

Fault Containment Techniques

m Before performing modularization, visibility and
connectivity parameters are examined to determine
which module possesses highest potential to cause
system failure.

Visibility of a module is characterized by the set of
modules that may be invoked directly or indirectly by the
module.

Connectivity of a module is described by the set of
modules that may be invoked directly or used by the
module.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yy

Fault Containment Techniques

m The isolation between functionally independent
modules can be done by partitioning the modular
hierarchy of a software architecture in horizontal or
vertical dimensions.

m Horizontal partitioning separates the maor
software functions into independent branches.

The execution of the functions and the communication
between them is done using control modules.

m Vertical partitioning distributes the control and
processing function in atop-down hierarchy.

Highlevel modules normally focus on control functions,
while low-level modules perform processing.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE YA

Yo

Fault Containment Techniques

m Another technique used for fault containment in
software is system closure.

This technique is based on a principle that no action is
permissible unless explicitly authorized.

In an environment with many restrictions and strict control
(e.g. in prison) al the interactions between the elements of
the system are visible.

Therefore, it is easier to locate and remove any fault.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE ra

Fault Containment Techniques

m An alternative technique for fault containment uses
atomic actions to define interactions between system
components.

m An atomic action among a group of componentsis an
activity in which the components interact exclusively
with each other.

m Thereis no interaction with the rest of the system for
the duration of the activity.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Y

11

Fault Containment Techniques

m Within an atomic action, the participating
components neither import, nor export any type of
information from non-participating components of
the system.

m There are two possible outcomes of an atomic action:
either it terminates normally, or
it is aborted upon a fault detection.

If an atomic action terminates normally, its results are
correct.

If a fault is detected, then this fault affects only the
participating components.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE)

Fault Recovery Techniques

m Once a fault is detected and contained, a system
attempts to recover from the faulty state and regain
operational status.

m |f fault detection and containment mechanisms are
implemented properly, the effects of the faults are
contained within a particular set of modules at the
moment of fault detection.

m The knowledge of fault containment region is
essential for the design of effective fault recovery
mechanism.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Yy

\RY%

Fault Recovery Techniques
m Thefollowing F.R. techniques will be discussed:

Exception handling (wUliw! ¢y),
Checkpoint and restart

Process pairs

Data diversity (_»!,b g95)

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yy

Exception Handling

m |[n many software systems, the request for initiation
of fault recovery isissued by exception handling.

Exception handling is the interruption of normal
operation to handle abnormal responses.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Y¥

YA

Exception Handling

m Possible events triggering the exceptions in a software
module can be classified into three groups:

Interface exceptions (&/, witii)) are signaled by a module when it
detects an invalid service request.

= This type of exception is supposed to be handled by the module
that requested the service.

Local exceptions (_xo <lliu/) are signaled by a module when its

fault detection mechanism detects a fault within its internal
operations.

= This type of exception is supposed to be handled by the faulty
module.
Failure exceptions (/& wllkiw)) are signaled by a module when it
has detected that its fault recovery mechanism is enable (unable?!?)
to recover successfully.

= This type of exception is supposed to be handled by the system.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yo

Checkpoint and Restart

A popular recovery mechanism for single-version software

fault tolerance is checkpoint and restart, also referred to as
backward error recovery (cdc @ 9, tas b ;U).

m As mentioned previously, most of the software faults are
design faults, activated by some unexpected input sequence.

m Thesetype of faults resemble hardware intermittent faults:

they appear for a short period of time, then disappear, and then
may appear again.

m Asin hardware case, simply restarting the module is usually
enough to successfully complete its execution.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \id

Y4

Checkpoint and Restart

m The general scheme of checkpoint and restart
recovery mechanism is shown in Figure 7.1.

Checkpoint
Memory

input —= Program » output

retry
) AT_l_/,. acceptance test

Figure 7.1. Checkpoint and restart recovery.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Yy

Checkpoint and Restart

m The module executing a program operates in
combination with an acceptance test block AT,
which checks the correctness of the result.

m |f afault is detected, a “retry” signal is send to the
module to re-initialize its state to the checkpoint state
stored in the memory.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE A

Checkpoint and Restart
m There are two types of checkpoints:

static and

dynamic.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE ¥4

Checkpoint and Restart

m A static checkpoint takes a single snapshot of the
system state at the beginning of the program
execution and storesit in the memory.

Fault detection checks are placed at the output of the
module.

If a fault is detected, the system returns to this state
and starts the execution from the beginning.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE

AR

Checkpoint and Restart

m Dynamic checkpoints are created dynamically at
various points during the execution.

