
::عنوان درسعنوان درس

نرم افزارهاي اتكاء پذير نرم افزارهاي اتكاء پذير طراحي طراحي

(Dependable Software Design)(Dependable Software Design)

 با استفاده از شبكه هاي پاداش تصادفي با استفاده از شبكه هاي پاداش تصادفي تحليلتحليل

 محمد عبداللهي ازگميمحمد عبداللهي ازگمي: : مدرسمدرس

(Mohammad Abdollahi Azgomi)(Mohammad Abdollahi Azgomi)

azgomi@iust.ac.irazgomi@iust.ac.ir

دانشكده مهندسي كامپيوتر دانشكده مهندسي كامپيوتر

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 2

ReferenceReference

�� M.R. Lyu, M.R. Lyu, Software Fault ToleranceSoftware Fault Tolerance, John Wiley & Sons , John Wiley & Sons

(1995)(1995)

�� Chapter 6: Chapter 6: Analyses using Stochastic Reward Nets (SRNs)

� Outline:

� 1. Stochastic Reward Nets

� 2. Fault Tolerant Software Models

� 3. Dependencies in the SRN Models

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 3

1. Stochastic Reward Nets

� Stochastic reward nets (SRNs) are a generalization

of generalized stochastic Petri nets (GSPNs), which

in turn are a generalization of stochastic Petri nets

(SPNs).

� SRNs substantially increase the modeling power of

the GSPN by adding guard functions, marking

dependent arc multiplicities, general transition

priorities, and reward rates at the net level.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 4

1. Stochastic Reward Nets

� A guard function is a Boolean function associated

with a transition [Cia89, Cia92].

� Whenever the transition satisfies all the input and inhibitor

conditions in a marking M, the guard is evaluated.

� The transition is considered enabled only if the guard

function evaluates to true.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 5

1. Stochastic Reward Nets

� Marking dependent arc multiplicities allow

� either the number of tokens required for the transition to

be enabled, or

� the number of tokens removed from the input place, or

� the number of tokens placed in an output place to be a

function of the current marking of the PN.

� Such arcs are called variable cardinality arcs.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 6

Measures

� Stochastic Reward Nets (SRNs) provide the same

modeling capability as Markov reward models

(MRMs).

� A Markov reward model is a Markov chain with

reward rates (real numbers) assigned to each

state.

� A state of an SRN is actually a marking

� labeled (#(P1), #(P2), …, #(Pn)) if there are n places in

the net.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 7

Measures

� We label the set of all possible markings that can be

reached in the net as ΩΩΩΩ.

� These markings are subdivided into tangible markings ΩΩΩΩT

and vanishing markings ΩΩΩΩV.

� For each tangible marking i in ΩΩΩΩT, a reward rate ri is

assigned.

� This reward is determined by examining the overall

measures to be obtained.

� In Section 6.5, we examine the reward definitions needed

to generate reliability, safety, and performance measures.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 8

Measures

� Several measures are obtained using Markov

reward models.

� These include:

� the expected reward rate both in steady state and at a

given time,

� the expected accumulated reward until either
absorption)بي نهايت)(جذب(or a given time, and

� the distribution of accumulated reward either until

absorption or a given time.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 9

Measures

� The expected reward rate in steady state can be

computed using the steady state probability of being

in each marking i for all i ∈ ΩΩΩΩT.

� For steady state distribution i, the expected reward

rate is given by

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 10

Measures

� The expected reward rate at time t can be computed

by using the transient probability of being in each

marking i ∈ ΩΩΩΩT, labeled pi(t).

� The expected reward rate at time t is then given by

� The distribution of reward rate at time t denoted by

P{R(t) ≤ x} is given by

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 11

Measures

� The accumulated reward in (0, t], Y(t), is denoted as

� The expected accumulated reward in (0, t] can be

computed as

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 12

Measures

� The expected accumulated reward until absorption,

labeled E[Y(∞)], can be computed as

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 13

Measures

� The distribution of accumulated reward is a measure
of considerable interest.

