
Requirements for Routing

in the Application Layer

Pamela Zave

AT&T Laboratories—Research, Florham Park, New Jersey USA
pamela@research.att.com

Abstract. In the application layer of networks, many application servers
are middleboxes in the paths of messages from source to destination.
Applications require, as a basic coordination mechanism, a way to route
messages through the proper servers. This paper elaborates and justifies
the requirements for such a coordination mechanism. It presents what
is known about satisfying these requirements, and what questions still
need to be answered.

1 Routing as a coordination mechanism

In any networked application, routing is a fundamental execution mechanism.
When a node sends a message, routing determines which node will receive it.
The most familiar form of routing is routing for the network layer of the

protocol stack, especially routing according to the “classic” Internet architec-
ture. From this viewpoint, the sole purpose of routing is to get a message to its
destination.
The network literature typically distinguishes between routing, meaning the

process by which routes are advertised and local routing tables are maintained,
and forwarding, meaning the step in which a router receives a message, looks its
destination up in a table, and sends the message out again. Because this paper
is concerned more with requirements than with mechanisms, there is no need to
distinguish the two concepts. Both routing and forwarding are lumped together
as “routing.”
The main point of this paper is that applications require routing to serve a

purpose in addition to getting a message to its destination. Application servers
are often middleboxes that can only do their jobs if messages pass through
them on their way from source to destination. Consequently, there should be
an application-layer concept of routing whose purpose is to include appropriate
application servers in the paths of messages, as well as to get them to their
destinations. This form of routing would serve as a coarse-grained coordination
mechanism, because it would govern both the inclusion and order of application
servers in message paths.
Like most network concepts, routing can be hierarchical. Figure 1 shows

how application routing would fit into the hierarchy. In the application layer,
a message Ma passes through a middlebox on the way to its destination. The

middle−
box

network
router

applica−

receiver
layer

network
layer

layer
link

sender

tion
M’n

Ml lM’

n

router

Ma aM’

M

application

Fig. 1. Routing can be hierarchical, with application and network routing implemented
in different layers. (The transport layer usually comes between the application and
network layers in the protocol stack. It is omitted here because transport protocols
interact little with routing.)

middlebox is a general application server, so it can modify the message to M 0
a,

absorb it, delay it, or replicate it.

In the network layer, Ma is encapsulated inside a message Mn that is routed
to an application router by ordinary destination routing. The application router
determines that Ma should be sent first to the middlebox. It changes Mn to
M 0

n before forwarding, so that ordinary destination routing will take it to the
middlebox. A similar process goes on in the link layer, where network (IP) routers
implement ordinary destination routing for the benefit of the network layer.

To set the stage for a discussion of exactly what application-layer routing
should do, Section 2 gives four general reasons why an application server might
be used as a middlebox rather than an endpoint. This establishes the importance
of support for middleboxes.

Section 3 focuses on source/destination symmetry. This is the biggest dif-
ference between routing in the application and network layers, and hence the
biggest unmet need in the application layer. Section 3 illustrates the bad effects
of current deficiencies on service deployment, service maintenance, and security.

Section 4 introduces the routing capabilities of the Distributed Feature Com-
position (DFC) architecture [5]. DFC is a modular architecture for telecommuni-
cation services. It has been used successfully to build many voice-over-IP services,
including corporate and consumer services in daily use [3, 4]. DFC incorporates
application routing in a way that is appropriate to telecommunications, and pro-
vides a good example of what application routing can offer to service developers.

DFC routing has been accepted by the voice-over-IP industry, where it is part
of a new standard [6] for programming application servers.

DFC routing may be a good start, but it is not sufficient to meet the needs of
all Internet applications. Section 5 discusses additional requirements for routing
in the application layer. It seems desirable to consider building middleware that
can be shared among applications, but further research is necessary to design a
sufficiently general capability.

Although this paper is focused on recommendations for the application layer
of the Internet, it contains many examples from lower layers, particularly the
network and link layers. This is because some of the application-layer concerns
presented here are also relevant to lower layers, as described in [1] and [13].
Today’s Internet has many deviations from the “classic” architecture, in which
messages move transparently between endpoints. For example, a pragmatic defi-
nition of reachability in the Internet [14] combines the effects of routing, message
filtering (primarily by firewalls), and Network Address Translators (NATs).

