A Compar ative Study of Application Layer Multicast Protocols

Suman Banerjee, Bobby Bhattacharjee

Abstract—Duetothespar se deployment of |P multicastin
theInternet today, someresearcher s have proposed applica-
tion layer multicast as a new approach to implement wide-
area multicast services. In this approach multicast func-
tionality isimplemented at the end-hostsinstead of network
routers. Unlike network-layer multicast, application layer
multicast requires noinfrastructure support and can beeas-
ily deployed in the Internet. In this paper, we describe a set
of application layer multicast protocolsthat have been pro-
posed inrecent literature, classify them based on someprop-
erties and present a comparison of performance and appli-
cability of these schemes.

I. INTRODUCTION

Multicasting is defined as the distribution of content to
more than one host. In the Internet architecture, the net-
work layer implements the data forwarding functionality
between two hosts that are not located in the same Local
Area Network (LAN). In tune with this approach, Deer-
ing [7] proposed the IP Multicast architecture, where the
multicast functionality was added to the IP layer. In the IP
Multicast architecture, the routers of the network distribut-
edly define a data delivery tree. As multicast packets flow
on this tree, they are appropriately replicated by the routers
at the different branch points of the tree. IP Multicastis the
most efficient way to perform group data distribution, as it
is able to reduce packet replication on the wide-area net-
work to the minimum necessary.

However, more than a decade after its initial proposal,
deployment of IP Multicast has been limited and sparse
due to a variety of technical and non-technical reasons.
First, IP Multicast requires routers to maintain per group
state (and in some proposals per source state in for each
multicast group). The routing and forwarding table at
the routers now need to maintain an entry corresponding
to each unique multicast group address. However, un-
like unicast addresses, these multicast group addresses are
not easily aggregatable. This increases the overheads and
complexities at the routers. Second, there is a dearth of
experience with additional mechanisms like reliability and
congestion control on top of IP Multicast, which makes the
ISPs wary of enabling multicasting at the network layer.

The authors are with the Department of Computer Science,
University of Maryland, College Park, MD 20742, USA. Emails:
{suman,bobby } @cs.umd.edu

Although there exists proposals for such mechanisms over
IP Multicast (e.g. (SRM [8] and RMTP [12] for reliabil-
ity and MTCP [17] and PGMCC [18] for congestion con-
trol), the impact of these solutions on the wide-area Inter-
net is not clear. Congestion control for multicast applica-
tions acquires far greater importance than the unicast case,
and therefore, needs to be well understood before wide-
scale deployment. Third, the pricing model for multicast
traffic is not yet well-defined.

Therefore some researchers in the recent past have re-
visited the issue whether the network layer is necessarily
the best layer for implementing multicast functionality and
have proposed application layer multicast as an alternate
technique for multicasting. As the name suggests, in ap-
plication layer multicast, the multicasting functionality is
implemented at the application layer, i.e. at the end-hosts
instead of the network routers.

The basic idea of application layer multicast is shown in
Figure 1. Unlike network layer multicast (Panel 0) where
data packets are replicated at routers inside the network,
in application layer multicast data packets are replicated
at end-hosts. Logically, the end-hosts form an overlay net-
work, and the goal of application layer multicast is to con-
struct and maintain an efficient overlay for data transmis-
sion. Since application layer multicast protocols may send
data multiple times over the same link, they are less effi-
cient than network layer multicast. There are multiple in-
tuitive metrics of “goodness” to evaluate the performance
of an application layer multicast scheme.

1) Quality of thedatapath: is evaluated using two met-

rics, which are:

Stress: This metric is defined per link or router of the
topology and counts the number of identical pack-
ets sent by the protocol over that link or node. For
network layer multicast there is no redundant packet
replication and hence in this case, the stress metric
is one at each link or node of the network.

Stretch: This metric is defined per-member and is
the ratio of the path length along the overlay from
the source to the member to the length of the direct
unicast path. Clearly, a sequence of direct unicasts
from the source to all the other members (Panel 1,
Figure 1) has unit stretch for each member.