� The distribution of accumulated reward until
absorption is denoted as

� This distribution was first studied by Beaudry [Bea78] for
an underlying CTMC model with strictly positive reward
rates, and was extended by Ciardo et al. [Cia90] to allow
an underlying semi-Markov model with non-negative
reward rates.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 14

2. Fault Tolerant Software Models

� Next, we develop SRN models for

� recovery blocks,

� N-version programming blocks, and

� N self-checking programming blocks.

� In this section, we focus on the basic model.

� We revisit each model in Section 6.4 to discuss

issues such as detected versus undetected failures

and common-mode versus separate failures.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 15

Recovery Blocks

� A recovery block (RB) consists of two or more

variants and a single acceptance test (AT).

� The variants are ordered with the first variant called

the primary and the others called alternates.

� The primary and the alternate variants are

independently developed, based on different

algorithms and implemented by different

programmers.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 16

Recovery Blocks

� For each input to the recovery block, the primary is executed

first and its output is evaluated using the AT.

� If the AT fails to accept the output, a rollback recovery is

attempted; this process is repeated for each alternate variant

in succession until either

1. a variant produces an output that is accepted by the AT,

2. the rollback recovery fails, or

3. all variants execute without satisfying the AT.

� In the last case, the RB is said to have failed on this input

dataset.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 17

Recovery Blocks

� The pseudocode for a RB with N variants (a primary

and N-1 alternates) is shown below:

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 18

Recovery Blocks

� The parameters required for a recovery block model

are difficult to obtain.

� Following the categories of Pucci [Puc90, Puc92],

events in the recovery blocks are classified into the

following four types of events.

1. Variant i produces correct output which the AT accepts.

2. Variant i produces correct output which the AT rejects.

3. Variant i produces incorrect output which the AT rejects.

4. Variant i produces incorrect output which the AT

accepts.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 19

Recovery Blocks

� In addition, we will consider both successful and

unsuccessful rollback recovery attempts following a

negative AT diagnosis.

� The SRN model of a recovery block is shown in

Figure 6.1.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 20

Recovery Blocks

#(Pcompl) > 0Tdone

Guard FunctionTransition

HIGHTdone

Trans. PriorityTransition

max(#(Pmfail), 1)Pmfail → Tdone

Arc MultiplicityArc

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 21

Recovery Blocks

� The net is nearly self-explanatory (!).

� Place Pcompl is the starting point of the RB.

� compl => completion

� The firing of transition Tstart, which places a token in
place Pm1

, indicates that the recovery block has
begun executing the next (or first in this case)
dataset.

� A token in place Pm1
indicates that the primary

variant in the recovery block has begun execution on
the current dataset.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 22

Recovery Blocks

� The firing of transition Tm1
corresponds to the

completion of the execution of the primary variant.

� Transitions Tne1
and Te1

correspond to the events that

the output produced by the variant are correct and

incorrect respectively.

� Transition Tne1
moves the token from place Pmdone1

to

place Pne1
indicating that the variant produced a

correct output.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 23

Recovery Blocks

� Transition Te1
moves the token from place Pmdone1

to

both places Pe1
and Pmfail.

� A token in place Pe1
indicates that the first variant

produced an incorrect output.

� Place Pmfail counts the number of variants producing

an incorrect result on the current dataset; this is

needed to represent common-mode failures.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 24

Recovery Blocks

� Transition Tatne1
represents the execution of the AT

after the variant produces a correct output.

� The immediate transitions Ttpos1
and Tfneg1

, which

correspond to a correct positive diagnosis by the AT

and a false negative diagnosis by the AT

respectively, are then enabled.

� Transition Tate1
represents the execution of the AT

after the variant produces an incorrect output.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 25

Recovery Blocks

� The immediate transitions Ttneg1 and Tfpos1, which
correspond to correct negative diagnosis by the AT
and a false positive diagnosis by the AT respectively,
are then enabled.

� A false positive AT diagnosis causes the token to be
moved to place Pundetect indicating an undetected
block failure.

� A true positive AT diagnosis causes the token to be
moved to place Pcompl indicating the block has
completed execution on the current dataset.

� The block then begins operation on the next dataset.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 26

Recovery Blocks

� If an error is discovered, represented by the firing of

either Tfneg1
and Ttneg1

, the system initiates a rollback

recovery action.