Despite the common themes found in all network layers, it seems best to
focus on the application layer, for two reasons: (1) From a technical perspective,
the arguments for enhanced routing are strongest and least controversial when
applied to the application layer. (2) From a pragmatic perspective, the proposed
application middleware would meet urgent needs of application builders, and
incur relatively few obstacles to deployment. In lower layers, the need for change
is not so obvious, and the obstacles to deployment are far greater.

2 Middleboxes in the application layer

In the application layer, as we would expect, some applications are provided by
servers that act as the endpoints of message paths. Most Web servers function
as endpoints.

The salient characteristic of the application layer, however, is that many
applications are provided by servers that are not the endpoints of message paths.
The view that servers can be middleboxes as well as endpoints is still somewhat
controversial, because of the lasting influence of the classic Internet architecture.
For this reason, it seems worthwhile to present in detail the motivations for
servers as middleboxes. There are four such motivations, each discussed in one
of the next subsections.

Arguments against middleboxes often invoke the end-to-end arguments [12],
but these are really principles that distinguish between the network layer and
the application layer. They say that the network layer should be minimal and
highly efficient, because it is shared equally by all applications, and because it
can perform few functions as well as application-aware software can. With this
interpretation, there is no conflict whatsoever between the end-to-end arguments
and application servers as middleboxes, because any application server is an
“endpoint” with respect to the principles [13].

2.1 Being an intermediary IS the application

Some Internet applications have the purpose of acting as an intermediary be-
tween or among communicating endpoints. These applications can only be im-
plemented by servers on the message paths between endpoints.
Intermediary applications perform many common functions, for example:

† They enhance security by blocking unwanted messages. This is the motivation
for firewalls.

† They perform transcoding, protocol conversion, reformatting, or other func-
tions that enable heterogeneous endpoints to communicate.

† They filter or transform content for particular audiences, for example, chil-
dren or the disabled.

† They build multi-point connections out of point-to-point connections, and
allow the endpoints to control them by switching and conferencing.

† They improve performance in application-dependent ways. For example, they
cache Web pages.

† They improve reliability in application-dependent ways. For example, they
implement automatic retrying or retargeting.

One of the most interesting categories of intermediary consists of servers rep-
resenting third parties in the communication [2]. These servers might perform
functions desired by the endpoints, such as acting as trusted brokers. Or they
might act against the interests of the endpoints, for example by billing or wire-
tapping.

2.2 Servers enhance endpoints

Some network applications could conceivably be implemented in endpoints, but
they are not implemented in endpoints for practical reasons.
For example, it obviously makes sense to put a voicemail capability in tele-

phones, because most home answering machines work this way. When the end-
point device is a cellphone, however, there are important advantages to putting
the voicemail capability in the network rather than in the device:
† Network voicemail provides an always-available network presence for an end-
point that is often unavailable.

† Network voicemail provides a large amount of persistent storage that is always
accessible from any device.

† Network voicemail can employ speech recognition, speech search, and text-
to-speech generation. Handheld wireless devices do not usually have access
to the resources for such capabilities.

† Network software can be updated regularly, while small consumer devices do
not usually have updatable software.

If a cellphone subscribes to voicemail in the network, then its calls must go
through a middlebox that detects failure and redirects a failed call to a voicemail
server.
Home-network applications can integrate two or more single-media devices

into a single, virtual multimedia device. It would be very difficult to implement
such an application within the devices themselves.

Finally, from a different perspective, service providers may wish to offer value-
added communication services to consumers. They can only do this by imple-
menting them in network servers and including these servers in message paths.
If service providers can find a market for such services, it does not really matter
whether the services could, in theory, be implemented in consumer endpoints.

2.3 Name binding

In the application layer, there are many names serving many application-dependent
purposes. An address is one of a node’s many names, distinguished from others
only by the fact that the network layer can route to it.