2) Control Overheads: Each member on the overlay

exchanges refresh messages with all its peers on the

Max Stress =3
Avg Stretch =1

Max Stress =1
Avg Stretch =1

@ Network layer Multicast Appllcatlon Layer Multicast (1)

Max Stress =2
Avg Stretch = 1.67

Max Stress =1
Avg Stretch =1.83

Appllcatlon Layer Multicast (2) Appllcanon Layer Multicast (3)

Fig. 1. Network-layer and application layer multicast. Square nodes are routers, and circular nodes are end-hosts.

overlay. These messages constitute the control over-
heads at the different routers, links and members
of the multicast group. The control overheads are
an important metric to consider from the scalability
standpoint.
While these are some of the more important metrics for ap-
plication layer multicast protocols, it is clearly not an ex-
haustive list. Other metrics of interest include degree dis-
tribution of members on the data delivery path, bandwidth
requirements at the access links of the members, etc.

Different application layer multicast protocols will cre-
ate overlay paths that have different properties for these
different metrics. In Figure 1, we show three example ap-
plication layer multicast overlays on the same topology
of routers and hosts. Let us assume that each link on the
topology is of unit length. Panel 1 shows the overlay cor-
responding to a sequenceof direct unicastsfrom the source
(A) to all the other members. In this case, the stretch to
each member is unity (since the direct unicast paths are
used). Link (A, 1) experiences a stress of 3, while all other
links experience unit stress. In general, for a group of N
members, using a sequence of direct unicasts is one ex-
treme case where the maximum stress at a link is O(V)
(at the data source) and the average stretch of members
1. Also, the source peers with all the other members in
the multicast group and exchanges refresh messages with
them. Therefore the worst case control overhead in this
scheme is O(N).

Panel 2 shows the overlay corresponding to ring multi-
cast. This is the other extreme case where the maximum
stress is 1 while the average stretch at members is O(V).
The worst case control overhead at members is also a con-
stant.

Finally, Panel 3 shows another configuration of the
overlay, which is an intermediate between the two ex-
tremes.

There has been a number of application layer multicast
protocols proposed in the literature and it is not possible
to describe all of them, in detail, in this survey. Instead
we classify the set of proposed application layer multicast
schemes into three different categories and only describe a

few representative protocols from each of these categories.
Next, we present a comparative study of these different
schemes with respect to the different metrics of interest.

II. APPLICATION LAYER MULTICAST APPROACHES

All application layer multicast protocols organize the
group members into two topologies, namely the control
topology and the data topology. Members that are peers on
the control topology exchange periodic refresh messages
to identify and recover from “ungraceful” departures from
the group. (Anungraceful departure is one when the mem-
ber departs from the group without informing its peers
through control messages.) The data topology is usually a
subset of the control topology and identifies the data path
for a multicasted packet on the overlay. In fact the data
topology is a tree, while the control topology has greater
connectivity between members. Therefore, in many pro-
tocols the control topology is called a mesh and the data
topology is called a tree.

Depending on the sequence of construction of the con-
trol and data topologies, we classify classify the different
proposed application layer multicast techniques into three
different categories — mesh-first, tree-first and implicit
approaches.

In the mesh-first approach, group members first dis-
tributedly organize themselves into the overlay mesh
topology. Multiple paths exist on the mesh between a
pair of members. Each member participates in a routing
protocol on this control topology to distributedly compute
unique overlay paths to every other member. A source-
specific tree rooted at any member can then be created
using the well-known Reverse Path Forwarding (RPF)
based construction used by many IP multicast protocols
e.g. DVMREP [20].

In contrast, protocols based on the tree-first approach
distributedly construct a shared data delivery tree first di-
rectly. Subsequently, each member discovers a few other
members of the multicast group that are not its neighbors
on the overlay tree and establishes and maintains addi-
tional control links to these members. This enhanced over-

New mesh link to
repair frgm partition

Failed Members

b

New Member

New Mesh Links Drop non-useful link

Fig. 2. Control and data paths in Narada. Neighbors on the control path (mesh) are connected by edges. In Panel O, the thicker edges (marked
with arrows) indicate the multicast data path when A is the source of the data. These edges are also part of the mesh. In Panel 1, two members, D
and F, leave the group which leads to a mesh partition. The remaining members repair this partition. In Panel 2, a new member joins the mesh
and sets up mesh-neighbor links with two randomly chosen members. Periodically members evaluate the utility of different links on the mesh.
In Panel 3, a non-useful link is deleted from the mesh, and a potentially useful link is added to it.

lay (the data delivery tree with the additional control links)
is the control topology in the tree-first approach.
Protocols using the implicit approach create a control
topology with some specific properties. The data deliv-
ery path is implicitly defined on this control topology by
some packet forwarding rule which leverages the specific
properties of the control topology to create loop-free mul-
ticast paths. Thus, in the implicit approach the mesh and
the tree are simultaneously defined by the protocol, and no
additional member interactions are needed to generate one
from the other. All the example protocols developed us-
ing the implicit approach have been specifically designed
to scale to multicast groups with large number of members.
In the next three sections, we describe representative
protocols from each of these approaches in turn.