� Transition Trollsucc1
represents a successful rollback.

� Transition Trollfail1
represents an unsuccessful

rollback resulting in an RB failure.

� The output arc from Trollsucc1
leads to Pm2, the starting

place of the rst alternate variant, while the output arc

from Trollfail1
leads to Pdetect which represents a

detected RB failure.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 27

Recovery Blocks

� The alternate variants are similarly modeled by the

other places and transitions indexed from 2 to N.

� The structure of the last variant is slightly different,

since the failure of the last variant automatically

results in a detected system failure.

� Thus, the output arcs from transitions TfnegN
and

TtnegN
lead to place Pdetect.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 28

Recovery Blocks

� When the recovery block completes (the token is

returned to place Pm1) then transition Tdone fires and

all tokens are removed from place Pmfail for the next

execution of the recovery block.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 29

N-Version Programming

� In N-version programming (NVP), all variants operate on

the same input in parallel.

� The results of all variants are collected and a voter

determines the system output [Avi85].

� The reliability of this mechanism is dependent upon

individual variant results.

� If more than half of the variants produce results that are within the
required error tolerance, the prevailing result)غالبنتيجه (is declared

correct.

� If half or less than half of the variants produce the same result, the

result is declared incorrect. In this case, no output would be released

by the block.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 30

N-Version Programming

� In Figure 6.2, an SRN model of an N-version

programming system is shown…

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 31

N-Version Programming

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 32

N-Version Programming

� Initially, a single token is in place Pcompl.

� The software block begins operating on the next

input immediately with the firing of transition Tstart.

� This transition places one token in each of the places

Pm1
, Pm2

, ..., PmN
, representing the fact that each

variant begins operation on the provided input.

� Transitions Tmi
for i ∈ 1, 2, …, N represents the

completion of execution of variant i.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 33

N-Version Programming

� When all variants have completed, place Pvote will
contain N tokens, enabling transition Tvote.

� Transition Tvote represents the execution of the voting
mechanism.

� When voting is complete, a single token is moved to
place Pdiag where the voting result is diagnosed.

� If less than half of the variants produced correct
output, then the voting result can be either a true
negative, represented by the firing of transition Ttneg,
or a false positive, represented by the firing of
transition Tfpos.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 34

N-Version Programming

� If at least half of the variants produced correct

output, then the voting result can be either a true

positive, represented by the firing of transition Ttpos,

or a false negative, represented by the firing of

transition Tfneg.

� If the voting result is negative, either transition Ttneg

or transition Tfneg fire, moving the token to place

Pdetect.

� This represents a detected error.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 35

N-Version Programming

� If the voting result is a false positive, transition Tfpos

fires, moving the token to place Pundetect, indicating

an undetected error.

� If the voting result is a true positive, transition Ttpos

fires, moving the token to place Pcompl, indicating the

software block as successfully completed execution

on the current dataset.

� Once the token is returned to place Pcompl, the N-

version programming block begins operating on the

next input.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 36

N Self-Checking Programming

� In N self-checking programming (NSCP), all variants

operate in parallel on the same input.

� There are two possible decision mechanisms [Lap90]

using this technique:

� The first possibility is that each variant has its own

acceptance test.

� The second possibility is that each pair of variants is

compared using a comparison algorithm associated with

the pair.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 37

N Self-Checking Programming

� In each of the above possibilities, the acceptance test
associated with each variant or comparison algorithm
associated with a pair of variants can be identical or
independently derived)به طور مستقل، طبق تنوع طراحي حاصل شده باشند(.

� One variant is always considered to be the active
variant.

� If the active variant produces an output that is diagnosed
as correct, then that output is the block output.

� If the active variant diagnoses its output to be incorrect,
then the status of active variant is passed to one of the
alternate variants.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 38

NSCP with Acceptance Test

� First, we study the case where each variant diagnoses

the correctness or incorrectness of its output using an

acceptance test as shown in Figure 6.3.

� The transition priorities, guard functions, and arc

multiplicities associated with this model are given in

Figure 6.4.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 39

NSCP with Acceptance Test

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 40

NSCP with Acceptance Test

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 41

NSCP with Acceptance Test

� Initially, there is a single token in both places Pcompl

and Pactive.