Applications create and use name spaces freely. Because of this, one of the
most common and important functions performed by applications is to bind one
name to another. The two names involved in an instance of name binding can
differ in a large number of ways, for example:

† The first name can actually refer to a group of endpoints, while the second
name refers to a member of the group. Similarly, the first name can be a
service, while the second name is a server performing the service (as an
endpoint).

† The first name can be published and long-lasting, while the second is the
current network location of the endpoint. In other words, the endpoint is
mobile.

† The first name can be public or anonymous or user-friendly, while the second
name is private or secret or inscrutable.

† The first name is one of many roles or aliases employed by the owner of the
second name.

† The first name can be global, while the second is local to a subnetwork.
Similarly, the first name can be local to one subnetwork while the second
is local to another subnetwork. This type of name binding is performed by
NATs and by gateways between networks with different address spaces.

The kind of name binding that comes first to most peoples’ minds is bind-
ing of global names by means of universally accessible lookup services such as
DNS, called lookup binding here. Lookup binding supports location-independent
names. Several additional lookup name spaces, serving different purposes within
the Internet architecture, have been proposed [9, 13]. Lookup binding is also part
of popular peer-to-peer applications for file sharing and communication, each of
which creates a global name space for its own users.

There is another way to bind names in the application layer, termed path
binding to distinguish it from lookup binding. The simplest form of path binding
is shown in the left half of Figure 2. The first name is the address of a server,
here a, and the sender uses it as the destination field of a message. The addressed
server itself binds this first name to a second name a’, changes the destination
address of the message to a’, and forwards it. Path binding is different from
lookup binding because the binding server is a middlebox in the message path
between sender and receiver.

address
= a

address
dest = a[s] dest = a’[s’]dest = a’dest = a = a

serverserver

Fig. 2. Path binding is name binding performed by a server in the message path. The
name to be bound is, or includes, the address of the server.

The right half of Figure 2 shows a simple variation on path binding in which
a name consists of both an address a and a free-form string s encapsulated in the
message. The address part gets the message to the binding server, while both
parts contribute to the choice of second name. The properties of path binding
are analyzed in [17].

Path binding is extremely common. The right half of Figure 2 depicts for-
warding in a NAT, with a and a’ being IP addresses, and s and s’ being port
numbers. If a link interface in an IP router is regarded as an implicit address,
then all IP forwarding is path binding in the link layer.

Path binding is used in the application layer, in preference to lookup binding,
in two situations. First, a path-binding server at address a need only bind names
having a as their address part, rather than knowing how to bind all names in a
namespace. Hence path binding is more local and easier to deploy than lookup
binding. For example, Mobile IP [10] uses path binding to bind published mobile
addresses to current network locations. This means that each “home agent” binds
only its own address to the current location of its corresponding mobile endpoint,
and need know nothing about other mobile endpoints.

The second situation in which applications use path binding is when they
need to include an application server in a message path, and have no other
mechanism with which to accomplish it. They introduce an artificial name bind-
ing for the purpose of including the server, rather than including a server for
the purpose of performing a name binding. This situation is discussed further in
Section 3.

2.4 Software composition

Application servers are, among other things, modules of software. Composition—
assembling complex software by composing simpler software modules—is how we
make software development “scale up.”

The final motivation for using servers as middleboxes is that this provides
a valuable mechanism for software composition. When one or more servers sit
on a message path between two endpoints, then the relevant software of each
server is composed with the software of the other servers and the software of
the endpoints in a pipes-and-filters configuration. Pipes-and-filters composition
makes it relatively easy to augment or change an existing application by adding
to or changing the servers in message paths.

Pipes-and-filters composition is evident in the deployment of proxies and re-
verse proxies between clients and Web servers. It is implicit in the use of firewalls,
NATs, gateways, and other common network elements. The principle purpose of
DFC (Section 4) is to support pipes-and-filters composition of telecommunica-
tion features.
Multiplayer games are a rapidly-growing application area that illustrates

many of the themes in this section. For such games to be playable, they must
satisfy stringent requirements for scalability, latency, and fairness. Achieving
this on a global scale will probably require hierarchies of middleboxes. These
hierarchies will be carefully engineered to optimize performance and arbitrate
fairness.