III. MESH-FIRST APPROACH

In this section, we describe the Narada protocol [6], []
as an example of the mesh-first approach.

A. Narada

The Narada protocol [6], [5] was one of the first ap-
plication layer multicast protocols that demonstrated the
feasibility of implementing multicast functionality at the
application-layer.

Narada defines a special designated host, called the
Rendezvous Point (RP), that is used to boot-strap the join
procedure of a new member. In fact, all application layer
multicast protocols use an entity equivalent to the RP in
Narada to initiate the join mechanism. In this paper, we
use this nomenclature to denote the boot-strapping host for
all the application layer multicast protocols.

Mesh construction: When a new member wants to join
the multicast group, it first obtains a list of group mem-
bers that are already joined to the mesh. This information
can typically be obtained from the RP, which maintains
state about all members joined to the multicast group. The

new member then randomly selects a subset of these mem-
bers and attempts to join the mesh as neighbors of these
members. The join procedure succeeds when at least one
of these members accepts the new member as its mesh-
neighbor.

After joining the mesh, the new member starts exchang-
ing periodic refresh messages with its mesh-neighbors.
Whenever a new member joins or an existing member
leaves the group (and the mesh), this group change in-
formation is propagated through the mesh to all the other
members. Thus, each member in the group keeps state
about all other members that are part of the group. This
information is also periodically refreshed. Distribution
of such state information about each member to all other
members leads to relatively high control overhead (O(N %)
aggregate control overhead, where N is the group size).
Therefore, the Narada protocol is effective only when the
multicast group size is small. However, this was an ex-
plicit design choice for the Narada protocol, where the au-
thors traded off high control overheads for greater robust-
ness in recovery from member failures in some specific
cases. This is described in the following example.

When members D and F simultaneously fail, the mesh
partitions into two parts. As a consequence, members
A, B and C stop receiving state refresh messages from
members F, G and H, and vice versa. Each member then
probabilistically probes the members from which it has
stopped receiving refresh messages to establish new links
and repair the partition (Panel 1). Note that the recovery
does not require the intervention of the RP and, therefore,
works even when the RP fails.

Data Ddivery Path: The members of the group run
a routing protocol to compute unicast paths between all
pair of members on the mesh. The multicast data deliv-
ery path with any specific member as the source can be
then computed using the well-known Reverse Path For-
warding check employed by IP multicast protocols (e.g.
DVMRP [20]). An example of such a data path is shown

ENO
BENONORO Y

ENO

® EXx*|reque
Request
Q)

in afew
more steps

=]
Join
Reguest

Fig. 3. Tree join procedure in HMTP. The new member, N, discovers the root, A, by querying the RP. For this example we assume that members
A and D have a maximum degree of 3 (and therefore cannot support any other member as children). NV recursively finds a nearby potential parent

by querying down the tree.

in Panel 0, Figure 2. The specific links on the data path
from source A is highlighted with thicker directed edges.

Mesh Refinement: The data delivery paths in Narada are
spanning trees of the mesh. Therefore, the quality of the
data delivery path (i.e. the stress and stretch properties)
depends on the quality of links that are part of the mesh.
When new members join, or when the mesh recovers from
partitions, a random set of edges are added to the mesh.
Thus, periodic refinements are made to mesh edges to im-
prove the quality of data delivery paths. In Panel 3, Fig-
ure 2, we show such refinements. Adding the edge (J, G)
is considered useful because a large number of shorter
unicast paths can be created on the mesh using this new
edge (for example between member sets {A, C,.J} and
{G, H}, and between member sets {C, J } and { /'}). The
edge (A, C') is removed from the mesh since was being
used to create a single shortest path (that between members
A and (). These decisions to add or drop edges from the
mesh are made locally by the two end-points of the edge,
through simple heuristics that compute a specific “utility”
for the edge.