� The software block begins operating on the next

input immediately with the firing of transition Tstart.

� This transition places one token in each of places

Pm1, Pm2, ..., PmN, representing the fact that each

variant begins operation on the provided input.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 42

NSCP with Acceptance Test

� Transitions Tmi for i ∈ 1, 2, …, N represents the

execution of each variant i.

� As each variant completes execution, a token is

placed in Pati (for variant i).

� The self-checking procedure (acceptance test

execution) is modeled by transition Tati.

� When the acceptance test completes, the token is

moved from place Pati to place Pmdonei (for variant

i).

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 43

NSCP with Acceptance Test

� Place Pactive contains the number of tokens

representing the number of the active variant (a

number between 1 and N).

� When the active variant completes its acceptance

test, then a token is in place Pmdonei enabling

transition Tactivei, where i is the number of tokens in

place Pactive.

� The firing of transition Tactivei moves the token to

place Pavar.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 44

NSCP with Acceptance Test

� This enables transitions Te, representing the fact that

the active variant has produced incorrect output, and

transition Tne, representing the fact that the variant

has produced correct output.

� If the variant produced incorrect output, the firing of

transition Te moves the token to place Pe.

� The diagnosis of incorrect output can be either a

false positive diagnoses or a true negative diagnosis

represented by transitions Tfpos and Ttneg

respectively.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 45

NSCP with Acceptance Test

� If a false positive diagnosis occurs, the token is

moved to place Pundetect, representing an

undetected error.

� If a true negative diagnosis is detected, the token is

moved to place Pctneg.

� Place Pctneg counts the number of incorrect variant

outputs which are diagnosed as true negative.

� The tokens remain in place Pctneg until either all

variants are diagnosed as incorrect or the block

completes execution without detecting a failure.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 46

NSCP with Acceptance Test

� If the variant produced incorrect output, transition

Tne fires moving the token from place Pavar to place

Pne.

� The diagnosis of correct output can be either a false

negative or a true positive represented by transitions

Tfneg and Ttpos.

� Transition Tfneg moves the token from place Pne to

place Pcfpos.

� Place Pcfpos counts the number of correct variant

outputs which are diagnosed as false negative.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 47

NSCP with Acceptance Test

� The tokens remain in place Pcfpos until either all

variants are diagnosed as incorrect or the active

variant pair diagnoses its output to be correct.

� If the sum of the number of tokens in place Pctneg

and Pcfpos is equal to N, all variants have been

diagnosed as incorrect.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 48

NSCP with Acceptance Test

� This enables transition Tdetect, which removes all

tokens from places Pctneg and Pcfpos and places a

single token in place Pdetect; this represents a

detected failure.

� If the diagnosis of the correct output is a true

positive, transition Ttpos fires, moving the token

from place Pne to place Pcompl.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 49

NSCP with Acceptance Test

� A token in place Pcompl satises the guard function

for transitions Tdonei, Tatdonei, and Tmdonei for i ∈

[1, N] and transitions Ttndone and Tfndone.

� All tokens in these places are removed from the net,

effectively resetting the net to its initial state.

� After this reset, the N self-checking programming

block begins execution of the next input.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 50

NSCP with Comparison Algorithm

� Now, we study the case where the outputs of pairs of

variants are diagnosed by a comparison algorithm as

shown in Figure 6.5.

� The transition priority, guard, and arc multiplicity

functions are given in Figure 6.6.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 51

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 52

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 53

NSCP with Comparison Algorithm

� This model is very similar to the previously

discussed NSCP with acceptance test model.

� Initially, there is a single token in both places

Pcompl and Pactive.

� The software block begins operating on the next

input immediately with the firing of transition Tstart.

� This transition places one token in each of places

Pm1, Pm2, ..., PmN, representing the fact that each

variant begins operation on the provided input.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 54

NSCP with Comparison Algorithm

� Transitions Tmi for i ∈ 1, 2, …, N represents the

execution of each variant i.

� As each variant completes execution, a token is

placed in Tcomp i/2 (for variant i).