3 Source/destination symmetry

In the network layer, the sole purpose of routing is to find the destination of
a message. A router can be thought of as a server working on behalf of each
destination, helping to get its messages delivered. There is no need to “find” the
source of the message, and there are no servers acting on behalf of the source.
In the application layer, there are also servers that work on behalf of des-

tinations, helping their messages to find the destinations. With this important
exception, most reasons for including an application server in the path of a
message are potentially symmetric. If there is a destination-related reason for
including a server in a message path, probably there is a corresponding source-
related reason.
This is why Web terminology includes “proxies,” associated with clients, and

“reverse proxies,” associated with servers. In the world of Web technology, there
are reverse proxies for security (firewalls) and performance (load balancing).
There are proxies for security (anonymizing, blocking access to some sites) and
performance (caching). There are also client-side (source-related) proxy functions
that have no destination counterparts; these include reformatting for special
devices and filtering out annoying forms of advertisement.
In telecommunications, which is a peer-to-peer service, symmetry is even

more prominent. Once a telephone call has been established, its two parties are
equal. Either party (or both parties) may wish to have features that perform
switching, transfering, recording, or other mid-call functions.
Source/destination symmetry is the biggest difference between routing in

the application and network layers. Because the network layer has little need for
source-related servers, there is poor support for them in any layer.
A possible mechanism for including application servers on behalf of the source

is source-subscription routing. In source-subscription routing, an address a can
source-subscribe to another address a’. If there is such a subscription, then a
message with source address a is first routed to the node at address a’. If this
node is a server and chooses to forward the message, then the forwarded message
is next routed to its destination address in the ordinary way. Obviously, an
implementation of source-subscription routing requires a bit of history in the

message, to distinguish the hop originating at the sender from the hop originating
at the server.

server
b p sdest = s

source = b

dest = s

source = b Web
proxy
Webbrowser

Fig. 3. Including a Web proxy in the path of an HTTP request, by means of source-
subscription routing. Address b source-subscribes to address p.

It is common for network administrators to want all browsers in their sub-
networks to make requests through a particular Web proxy. Figure 3 shows the
use of source-subscription routing to meet this goal. Address b of the browser
source-subscribes to address p of the proxy, which means that every message
with source = b is routed to p before it is routed to its destination. Note that no
address translation is required to deliver the message to the Web server through
the proxy.
In the absence of source-subscription routing, the common solution to the

proxy problem is for the browser to send its original HTTP request with desti-
nation = p, and s encapsulated in the message. When the proxy forwards the
message, it changes the destination to s. The proxy can be regarded as per-
forming path binding, binding name p[s] to s. This is an example of using path
binding to include a server in a message path rather than to perform “real” name
binding, as mentioned in Section 2.3.
This common solution has two major deficiencies. The first is that every

browser in the subnetwork must be configured to use p; ensuring this is well
known to be a problem for administrators. The second is that the solution re-
lies on the cooperation of the browser, which may not be forthcoming if the
interests of the browser’s user differ from the interests of the administrator.
Source-subscription routing avoids both the configuration problem and the se-
curity problem by keeping both information and enforcement away from the
browser.
As an alternative to the use of path binding to solve the proxy problem, one

might think of putting a routing list or stack [p, s] in the message. Theoretically,
this is provided for by IP source routing, although source routing is disabled in
most subnetworks. In any case, a routing list has the same configuration and
security deficiencies as the use of path binding.
For a second example of the use of source-subscription routing, consider the

problem of making a connection to a mobile endpoint, as shown in Figure 4.
Address M is the published mobile address of the endpoint, and address m is its
current network location. The requestor of the connection knows the endpoint
only by M. Ordinary destination routing and path binding enable the request
message to pass through the location server for M and be delivered to m.

dest = M m
endpoint

M
server

dest = m

reply
source = M source = m

M

server
location

locationiniti−
atorrequest

mobile

Fig. 4. Making a connection to a mobile endpoint, by means of source-subscription
routing. Address m source-subscribes to address M.