IV. TREE-FIRST APPROACH

We describe two protocols, Yoid [9] and HMTP [21], as
examples of the tree-first approach.

A. Yoid

Yoid, along with Narada, is one of the first application
layer multicast protocols. Since Yoid directly creates the
data delivery tree, it has a direct control over various as-
pects of the tree structure, e.g. the out-degree at members,
the choice of tree neighbors, etc. This is in contrast to the
mesh-first approach which has an indirect control on the
tree structure and therefore, the quality of the data deliv-
ery tree depends on the quality of the mesh.

Tree Construction: All protocols based on the tree-first
approach create a shared tree and each member is respon-
sible for finding its appropriate parent on the tree. Each
member on the tree has a degree bound, which limits the
number of children on the tree it is willing to support. A
new member, h, starts to find a new parent by querying the
RP. The RP typically responds with a list of members that
are already part of the multicast group and hence, joined
to the tree. Member, h, then probes members from this
list to find potential parents. A member, y can be a poten-
tial parent of z if the following two conditions hold: (a)
If y is chosen as a parent of z it should not cause a loop
in the tree, and (b) y should have available degree for new
children. If no potential parent is found in this list, Yoid
proposes different heuristics that can be used to find other
potential parents on the tree. (The HMTP protocol, which
we describe next, implements a specific example of such
a heuristic.) If z eventually finds some potential parents,
it chooses the “best” potential parent (with respect to the
metric of interest) as its parent.

If 2 is unable to find any parent it eventually declares it-
self to be the root of the shared tree and informs the RP. In
transience the tree may get partitioned and one member in
each tree partition will declare itself to be the root. In such
a case, the RP arbitrates in merging the different trees frag-
ments. Periodically each members seeks other potential
parents for better points of attachment in the shared tree.
Yoid incorporates loop detection and avoidance mecha-
nisms when members change parents in the tree.

Mesh Construction: Each member, A, on the shared tree
finds a few other members at random which are not tree-
neighbor’s of A. These additional links along with the tree
links, define the mesh. The additional mesh links are used
for recovery from tree partitions.

B. HMTP

Host Multicast Tree Protocol (HMTP) is another appli-
cation layer multicast protocol that uses the tree-first ap-
proach and has some similarities with the Yoid protocol.

Tree Construction: Like in Yoid, members in HMTP are
responsible for finding parents on the shared tree. A join-
ing member, 5, finds its parent using the following heuris-
tic: It first discovers the root of the shared tree by query-
ing the RP. Starting from the root, at each level of the tree
h tries to find a member, z, close to itself. If the number
of children of z is less than its degree bound, £ joins as a
child of z. Or else it proceeds to the next level and tries
to find a potential parent among the children of . This
is shown using an example in Figure 3. The new mem-
ber, N probes the root, A. Since all its degree is filled, it
then probes to find, D, the child of A which is closest to
itself. However, since D also has no available degree, N
proceeds to the next level and finds, £, the nearest child of
D. F has available degree and so NV joins as a child of F'.

Members in HMTP maintain information about all
members on its path to the root. Periodically, each member
tries to find a better (i.e. closer) parent on the tree, by re-
initiating the join process from some random member on
its root path. Knowing the entire root path allows mem-
bers to detect loops. HMTP employs a loop detection and
resolution mechanism, instead of loop avoidance.

Unlike Yoid, HMTP does not explicitly create a mesh.
However, each member periodically discovers and caches
information about a few other members that are part of the
tree. In the specific case when the RP is unavailable, the
knowledge of such members is used to recover the tree
from partitions.

V. IMPLICIT APPROACH

In this section we describe three different protocols that
use the implicit approach to create application layer multi-
cast overlays, namely NICE, Scribe, and CAN-multicast.

A. NICE

The NICE protocol [2] arranges the set of members into
a hierarchical control topology. As new members join
and existing members leave the group, the basic opera-
tion of the protocol is to create and maintain the hierarchy.
The hierarchy implicitly defines the multicast overlay data
paths and is crucial for scalability of this protocol to large
groups. The members at the bottom of the hierarchy main-
tain (soft) state about a constant number of other members,
while the members at the top maintain such state for about
O(log N) other members.