If a fault is detected, the system returns to the last
checkpoint and continues the execution.

Fault detection checks need to be embedded in the code
and executed before the checkpoints are created.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Aa

Checkpoint and Restart

m A number of factors influence the efficiency of
checkpointing, including:

execution requirements,
the interval between checkpoints,
fault activation rate and

overhead associated with creating fault detection checks,
checkpoints, recovery, etc.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE fY

AR

Checkpoint and Restart

m In static approach, the expected time to complete
the execution grows exponentially with the execution
requirements.

Therefore, static checkpointing is effective only if the
processing requirement is relatively small.

m In dynamic approach, it is possible to achieve
linear increase in execution time as the processing
requirements grow.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Y

Checkpoint and Restart

m There are three strategies for dynamic placing of
checkpoints:

Equidistant ([sslwe célus b), Which places checkpoints at
deterministic fixed time intervals. The time between
checkpoints is chosen depending on the expected fault
rate.

Modular, which places checkpoints at the end of the sub-
modules in a module, after the fault detection checks for
the sub-module are completed. The execution time
depends on the distribution of the sub-modules and
expected fault rate.

Random, placing checkpoints at random.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE ¥¥

AR

Checkpoint and Restart

m Overall, restart recovery mechanism has the
following advantages:

It is conceptually simple.
It isindependent of the damage caused by afault.
It is applicable to unanticipated faults.

It is general enough to be used at multiple levels in a
system.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A

Checkpoint and Restart

m A problem with restart recovery is that non-recoverable
actions exist in some systems.

m These actions are usually associated with external events that
cannot be compensated by simply reloading the state and
restarting the system.

Examples of non-recoverable actions are firing a missile or soldering
(081> 9ga) @ pair of wires.

m The recovery from such actions need to include specia
treatment, for example by compensating for their
consequences (e.g. undoing a solder), or delaying their output

until after additional confirmation checks are completed (e.g.
do afriend-or-foe (s L) confirmation before firing).

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \id

Y¢

Process Pairs

m Process pair technique runs two identical versions of
the software on separate processors (Figure 7.2).

input 1 —s{ Processor 1 N = output

S|
input 2 —s| Precessor 2 >

¥
retry

Switch

Figure 7.2. Process pairs.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE fv

Process Pairs

m First the primary processor, Processor 1, is active. It
executes the program and sends the checkpoint
information to the secondary processor, Processor 2.
If a fault is detected, the primary processor is
switched off.

m The secondary processor |oads the last checkpoint as
its starting state and continues the execution. The
Processor 1 executes diagnostic checks off-line. If
the fault is non-recoverable, the replacement is
performed. After returning to service, the repaired
processor becomes secondary processor.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A

Yo

Data Diversity

;l eslazl L Checkpoint & restart 1,8 dgke Slodls g5 o6 Ban W
FEtry o)5 ldgyy gl (FE-EXPrESSIONS) suse (clacivog

Cow]

el 6413800 5 glallas a5 Cowl dadlin (] 9 oo 8 (] B
9y02) 31 A (INPUL SEQUENCE) (53959 Alid & dmnly
Jldal g dame oyl (Soiho lewy) 4 Ladgyy]
A Jbd 1) SlaSy sbalhas wiglite duow slrchogs aSiy]
Dy Adlgd KeS

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE f

(oUs ;1 7z,)Data Diversity

m Using data re-expression algorithms (DRA) to obtain
logically equivalent variants of the input data

‘ Execute »o
X P Ll [K)

a2
Decompose | Recombine

X—>Xq, o Xy P(x) FPO))

Data re-expression via decomposition and recombination

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE O«

¥

(wls 31 =,)Data Diversity

m This technique might not be acceptable to all
programs since equivalent input data transformations
might not be acceptable by the specification.

m However, in some cases like a rea time control
program, a minor perturbation in sensor values may

be able to prevent a failure since sensor values are
usually noisy and inaccurate .

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE o)

Data Diversity

m Data diversity can also be used in combination with
the multi-version fault tolerance techniques,
presented in the next section.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE oy

Yv

3. Multi-Version Techniques

m Multi-version techniques use two or more versions of

the same software module, which satisfy the design
diversity (_»,b ¢45) requirements.

For example, different teams, different coding languages
or different algorithms can be used to maximize the
probability that all the versions do not have common
faults.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE oy

Recovery Blocks

m The recovery blocks (3Ll Lkssk) technique

combines checkpoint and restart approach with
standby sparing redundancy scheme.

m The basic configuration isshownin Figure 7.3. ...