The need for source-subscription routing arises when the mobile endpoint
replies to the request. The correct source address for the reply is m, yet the
initiator must receive the message with source = M. This will enable the initiator
to identify the message as a reply to its request. Furthermore, the initiator must
continue to send all messages within the connection with destination = M. This
is necessary so that each message from the initiator goes through the location
server and is directed to the current location of M, which may be a new address
m’ rather than m.

With source-subscription routing, a current location m source-subscribes to
M or some other suitable server address. The source server receives the reply
and changes m to M in the source field before forwarding.

This design is very similar to Mobile IP, except that Mobile IP does not
have the advantage of source-subscription routing. In its absence, the mobile
endpoint sends its reply with source = M. In most cases, M does not belong to
the address space of the subnetwork of m. Hence the reply is discarded by a local
firewall that performs ingress filtering. This has been the major obstacle to the
deployment of Mobile IP [10].

A mobile endpoint can request a connection as well as accept a request for
a connection, then move during the lifetime of the connection. In Figure 4, if
the mobile endpoint were the requestor of the connection, source-subscription
routing would apply to the request message. It would be routed throught the
endpoint’s location server, and its source address m would be changed to M.

Figure 4 has some similarities to the deployment of NATs, where M would
be the single public address of the subnetwork behind the NAT, and m would be
a private address within the subnetwork. In the NAT case, port numbers would
be used to distinguish among the many private addresses represented by M, as
in the right half of Figure 2.

The NAT case is interesting here because the reply message from m is routed
through M by yet another mechanism. It is clearly not IP source routing or
source-subscription routing. It is not ordinary destination routing, because M
is not found in the destination field of the message. Rather, the mechanism is

an assumption that lower layers are configured so that a message cannot travel
from m to the public Internet except by going through the NAT.
Arguably, NATs are active agents in all of the link, network, and transport

layers, which accounts for the complexities that arise from them. This kind of
layer spanning is neither possible nor desirable for typical applications, which
may have no special administrative privileges, and which should be organized
for easy maintenance. We return to the NAT example in Section 5.

4 Routing in the DFC architecture

As mentioned in previous sections, the Distributed Feature Composition (DFC)
architecture supports pipes-and-filters composition of software modules. These
modules are intended to implement individual, user-controllable capabilities known
as features. In practice, the unit of composition can be a whole application server
or a software module (“virtual server”) within an application server. DFC uses
the term box to encompass application servers (whether real or virtual) and
endpoints.
This section summarizes the capabilities of DFC routing. The emphasis is on

routing behavior and the goals it satisfies, rather than on implementation; the
implementation is straightforward once the behavior is understood.

4.1 Message paths

The full path of a message is defined implicitly by the methods used in boxes.
A box uses the new method to send a new message. A box uses the continue
method to forward an existing message.
A full message path (see Figure 5) has a source region in which it is routed to

boxes on behalf of the source, and a target region in which it is routed to boxes
on behalf of the target.1 When both source and target regions are exhausted, it
is routed to its target in the ordinary way.2

Within the source region, boxes are included because of source-subscription
routing. Within the target region, boxes are included because of target-subscription
routing. Thus a message can be routed to a box because the target address sub-
scribes to the box, then (when it is forwarded by the box) be routed to another
box whose network address is the target.
The source or target subscription of an address is actually a list of boxes

rather than a single box (the list can be empty). The boxes are routed to in the
order listed. The boxes in a message path present because of the source (target)
subscription of a single address are called the source (target) zone of the address.
When a box continues (forwards) a message, it can change the source or target

address. If the box lies in the source region and changes the source address, then

1 DFC terminology uses “target” instead of “destination”, for brevity.
2 It is also possible to define a network region between the source and target regions,
for boxes that provide network functions such as billing.