The NICE hierarchy is created by assigning members
to different levels (or layers) as illustrated in Panel 0, Fig-
ure 4. Layers are numbered sequentially with the lowest
layer of the hierarchy being layer zero (denoted by Lg).
Members in each layer are partitioned into a set of clusters.
Each cluster is of size between & and 3k — 1, where & is a
constant, and consists of a set of members that are close to
each other. Further, each cluster has a cluster leader. The
protocol distributedly chooses the (graph-theoretic) center
of the cluster to be its leader, i.e. the cluster leader has the
minimum maximum distance to all other members in the
cluster. This choice of the cluster leader is important in
guaranteeing that a new joining member is quickly able to
find its appropriate position in the hierarchy using a very
small number of queries to other members.
The members are assigned to the different layers as
follows: All members are part of the lowest layer, L.
A distributed clustering protocol at each layer partitions
these members into a set of clusters with the specified size
bounds. The protocol also chooses the member which is
the graph theoretic center of the cluster, to be the leader of
the cluster. The cluster leaders of all the clusters in layer
L; join layer L;41.
Control and Data Topologies: The member hierarchy
is used to define both the control and data overlay topolo-
gies. In the control topology, all members of each cluster
peer with each other and exchange periodic refreshes be-
tween them. The data topology is defined by the following
forwarding rule on the control topology:
The source member sends a data packet to all
its peers on the control topology. Consider an
intermediate member, / that belongs to layers
Lg ... L; that receives the data packet from an-
other member, say p. Then p and A belong to the
same cluster in some layer, say ;. Member A
will forward the data packet to all other mem-
bers of cluster C'y, k # i (where C'y, corresponds
to its cluster in layer L) if and only if A is the
cluster leader of C'y,.

The ensuing data topologies are shown in Panels 1, 2 and

3, Figure 4 for different sources.

Join Procedure: A new member joins a Lq cluster that
is closest to itself with respect to the distance metric. Lo-
cating this Lg cluster is approximated by a sequence of re-
finement steps, where the joining member starts with the
topmost layer and sequentially probes one cluster in each
layer to find the “closest” member in that layer.

B. CAN-Multicast

Content-Addressable Network (CAN) [15] is an
application-level infrastructure where a set of end-hosts

Al /
AO A A2 A2

Fig. 4. NICE hierarchy and control and data topologies for a two-layer hierarchy. All A; hosts are members of only L clusters. All B; hosts
are members of both layers Lo and L. The only C host is the leader of the L, cluster comprising of itself and all the B hosts.

Z (joining member)

O o .
E — P "
<« - 1
A
+
b - - T ™ 1
B A — -« — — 1 — — —
c - - A L 1
T
F < AT 1 Y
- -—> . v
— 5> 1 * z
- | 4—} i I
— — M T < —> —> i P Q i — P Q
T | T T X 2= — X

Fig. 5. Structure of a CAN built using a 2-dimensional coordinate space and the corresponding control and data topologies.

implement a distributed hash table on an Internet-wide
scale. The constituent members of the CAN form a virtual
d-dimensional Cartesian coordinate space, and each
member “owns” a portion of this space. For example,
Panel 0, Figure 5 shows a 2-dimensional coordinate space
partitioned into zones by 34 CAN members of which 6 of
the members (A - F) are marked in their respective zones.
In [16], the authors propose an application layer multicast
scheme based on the CAN architecture.

Control and data topologies: In the control topology
two members peer with each other if their corresponding
regions in the d-dimensional space abut each other. For
example, in Panel O, Figure 5, member A has 5 neigh-
bors on the control topology, B, C, D, F and F’. The
data topology is implicitly defined by performing directed
flooding on the control topology (e.g. Panel 1, Figure 5).
In [16], one such data topology is defined by the following
forwarding rule:

The source forwards a data packet to all its con-
trol topology neighbors. Consider a member, £,
that receives a data packet from another mem-
ber, p. Members i and p are neighbors on the
control topology. Member h will forward this
packet to a neighbor, n, on the control topol-
ogy if and only if (a) n # p and (b) the packet
has not traversed half of the coordinate space to-
wards the dimension along with / and n abut.
The latter condition ensures that packets do not

loop around the CAN. Each member also main-
tains a packet cache to identify and discard any
duplicate packets.