� The self-checking procedure (comparison algorithm

execution) is modeled by transition Tcompi.

� This transition is enabled only when both variants in

a pair have completed execution (when two tokens

are in place Pcompi).

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 55

NSCP with Comparison Algorithm

� When the comparison test completes, the token is

moved from place Pcompi to place Pmdonei (for

variant pair i).

� Place Pactive contains the number of tokens

representing the number of the active variant pair (a

number between 1 and N/2).

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 56

NSCP with Comparison Algorithm

� When the active variant pair completes its

comparison algorithm, a token is in place Pmdonei,

enabling transition Tactivei, where i is the number of

tokens in place Pactive.

� The firing of transition Tactivei moves the token to

place Pavar.

� This enables transitions Te1, Te2, and Tne.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 57

NSCP with Comparison Algorithm

� The firing of transition Te1 means one of the two

variants produced an incorrect output and therefore

the comparison test result should be negative.

� The firing of transition Te2 means both of the two

variants produced an incorrect output and therefore

the comparison test result should be negative.

� The firing of transition Tne means neither of the two

variants produced an incorrect output and therefore

the comparison test result should be positive.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 58

NSCP with Comparison Algorithm

� The firing of transition Te1 moves a token to place

Pe1 and to place Pmerr.

� The firing of transition Te2 moves a token to place

Pe2 and two tokens to place Pmerr.

� The number of tokens in place Pmerr represents the

number of variants that produced an incorrect output

on the current dataset.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 59

NSCP with Comparison Algorithm

� A token in place Pe1, indicating one of the variant

pair produced an incorrect output.

� A token in place Pe2 indicates that both of the

variants in the pair produced an incorrect output.

� A token in either Pe1 or Pe2 enables transitions

Tfpos and Ttneg, which indicate a false positive

diagnoses and a true negative diagnoses respectively.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 60

NSCP with Comparison Algorithm

� A false positive diagnoses causes the token to move

to place Pundetect, indicating an undetected error.

� If a true negative diagnosis is detected, the token is

moved to place Pctneg.

� Place Pctneg counts the number of incorrect variant

pair outputs which are diagnosed as true negative.

� The tokens remain in place Pctneg until either all

variants pairs are diagnosed as incorrect or the active

variant pair diagnoses its output to be correct.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 61

NSCP with Comparison Algorithm

� If both variants in the pair produced incorrect output,

transition Tne fires, moving the token from place

Pavar to place Pne.

� The diagnosis of correct output can be either a false

negative or a true positive represented by transitions

Tfneg and Ttpos.

� Transition Tfneg moves the token from place Pne to

place Pcfneg.

� Place Pcfneg counts the number of correct variant

pair outputs diagnosed as false negative.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 62

NSCP with Comparison Algorithm

� The tokens remain in place Pcfneg until either all

variants are diagnosed as incorrect or the active

variant diagnoses its output as correct.

� If the sum of the number of tokens in place Pctneg

and Pcfpos is equal to N/2, all variant pairs have

been diagnosed as incorrect.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 63

NSCP with Comparison Algorithm

� This enables transition Tdetect, which removes all

tokens from places Pctneg and Pcfpos and places a

single token in place Pdetect; this represents a

detected failure.

� If the diagnosis of the correct output is a true

positive, transition Ttpos fires, moving the token

from place Pne to place Pcompl.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 64

NSCP with Comparison Algorithm

� A token in place Pcompl satises the guard function

for transitions Tdonei for i ∈ [1, N], transitions

Tcdonei and Tmdonei for i ∈ [1,N/2], and transitions

Ttndone, Tfndone, and Tedone.

� All tokens in these places are removed from the net,

effectively resetting the net to its initial state.

� After this reset, the N self-checking programming

block begins execution of the next input.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 65

3. Dependencies in the SRN Models

� Dependencies in fault tolerant systems are generally

classified according to the source of the failure.

� Laprie [Lap90] classified failures in fault tolerant

software systems using two criteria:

� Separate or common-mode

� A common-mode fault is a fault which occurs

simultaneously in two or more redundant components.

� Detected or undetected

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 66

3. Dependencies in The SRN Models

� First, failures are classified as either separate or

common-mode.