G Hs1 t1FA B D E
source = s1

zone of t2
source zone of s2source zone of s1 target zone of t1target

source = s2

target = t2 target = t1

source region target region

Fig. 5. A message path created by DFC routing.

any remaining boxes in the source subscription of the original source address are
omitted from the message path. Rather, routing immediately begins to traverse
the source subscription of the new source address. For example, in Figure 5,
the source-subscription of address s1 is [A, B, C]. Box B changes the source
address to s2, however, so rather than going to box C, the message is next routed
to D. Similarly, if a box in the target region changes the target address, then the
next box in the path is the first box of the target subscription of the new target
address.
We are already familiar with target-region boxes that change the target ad-

dress, because this is just another form of path binding. It is also useful, however,
for source-region boxes to change the source address. For example, a box could
change the original source address, which is the address of the calling device, to
a personal address associated with the person sending the message. This has two
benefits. First, the personal address is a better identifier of the sender for the
benefit of the receiver. Second, the message can then be routed through boxes
subscribed to by the personal address, thus utilizing their functions.
DFC routers must have access to the relevant subscription data. The neces-

sary routing history of an individual message is carried along in the message,
so that routers do not maintain state at that level. The routing history may be
encrypted so that boxes cannot read it.

4.2 Composition, modularity, and additive authority

The path mechanisms in the previous section meet the application-layer require-
ments of composition, modularity, and additive authority.
Composition dictates that there is no such thing as a unique server. If there

is a reason why one server should be included in a message path, then the same
reason might also apply to multiple servers. DFC routing supports composition
in two ways. First, a subscription can be a list of any length, so that a zone can
contain any number of boxes (servers). Second, a region can contain any number
of zones.
Modularity dictates that servers should not know or need to know which

other servers are present in the message path. When this requirement is satisfied,

each server can be developed independently. Also, server configurations can be
changed easily, because the servers themselves need not change. DFC routing
was designed very specifically to satisfy this requirement.3

The most common violation of the modularity requirement is the use of
path binding to include servers in message paths (Sections 2.3 and 3). Often the
purpose of these servers has nothing to do with name binding. If multiple servers
are required, and if path binding is the only available means to include them,
then every server must know the address of the next server in the path.
Composition and modularity can be illustrated with Web proxies. A user

might wish to use all three of these proxies:

– A text-to-speech “edge service” proxy, which improves Web access for the
visually impaired.

– Privoxy, which is a filtering proxy that can remove advertisements and other
“Internet junk.”

– A Tor client. The Tor client encrypts and chooses an anonymized, random
route through participating Tor nodes to the requested server. The purpose
of Tor is to protect the user’s privacy, particularly from attacks by traffic
analysis.

The proxies must be applied to each HTTP request in the order shown in Fig-
ure 6. Because the text-to-speech proxy gets each request before Privoxy, it gets
each Web page after Privoxy has filtered it. Because Privoxy gets each request
before the Tor client, it gets each Web page after Tor has decrypted it.

text−to−
speech
proxy

Privoxy client
Tor

Fig. 6. Using multiple Web proxies.

With DFC routing, it would be easy to deploy the proxies in this way. It
would also be easy to make Tor optional for each such user, by allowing the
user to toggle his subscription to the Tor client. This is valuable because fetches
through Tor are inevitably slow.
With current technology, on the other hand, each proxy must be configured

to send requests to the next one. It is impossible to remove Tor from the message
path without altering the configuration of Privoxy. If Privoxy is running as a
shared server in a local-area network, then it is impossible to apply Tor to the
requests of some users and omit it from the simultaneous requests of other users.4

3 This simplified view of modularity is appropriate for discussion of routing, which pro-
vides coarse-grained coordination. Finer-grained coordination may require analysis
and management at the protocol level, as exemplified by [15].

4 I am indebted to Trevor Jim for this example.

Finally, additive authority means that a server should be included in a mes-
sage path if one of the endpoints desires it or if the relevant administrator desires
it. As a general security requirement, it should be easy for an administrator to
ensure that all messages of a particular type go through a particular security
server. DFC routing supports additive authority because our implementations
allow both parties to contribute to the subscription lists. In practice, almost
every subscription has contributions from both parties.

4.3 Usages

DFC is connection-oriented. For this reason, the only messages that are routed as
described above are the messages that request connections. Within each inter-box
hop of a request message, the reply message forms an independent box-to-box
connection. All subsequent signaling takes place within these connections.
DFC boxes and signaling connections form dynamic graphs called usages.

DFC usages have many interesting properties and behaviors, some of which are
illustrated by the usage in Figure 7.