Join Procedure: When a new member, 7 wants to join
the CAN, it queries the RP to find at least one existing
member, X, that is already joined to the CAN. Z picks a
random point in the coordinate space (say a point which
is owned by member Y'). The goal of the joining member
is to find the member Y which owns this randomly cho-
sen point. This is done by routing through the CAN, as
shown in Panel 2, Figure 5. The protocol then splits the
zone owned by Y into two, and the ownership of one of
the halves is transferred to Z (Panel 3, Figure 5).

The assignment procedure of zones of the coordinate
space to members of the CAN, as described, ignores the
relative distances between the members in constructing the
overlay. As a consequence, neighbors on the CAN may
be far apart and thus, the multicast overlay paths can have
high stretch. To remedy this situation, the authors in [16]
suggest the use of a “distributed binning”” scheme by which
members that are close to each other are assigned nearby
zones in the coordinate space.

C. Sribe

Scribe [3] is a large-scale event notification system that
uses application layer multicast to disseminate data on
topic-based publish-subscribe groups. Scribe is built on

Smaller
Leaf Set

Larger
Leaf Set

Neighborhood Set

Digits =3

Routing
Table

Fig. 6. Neighborhood of a Pastry member, with identifier 2313. All
numbers are in Base-4. The routing table has 4 rows. Each member in
the routing table share a common prefix with the member2313. Row 2
in the routing table, for example, has members (2021, 2130 and 2201)
that share the first digit (2) of their node identifiers. Additionally each
of these members in the same row have a different digit at the second
position (i.e. 0, 1 and 2 respectively). The fourth member in this row
should have the same 1-digit prefix and the digit 3 in the second posi-
tion. It is the member 2313 itself (and so it is not added to the routing
table).

top of Pastry [19] which is a peer-to-peer object location
and routing substrate overlaid on the Internet.

Each member in Pastry is assigned a random node
identifier, which may be generated by computing crypto-
graphic hash of the member’s public key. Pastry organizes
the members into an overlay in which messages can be
routed from a member to any other member by knowing
the node identifier of the latter. This organization is shown
in Figure 6. The members are represented by rectangular
boxes and their node identifiers are marked inside the box.
The node identifiers are thought of as a sequence of digits
with base 2°, where b is a small constant. In the example
in Figure 6, b = 2. In this section we refer to members by
their node identifiers.

Each member has a routing table, a neighborhood set
and a leaf set. The routing table for a member, A, con-
tains information about a set of members in the overlay
with which the member, 5, shares a common prefix. All
members in row # of the routing table of i have the same
1 — 1 digits in their node identifier prefix (as shown in Fig-
ure 6). There are 2° —1 such entries in each row. If N is the
size of the node identifier space, the total number of rows
in the routing table is log,s N, which corresponds to the
number of digits in the node identifier. If this member is
not aware of any member with a matching prefix of some
given size, the corresponding entry in the routing table is
empty. The neighborhood set of the member, A, has mem-
bers that are close to h based on the distance metric. The

L CRICKICX]

leaf set of h contains members for which the node identi-
fiers are numerically close to the node identifier of 4. It is
partitioned into two equal-sized sets with one correspond-
ing to numerically smaller node identifiers and the other
corresponding to numerically larger ones.

Control and Data Topologies: The Scribe application
layer multicast protocol uses Pastry as the underlying rout-
ing substrate to provide multicast services. Therefore the
control topology in Scribe is the same as the control topol-
ogy in Pastry. The neighbors of any member on the control
path include all its routing table, neighborhood set and leaf
set entries.

Unicast paths to specific destination identifiers in Pastry
are defined by the following rule:

A message with destination identifier, y, is

routed towards a member which has y as its node

identifier. If no such member exists on the over-

lay, the message is routed to a member, z, whose

node identifier is numerically closest to y. This

routing is performed as follows — each member

forwards the message to a member in its routing

table that shares a longer common prefix with

the destination identifier than its own identifier.

When no such member can be found in the rout-

ing table, the message is forwarded to a mem-

ber in the leaf set that is numerically closer to the

destination identifier than its own identifier.
A multicast group in Scribe typically consists of a subset
of the members that have already joined the Pastry over-
lay. Each multicast group in Scribe has its own identi-
fier (and is called the topic identifier in [3]). The member
whose node identifier is numerically closest to the multi-
cast group identifier becomes the RP for that group. The
data topology for a multicast group in Scribe is the union
of the Pastry unicast paths from the different group mem-
bers to the RP. The state for this data path is set up during
the join procedure as described next.