� Sources of common-mode failures include

� design faults from shared specification or implementation,

� similar errors from independent faults, and

� the inherent difficulty of shared input.

...شد خواهند تعريف در ادامه �

� Next, failures can either be detected or undetected.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 67

3. Dependencies in The SRN Models

� It is most important in the development of a model to

account for these dependencies.

� In our SRN models, these dependencies are

accounted for

� by the structure of the model, and

� by judicious) قابل قضاوت(definition of the immediate

transition probabilities.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 68

Detected versus Undetected Failures

� First, consider the distinction between detected

and undetected failures.

� In the previous section, we developed the SRN

model of each software fault tolerance technique

which included places Pdetect, for detected failures,

and Pundetect, for undetected failures.

� Defining separate places for detected and undetected

failures, rather a single place (to indicate any type of

failure), allows numerical study of several additional

measures of interest.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 69

Detected versus Undetected Failures

� Safety measures include both steady state and

transient measures.

� A steady state measure of interest is the probability the

system will eventually fail due to an unsafe failure.

� An unsafe failure is indicated by the existence of a

token in place Pundetect.

� A transient measure of interest is S(t), the safety

distribution, defined to be the probability the system does

not enter an unsafe state by time t.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 70

Detected versus Undetected Failures

� Reliability measures can be obtained by considering

block failure as the existence of a token in either

place Pdetect or Pundetect.

� Mean time to failure is a cumulative measure of the

expected time until a token arrives in either place

Pdetect or Pundetect.

� The transient reliability function, R(t), is the

probability that there are no tokens in either place

Pdetect or Pundetect at time t.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 71

Common-Mode versus Separate Failures

� Next, consider the distinction between separate

and common-mode failures.

� Separate failures result from independent faults with

distinct errors.

� Common-mode failures result from related faults or

independent faults subject to similar errors.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 72

Common-Mode versus Separate Failures

� Measurements have shown that software variants

do not exhibit separate failures.

توضيحي كه چرا اين طور است نداده و مرجعي هم براي اندازه گيريهاي �
.مورد نظر نداده است

� Measurements provide a probability mass function

pN(.) where pN(i) is the probability that i of the N

variants produce incorrect output.

� If all variant failures are separate, then pN(.) is a
binomial) دوجمله اي (probability mass function.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 73

Common-Mode versus Separate Failures

� Common-mode variant failures can be easily

accounted for in the SRN model by carefully

structuring the model to retain tokens in places

which provide needed information;

� state dependent transition probabilities can then be

defined to use this information.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 74

Common-Mode versus Separate Failures

� The state information needed to model common-

mode variant failures includes

� nvdone, the number of variants in the program block which

have completed execution, and

� nfail, the number of the variants which have completed and

produced incorrect results.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 75

Common-Mode versus Separate Failures

� In addition, to simplify the probability functions

needed in the SRN models, we include in the state

information ntotfail, the number of variants out of N

producing incorrect output.

� This variable is computed using probability mass

function pN(.) each time a new dataset begins

processing.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 76

Common-Mode versus Separate Failures

� Using the assumption that variants are stochastically

identical, we can compute several probabilities of

interest in fault tolerant software systems.

� The probability a variant produces incorrect output is

given by

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 77

Common-Mode versus Separate Failures

� The probability that less than N/2 variants produce

incorrect output is given by

� where 1x is an indicator function which evaluates to

1 if x is true and 0 otherwise.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 78

Common-Mode versus Separate Failures

� If we consider a pair of variants, we can compute the

probabilities that one, both, or neither of the pair of

variants fail.

� The probability both variants produce correct output

is

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 79

Common-Mode versus Separate Failures

� The probability both variants produce incorrect

output is

� The probability that one of the two variants produce

incorrect output and the other produces correct

output is

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 80

SRN Models with Common-Mode and Separate Failures

� Figure 6.7 shows a subnet that is added to each

previously described SRN model to simplify the

incorporation of common-mode failures…

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 81

SRN Models with Common-Mode and Separate Failures

� Figure 6.7 shows a subnet that is added to each

previously described SRN model to simplify the

incorporation of common-mode failures…

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 82

SRN Models with Common-Mode and Separate Failures

� A token arrives in transition Pinit as a result of the

firing of transition Tstart.