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE of

YA

Recovery Blocks

Checkpoint
Memory
: T
| |
¥ |

input 1 — Version 1

v :
input 2 —= Version 2

» output

n to 1 Switch

input n — Version n

Figure 7.3. Recovery blocks.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE I

Recovery Blocks

m Versions 1 to n represent different implementations
of the same program.

m Only one of the versions provides the system's
output.

m |f an error if detected by the acceptance test, a retry
signal is sent to the switch.

m The system is rolled back to the state stored in the
checkpoint memory and the switch then switches the
execution to another version of the module.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE INg

¥4

Recovery Blocks
m Checkpoints are created before a version executes.

m Various checks are used for acceptance testing of the
active version of the module.

m The check should be kept simple in order to maintain
execution speed.

m Check can either be placed at the output for a
module, or embedded in the code to increase the
effectiveness of fault detection.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE oy

Recovery Blocks

m Similarly to cold and hot versions of hardware
standby sparing technique, different versions can be
executed either serially, or concurrently, depending
on available processing capability and performance
requirements.

Serial execution may require the use of checkpoints to
reload the state before the next version is executed. The
cost in time of trying multiple versions serially may be too
expensive, especialy for areal-time system.

However, a concurrent system requires the expense of n
redundant hardware modules, a communications network
to connect them and the use of input and state
consistency algorithms (?1?).

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE OA

Recovery Blocks

m If all n versions are tried and failed, the module
invokes the exception handler to communicate to
the rest of the system a fallure to complete its
function.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE IR

Recovery Blocks culze

m Asal multi-version techniques, recovery blocks technique is
heavily dependent on design diversity.

m The recovery blocks method increases the pressure on the
specification to be detailed enough to create different multiple
aternatives that are functionally the same.

This issue is further discussed in Section 3.4.

m |n addition, acceptance tests suffer from lack of guideness for
their devel opment.
They are highly application dependent, they are difficult to create

and they cannot test for a specific correct answer, but only for
“acceptable” values.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Fe

N-Version Programming

m The N-version programming (NVP) techniques resembles
the N-modular hardware redundancy. The block diagram is
shown in Figure 7.4.

input 1 — Version 1

\
input 2 — Version 2 Selection
Algorithm

— output

!

input n — Version n

Figure 7.4. N-version programming.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE 9

N-Version Programming

m It consists of n different software implementations of a
module, executed concurrently.

m Each version accomplishes the same task, but in a different
way.
m The selection algorithm decides which of the answers is

correct and returns this answer as a result of the modules
execution.

m The selection algorithm is usually implemented as a generic
voter.

m This is an advantage over recovery block fault detection
mechanism, requiring application dependent acceptance
tests.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE £y

AR

Y'Y

N-Version Programming

m Many different types of voters has been developed,
including

formalized majority voter (<o y51 55 1)),
generalized median voter (aibe .5 sly),

formalized plurality voter (sas 5 ¢!,) and

weighted averaging technique (1559 (538 (ke 09).

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Y

N-Version Programming

m The voters have the capability to perform inexact
voting by using the concept of metric space (X, d).

The set X is the output space of the software and d is a
metric function that associates any two elements in X with
area-valued number.

m Definition of metric: A metric is a function that
associates any two objects in a set with a number and
that preserves a number of properties of the distance
with which we are familiar.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE ¥

Yy

N-Version Programming

m The inexact values are declared equal if their metric
distance is less than some pre-defined threshold e.

m In the formalized majority voter, the outputs are
compared and, if more than half of the values agree,
the voter output is selected as one of the valuesin the
agreement group.

m The generalized median voter selects the median of
the values as the correct result.
The median is computed by successively eliminating pair
of values that are farther (y5,s3) apart until only one value
remains.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE 0

N-Version Programming

m The formalized plurality voter partitions the set of
outputs based on metric equality and selects the
output from the largest partition group.

m The weighted averaging technique combines the
outputs in aweighted average to produce the result.

The weight can be selected in advance based on the
characteristics of the individual versions.

If al the weights are equal, this technique reduces to the
median selection technique.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE <4

Y

N-Version Programming

m The selection algorithms are normally developed taking into account the
consequences of erroneous output for dependability attributes like
reliability, availability and safety.

For applications where reliability is important, the selection algorithm
should be designed so that the selected result is correct with a very high
probability.

If availability is an issue, the selection algorithm is expected to produce an
output even if it is incorrect.