Join Procedure: In Scribe, when a member on the over-
lay joins a multicast group, it routes a join message using
the multicast group identifier as the destination identifier.
This message gets routed by the Pastry substrate towards
the RP. All members on this unicast path that are not al-
ready a part of the multicast data delivery tree for the group
add themselves to the tree. A member needs to be joined to
the Pastry group to be able to join a Scribe multicast group.
The join procedure for Pastry is discussed in detail in [19].

VI. OTHER APPLICATION LAYER MULTICAST
PROTOCOLS

Among the different application layer multicast proto-
cols proposed in literature we have described only a few

Scheme Type Tree-type Max. Path length Max. Tree degree Avg. Control Overheads
Narada Mesh-first Source-specific Unbounded Approx. bounded O(N)
HMTP/Yoid | Tree-first Shared Unbounded O(max. degree) O(max degree)
Bayeux/Scribe | Implicit Source-specific O(log N) O(log N) O(log N)
CAN-multicast | Implicit Source-specific O(dN 1/ 4) constant constant
NICE Implicit ~ Source-specific O(log N) O(log N) constant
TABLE I

A COMPARISON OF DIFFERENT APPLICATION LAYER MULTICAST SCHEMES.

examples in the prior sections. In this section we briefly
mention other such protocols, all of which can be classi-
fied into one of the three approaches.

Gossamer [4] is a protocol that uses the mesh-first
approach that constructs a mesh overlay for a set of
application-level proxies that are used to the protocol to
the needs of different applications. The Overcast proto-
col [10] organizes a set of proxies (called Overcast nodes)
into a distribution tree rooted at a central source for sin-
gle source multicast. A distributed tree-building protocol
is used to create this source specific tree, in a manner simi-
lar to Yoid. ALMI [13] is centralized overlay construction
protocol that also uses the tree-first approach.

Bayeux [23] is an application layer multicast scheme
which uses the implicit approach. It is built on top of a
peer-to-peer object location system called Tapestry [22].
The Tapestry overlay structure is similar to Pastry. Al-
though their underlying routing substrates are similar,
Bayeux and Scribe differ in the way the multicast data
delivery paths are created. An application layer multi-
cast scheme based on delaunay triangulations [11] has also
been defined which constructs the data delivery overlay
using an implicit approach.

VII. COMPARATIVE STUDY

Different application layer multicast protocols have var-
ious properties that make them suitable for different appli-
cations. In this section, we present a comparison of these
different protocols and comment on their suitability to spe-
cific applications. In Table I we present this comparison of
the different aspects of the protocols. The tree-first proto-
cols (Yoid and HMTP) create shared trees. All the otherre-
maining protocols create source-specific trees. However,
these source-specific trees is not nescessarily the “best”
possible tree for a given source. This is because the flexi-
bility of choosing a specific tree for each source is limited
by the structure of the control topology.

In general, it is difficult to analytically compute either
the stretch or stress metrics for most of the protocols. In

particular, an analysis of the stress metric significantly de-
pends on the characteristics of the underlying topology.
Analysis of Bayeux [14] and NICE [1] have shown that
both these protocols can guarantee a constant stretch for a
“dense distribution” of members. Simulations have shown
reasonable to good stretch performance of all the other dif-
ferent protocols.

In the table we show the path length measured by the
number of application-level hops and the maximum de-
gree of a member on the data delivery tree. These metrics
are indirectly related to the stress and stretch metrics and
are easily analyzed for the different protocols. The number
of application-level hops is unbounded for both mesh-first
and tree-first approaches. CAN-multicast also has a large
bound for the number of application-level hops on the data
path.

In Yoid and HMTP, members themselves choose their
degree, and hence provide an upper bound for the tree de-
gree. Although Narada defines a notion of maximum de-
gree on the mesh, sometimes it is required to relax this con-
straint to allow new members to join the mesh. Otherwise
in some cases new members will suffer a long latency be-
fore they find an existing mesh member with available de-
gree. Therefore, we say that the tree degree for Narada is
approximately bounded.

The average control overheads is highest for the mesh-
first protocols, since each member exchanges state infor-
mation with each other member. The average overhead at
members is constant for both NICE and CAN-multicast.