� Transition Tstart (which is part of each previously

developed SRN model) is modified to include

another output arc associated with place Pinit.

� When a token arrives in place Pinit, the software

block is ready to operate on a new dataset.

� Transitions Tvfail0, Tvfail1, ... TvfailN become

enabled.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 83

SRN Models with Common-Mode and Separate Failures

� The probability associated with each transition

Tvfaili is pN(i), the probability that i out of the N

variants produce an incorrect result.

� The firing of transition Tvfaili causes i tokens to be

placed in Ptotfail.

� Place Ptotfail represents the number of variants that

will produce incorrect output on the current dataset.

� The number of tokens in place Ptotfail is used to

determine the variant failure probabilities in each

SRN model.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 84

SRN Models with Common-Mode and Separate Failures

� This is discussed in detail for each SRN model in the

next section.

� When the software block completes execution on the

current dataset (a token is moved to place Pcompl),

all tokens in place Ptotfail are removed by the firing

of transition Ttotdone.

� This resets this subnet prior to the arrival of the next

dataset.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 85

Recovery Block SRN Model

� In the SRN model of the RB scheme, transitions Tnei

and Tei are immediate transitions representing the

correctness or incorrectness of variant i.

� These transitions are enabled only after i-1 variants

have completed execution.

� Of these i-1 variants, #(Pmfail) produced incorrect

results.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 86

Recovery Block SRN Model

� The immediate transition probabilities for Tei and Tnei

incorporating common-mode failures are given by

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 87

NVP SRN Model

� In the SRN model of the NVP scheme, out of the N
available variants #(Ptotfail) variants produce incorrect
results.

� The voter diagnosis is dependent on the number of
the N variants producing incorrect output.

� If less than half of the variants produce correct
output (that is if #(Ptotfail) < N/2), then the vote
should be positive.

� However, similar errors may cause the voter to
diagnose a false positive when less than half of the
variants produce a correct output.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 88

NVP SRN Model

� In addition, the implementation of the voter may be

incorrect (e.g. the voter's variant error tolerance may

be too small) and the voter may diagnose a false

negative even though more than half of the variants

produced a correct output.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 89

NVP SRN Model

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 90

NVP SRN Model

� The variant probabilities used in the above equations

are given by

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 91

NSCP with AT SRN Model

� In the SRN model of the NSCP with acceptance test,

a token in place Pavar enables transitions Te, which

indicates an incorrect variant result, and transition

Tne, which indicates a correct variant result.

� The number of previously completed and diagnosed

variants is #(Pctneg)+#(Pcfneg).

� The number of these variants which produced

incorrect results is #(Pctneg).

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 92

NSCP with AT SRN Model

� The probability that the variant represented by a

token in place Pavar produces an incorrect result is

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 93

NSCP with Comparison SRN Model

� Similarly, in the SRN model of the NSCP with

comparison tests, a token in place Pavar enables

transitions Te1, Te2, and Tne.

� The firing of transition Te1 indicates that one variant

in the pair produced an incorrect output while the

other variant produced a correct output.

� The firing of transition Te2 indicates that both

variants in the pair produced incorrect output.

� The firing of transition Tne indicates that both of the

variants in the pair produced correct output.

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 94

NSCP with Comparison SRN Model

� The number of variant pairs that have completed

execution and diagnosis is given by

#(Pctneg)+#(Pcfneg);

� the number of variants that have completed execution is

therefore 2×(#(Pctneg)+#(Pcfpos)).

� Of the variant pairs that have completed, the number

of pairs where at least one variant did not produce

correct output is given by #(Pmerr).

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 95

NSCP with Comparison SRN Model

� The probability neither variant produces incorrect

output is

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 96

NSCP with Comparison SRN Model

� The probability both variants produce incorrect

output is

DSD#7 - Design Methods - By: M. Abdollahi Azgomi - IUST-CE 97

NSCP with Comparison SRN Model

� The probability that one of the two variants produce

incorrect output and the other produces correct

output is