VM ACB MCM CW
A A

MCM

CW ACB VMMCM MCM CW

CW

C

A A B B B
*

A

C C C

BA

D D

Fig. 7. DFC usages are dynamic graphs that evolve over time.

There are four user endpoints: A, B, C, and D. DFC subscriptions actually
name types of boxes rather than boxes themselves. Each of the four endpoints
subscribes to the same box types, namely [CW, MCM, ACB] in the source region,
and [VM, MCM, CW] in the target region. The acronyms stand for Call Waiting,
Mid-Call Move, Automatic CallBack, and Voice Mail, respectively. Voice Mail is
a target-side failure treatment: if the endpoint cannot be reached, redirect the
call to a voicemail server. Automatic CallBack is a source-side failure treatment:
if an attempt to place a call fails, remember it and try again later.
DFC maps between box types and boxes as follows. There are two categories

of box type, free and bound. When a DFC router needs to route to a box of a free
type, it simply creates a fresh new instance of the box type. In contrast, there

is only one instance of a bound box type for each address that subscribes to the
type. When a DFC router needs to route to a box of a bound type, it routes to
the unique instance associated with the relevant address. In this example, Call
Waiting is a bound type, and all others are free.

In Figure 7, A has placed a successful call to B. Each box instance is labeled
with the address on behalf of which it is included in the usage. The arrows show
the direction that the request message traveled to set up these connections.

In Figure 7, C has also placed a call to A. This call is also successful, because
A has Call Waiting, which accepts the call. In this example, CW and MCM are
reversible box types, which means that a subscriber subscribes to them in both
regions, because they are useful to both callers and callees. Reversible box types
are the ultimate example of source/destination symmetry. Although the request
from A to B was routed to CWA in the source region, the request from C to A is
routed to CWA in the target region. Now A has a signaling connection to both
B and C, and can switch the voice channel so as to talk to either B or C at any
moment.

A represents a user’s home phone, and D represents the same user’s cellphone.
While A was connected to C and talking to B, the user noticed that it was time to
go to work. He invoked the function of Mid-Call Move to move the B conversation
to his cellphone, resulting in the third row of the figure. In the next instant the
Mid-Call Move box will drop the connection marked with an asterisk, resulting in
two separate usages. The user can hand telephone A to another family member
to continue talking to C. Alternatively, hanging up telephone A will tear down
the entire usage to C.

This is a specific example of a general pattern, which is that a long-lasting
connection can be made up of connection segments that were not set up at the
same time or in the same direction. The connection from A to C has segments
set up from A to CWA and from C to CWA. The connection from B to D has
segments set up from MCMA to B and from MCMA to D. Routing correctly
in this situation requires a third method: in addition to forwarding with the
continue method, a box can forward with the reverse method [16].

Similar structures might also arise in automotive infotronics, in which most
communication consists of streams of sensor/actuator data. A sensor should be
engaged in some end-to-end connection at all times, to ensure that critical data
is not being lost, which means that some connection segments will be very long-
lasting. At the same time, the exact configuration of data streams and functional
components will vary with the vehicle’s current mode of operation.

Despite the subtlety of usages, it is possible to prove useful properties about
them [16]. For example, any connection between two endpoints X and Y with
these same subscriptions contains the following subsequence of box instances:
[CWX , MCMX , MCMY , CWY].

5 This invariant is true regardless of how the
connection was initially formed or how it has evolved over time.

5 After the instance of MCMA moves the connection to D, we consider it an instance
of MCMD. It can be signaled from D to move the connection again.

5 Unmet requirements and future work

This section considers the possibility of building middleware that performs rout-
ing for the application layer. It would be deployed in the network as shown
in Figure 1. It would make applications easier to build, deploy, maintain, and
improve. It would also make them more secure.
This middleware should be shared among applications, amortizing its cost

and, more importantly, facilitating convergence among applications. The value
of current Internet applications is greatly reduced by the fact that each one
tends to be an isolated fiefdom. Furthermore, this isolation limits imagination
and innovation, as it prevents us from seeing the potential relationships among
applications.