Based on these observations, we make the following in-
ferences on the applicability of the protocols to different
applications:

o Mesh-first protocols are efficient for small multicast
groups, while implicit protocols scale well with in-
creasing group sizes.

o Tree-first protocols are less suited for latency-
sensitive (e.g. real-time) applications but are useful
to implement for high-bandwidth data transfers.

« Implicit protocols are particularly beneficial when the
size of the multicast group is very large, and can be

adapted for both latency-sensitive applications (due
to their short path lengths) and high-bandwidth appli-
cations (due to low tree degree).

VIII. CONCLUSIONS

Application layer multicast is a new approach to pro-
vide multicast services to group applications. In this peer-
to-peer architecture, members organize themselves into
an overlay topology for data delivery that adapts to the
changing network conditions and group dynamics. All ap-
plication layer multicast schemes can take advantage of
network-layer multicast support where available. How-
ever, such additional network-layer capabilities are not es-
sential for these protocols and therefore, can be easily de-
ployed in the Internet today.

(1]

(2]

(3]

(4]

(3]

(6]
(7]

(8]

(9]

[10]

(1]

[12]

[13]

REFERENCES

S. Banerjee and B. Bhattacharjee. Analysis of the NICE Ap-
plication Layer Multicast Protocol. Technical report, UMIACS-
TR 2002-60 and CS-TR 4380, Department of Computer Science,
University of Maryland, College Park, June 2002.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable ap-
plication layer multicast. In Proceedingsof ACM Sgcomm, Au-
gust 2002.

M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. |EEE Journal on Selected Areasin commu-
nications (JSAC), 2002. To appear.

Y. Chawathe. Scattercast: An Architecture for Internet Broadcast
Distribution as an Infrastructure Service. Ph.D. Thesis, Univer-
sity of California, Berkeley, December 2000.

Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling Con-
ferencing Applications on the Internet using an Overlay Multicast
Architecture. In Proceedingsof ACM SGCOMM, August 2001.
Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedingsof ACM SSIGMETRICS June 2000.

S. Deering and D. Cheriton. Multicast Routing in Datagram In-
ternetworks and Extended LANs. In ACM Transactionson Com-
puter Systems, May 1990.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A re-
liable multicast framework for light-weight sessions and applica-
tion level framing. |EEE/ACM Transactionson Networking, 5(6),
December 1997.

P. Francis. Yoid: Extending the Multicast Internet Architecture,
1999. White paper http://www.aciri.org/yoid/.

J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’ Toole.
Overcast: Reliable Multicasting with an Overlay Network. In
Proceedings of the 4th Symposiumon Operating Systems Design
and Implementation, October 2000.

J. Leibeherr and M. Nahas. Application-layer Multicast with De-
launay Triangulations. In Global Internet Symposium, Globecom,
November 2001.

J.C. Lin and S. Paul. RMTP: a reliable multicast transport proto-
col. In Proceedingsof |IEEE Infocom, March 1996.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
Application Level Multicast Infrastructure. In Proceedingsof 3rd
Usenix Symposium on Internet Technologies & Systems, March
2001.

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM
Symposiumon Parallel Algorithmsand Architectures, June 1997.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proceedingsof ACM
Sgcomm, August 2001.

S.Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-
level multicast using content-addressable networks. In Proceed-
ingsof 3rd Inter national Wor kshop on Networ ked Group Commu-
nication, November 2001.

I. Rhee, N. Ballaguru, and G.N. Rouskas. MTCP: Scalable TCP-
like congestion control for reliable multicast. In Proceedings of
ACM Sigcomm, August 1998.

L.Rizzo. pgmcc: a TCP-friendly single-rate multicast congestion
control scheme. In Proceedingsof ACM Sigcomm, August 2000.
A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), November 2001.

D. Waitzman, C. Partridge, and S. Deering. Distance Vector Mul-
ticast Routing Protocol. RFC 1075, November 1998.

B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework
for delivering multicast to end users. In Proceedingsof |EEE In-
focom, June 2002.

B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An In-
frastructure for Fault-tolerant Wide-area Location and Routing.
Technical report, UCB/CSD-01-1141, University of California,
Berkeley, CA, USA, April 2001.

S.Q.Zhuang,B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant wide-
area data dissemination. In Eleventh International \Workshop on
Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV 2001), 2001.