= Such an approach would be acceptable as long as the program execution
in not subsequently dependent on previously generated (possibly
erroneous) results.

For applications where safety is the main concern, the selection algorithm
is required to correctly distinguish the erroneous version and mask its
results.

= In cases when the algorithm cannot select the correct result with a high
confidence, it should report to the system an error condition or initiate an
acceptable safe output sequence.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Y

N-Version Programming

m N-version programming technique can tolerate
the design faults present in the software if the
design diversity concept is implemented properly.

m Each version of the module should be implemented
In an as diverse as possible manner, including

different tool sets,
different programming languages, and

possibly different environments.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE A

Yo

N-Version Programming

m The various development groups must have as little
interaction related to the programming between them
as possible.

m The specification of the system is required to be
detailed enough so that the various versions are
completely compatible.

m On the other hand, the specification should be
flexible to give the programmer a possibility to
create diverse designs.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A

N Self-Checking Programming

m N self-checking programming combines recovery
blocks concept with N-version programming.

m The checking is performed either by using
acceptance tests, or by using comparison.

Examples of applications of N self-checking programming
are Lucent ESS-5 phone switch and the Airbus A-340
airplane.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Y

1

N Self-Checking Programming

m N self-checking programming using acceptance tests
Isshown in Figure 7.5.

input 1 Version 1 >

input 2 Version 2 > =

output

é]
n to 1 Switch

input n Version n >

Figure 7.5, N self-checking programming using acceptance tests.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \A

N Self-Checking Programming

m Different versions of the program module and the
acceptance tests AT are developed independently
from common requirements.

The individual checks for each of the version are either
embedded in the code, or placed at the output.

m The use of separate acceptance tests for each version
IS the main difference of this technique from
recovery blocks approach.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \Al

v

N Self-Checking Programming

m The execution of each version can be done ether
serialy, or concurrently.

m |n both cases, the output is taken from the highest-
ranking version which passes its acceptance test.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE vy

N Self-Checking Programming

m N self-checking programming using comparison is
shown in Figure 7.6.

input 1A

Version 1A

Version 1B

input 1B

input 2A

n to 1 Switch

Version 2A

input 2B output

Version 2B

input nA —-{ Version nA +
input nB ——{ Version nB L:B_'

Figure 7.0. N self-checking programming using comparison.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE V¥

YA

N Self-Checking Programming

m The scheme resembles triplex-duplex hardware
redundancy.

m An advantage over N self-checking programming
using acceptance tests is that an application
independent decision algorithm (comparison) is
used for fault detection.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE ()

Design Diversity

m The most critical issue in multi-version software
fault tolerance techniques is assuring independence
between the different versions of software through
design diversity (.»|b g45).

m Design diversity aims to protect the software from
containing common design faults.

m Software systems are vulnerable to common design
faults if they are developed by the same design
team, by applying the same design rules and using
the same software tools.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE \ld

Y4

Design Diversity

m Presently, the implementation of design diversity
remains acontroversia (;5lesu) SUbject.

m The increase in complexity caused by redundant
multiple versions can be quite severe (csw,) and may

result in a less dependent system (eSSl oS i),
unless appropriate measures are taken sl «il ,5o)
(J.:y» odlawl WL.D

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE \a4

Design Diversity

m Decision to be made when developing a multi-version
software system include:

which modules are to be made redundant (usualy less reliable
modules are chosen);

the level of redundancy (procedure, process, whole system);
the required number of redundant versions;

the required diversity (diverse specification, algorithm, code,
programming language, testing technique, etc.);

rules of isolation between the development teams, to prevent the flow
of information that could result in common design error.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE YA

Design Diversity

m The cost of development of a multi-version software
also needs to be taken into account.

m A direct replication of the full development effort
would have a total cost prohibitive for most
applications.

m The cost can be reduced by allocating redundancy to
dependability critical parts of the system only.

m When the cost of aternative dependability
Improvement techniques is high because of the need
for specialized stuff and tools, the use of design
diversity can result in cost savings.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE va

4. Software Testing

m Software testing is the process of executing a
program with the intent of finding errors [Beizer,
1990].

m Testing is a magor consideration in software
development.

m [N many organizations, more time is devoted to
testing than to any other phase of software
development.

m On complex projects, test developers might be twice
or three times as many as code developers on a
project team.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Ao

¢)

4. Software Testing

m There are two types of software testing:
functional and structural.

Functional testing (also called behavioral testing, black-
box testing, closed-box testing), compares test program
behavior against its specification.

Structural testing (also called white-box testing, glass-box
testing) checks the internal structure of a program for
Eerrors.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A

4. Software Testing

m For example, suppose we test a program which
adds two integers.

The goa of functional testing is to verify whether the
implemented operation is indeed addition instead of e.g.
multiplication.

Structural testing does not question the functionally of the
program, but checks whether the internal structure is
consistent...

coverage) yiwigs 00 oo 1] gl dod 43,5 G Lim
0€) Ly g0 we 192 (518 parnno O]

g o T i Aoldl 43 oS

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE AY

€y

4. Software Testing

m A strength of the structural approach is that the
entire software implementation is taken into
account during testing, which facilitates error

detection even when the software specification is
vague (4ae) Or incomplete.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE AY

4. Software Testing

m The effectiveness of structural testing is normally
expressed in terms of test coverage metrics, which
measure the fraction of code exercised by test cases.

m Common test coverage metrics are [Beizer, 1990]:
statement coverage,
branch coverage, and

path coverage.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE AF

&Yy

4. Software Testing

m Statement coverage requires that the program under
test is run with enough test cases, so that al its
statements are executed at |east once.

m Decision coverage requires that all branches of the
program are executed at least once.

m Path coverage requires that each of the possible
paths through the program is followed.

Path coverage is the most reliable metric, however, it is
not applicable to large systems, since the number of paths
is exponential to the number of branches.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE AD

4. Software Testing

m This section describes a technique for structural
testing which finds a part of program’s flowgraph,
called kernel, with the property that any set of tests
which executes al vertices (edges) of the kernel
executes all vertices (edges) of the flowgraph
[Dubrova, 2005].

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE A

124

Statement Coverage

m Statement coverage (also caled line coverage,
segment coverage [Ntafos, 1988], C1 [Beizer, 1990])
examines whether each executable statement of a
program is followed during atest.

m An extension of statement coverage is basic block
coverage, in which each sequence of non-branching
statements is treated as one statement unit.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE AY

Statement Coverage

m The main advantage of statement coverage is that it can be
applied directly to object code and does not require
processing source code.

m The disadvantages are:

Statement coverage is insensitive to some control structures, logical
AND and OR operators, and switch labels.

Statement coverage only checks whether the loop body was executed
or not.

» |t does not report whether 1oops reach their termination condition.

m In C, C++, and Java programs, this limitation affects loops that
contain break statements.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A

0

Statement Coverage

m As an example of the insensitivity of statement
coverage to some control structures, consider the
following code:

x = 0;

if (conditiocn)
xT=x + 1;

y = 10/x;

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE A4

Statement Coverage

m |f thereis no test case which causes condition to
evaluate false, the error in this code will not be
detected in spite of 100% statement coverage.

m The error will appear only if condition evaluates
false for sometest case.

m Since 1f-statements are common in programs, this
problem is a serious drawback of statement
coverage.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE Qe

1

Branch Coverage

m Branch coverage (also referred to as decision coverage, all-
edges coverage [Roper, 1994], C2 [Beizer, 1990]) requires
that each branch of a program is executed at least once during
atest.

m Boolean expressions of if- or while-statements are
checked to be evaluated to both true and false.

m The entire Boolean expression is treated as one predicate
regardless of whether it contains logicd AND and OR
operators.

m switch dsatements, exception handlers, and interrupt
handlers are treated similarly.

m Decison coverage includes statement coverage since
executing every branch leads to executing every statement.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE 9

Branch Coverage

m An advantage of branch coverage is its relative simplicity.

It allows overcoming many problems of statement coverage.

m However, it might miss some errors as demonstrated by the
following example:
if (conditioni)
x = 0;
else
X = 2;

if (condition2)

¥ = 10=x;
else
y = 10/x;
DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - [UST-CE ay

1A%

Branch Coverage

m The 100% branch coverage can be achieved by two
test cases which cause both conditionl and
condition2 to evauae true, and both
conditionl and condition?2 to evaluate false.

m However, the error which occurs when
conditionl evauates true and condition?2
evaluates false will not be detected by these two
tests.

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE Ay

Path Coverage

m The error in the example above can be detected by
exercising every path through the program.

m However, since the number of pathsis exponential to
the number of branches, testing every path is not
possible for large systems.

m For example, if one test case takes 0.1x10° seconds
to execute, then testing all paths of a program
containing 30 1f-statements will take 18 minutes
and testing all paths of a program with 60 1¥-
statements will take 366 centuries (?!?1).

DSD#4 - Software Redundancy - By: M. Abdollahi Azgomi - IUST-CE a¥