5.1 Deficiencies of DFC routing

It seems that the DFC routing capability is a good start toward meeting the
routing needs of Internet applications, but it is not sufficient. This section dis-
cusses its deficiencies for this purpose, and the research needed to remove the
deficiencies.
DFC routing was designed for the single application of telecommunications.

It has been amply illustrated that the principles of DFC routing are relevant for
other applications, taken individually. Now we need to understand how routing
could contribute to application convergence, which might mean routing messages
through servers associated with different applications.
DFC routing was also designed for a single administrative domain. Multiple

administrative domains are a fact of life in the Internet, and there are many
questions about how DFC routing should be extended to include them. For
example, consider the source and target regions in Figure 5. If the message path
extended across multiple administrative domains, would it still look like this, or
would there be a source and target region of the message path for each domain?
Interestingly, there are good arguments for both answers to this question.
All the other deficiencies of DFC routing come down to efficiency in one way

or another. As noted in Section 4, DFC routing is most often used to route
messages to virtual servers within a physical application server. In this context,
efficiency is not critical, and has received correspondingly little attention.
First, DFC routing often routes to boxes that will never be activated in this

particular communication. These boxes simply behave transparently throughout
their lifetime. The inefficiency of including transparent servers in message paths
could be reduced by offering finer-grained selection criteria.
For an example, let us return to the NAT example at the end of Section 3.

Say that a node with private address m is replying to a connection request from
the open Internet. We want to use DFC routing to route the reply through a
NAT, which will change the source address from private m to public M. Source-
subscription routing is not very good for this purpose, because it will route every
message from m to the NAT. If the message is destined for another node within
the same subnetwork, then the NAT must behave transparently. An optimal

subscription mechanism would route the message to the NAT only if the source
is local to the subnetwork and the destination is not.

Second, a DFC request message goes through a DFC router each time it is
forwarded. There should be a way to make the router visit optional, for situations
in which it is not required. Note, however, that the mandatory router visit is an
important security mechanism. Any optimization must be carefully designed to
leave the security intact, allowing only trusted parties to circumvent it.

Finally, all DFC messages other than requests retrace the exact paths laid
down by requests, with no servers omitted. Yet there are many situations in
which subsequent messages could take a more direct route. The Session Initia-
tion Protocol [11] allows the reply to a request to skip servers by distinguishing
between record-route proxies and others. Even with DFC-style signaling to con-
trol IP media channels, the media packets themselves can travel directly from
end to end [18].

5.2 Related work

In the current Internet architecture, the only mechanisms available for influenc-
ing or altering ordinary destination routing are IP source routing, underlying
network topology, path binding, and lookup binding. None of these as currently
used is secure, robust, and general enough to meet the full spectrum of applica-
tion requirements.

In [1], lookup binding is used to achieve the effective equivalent of destina-
tion subscription routing in DFC: a sender looks up the destination (a global,
location-independent identifier), yielding a route to traverse to get to the desti-
nation. Section 2.3 showed that lookup binding and path binding are architec-
turally different ways to bind names. Section 1 showed application-level routing
as implemented by path binding at a lower level. The use of lookup binding
in [1] shows us that lookup binding is another implementation possibility for
application-level routing.

There are several well-known middleware systems to support each of the
publish/subscribe architecture and grid computing. There are also middleware
systems for other coordination architectures such as distributed tuple spaces,
e.g., [8]. In general these architectures are not concerned with middleboxes in
message paths. As a result, their routing activities tend to be overlays on ordi-
nary destination routing. For example, a grid architecture can be used to locate
a desired resource for a potential client of that resource. The location is a des-
tination address, which the client proceeds to use in the ordinary way.

Service-oriented architecture is such an active area that there are several
service-oriented architectures. At the simpler end, as above, the architecture
helps to locate a service for a client. Once located, the service is reached by ordi-
nary destination routing. At the more complex end, “choreography” languages
such as WS-CDL are used to create global descriptions of distributed Web-based
services. As this technology matures, we will see whether choreography is com-
patible with DFC routing, or whether it requires tight logical coupling between

servers. In the latter case, the compositional freedom supported by DFC routing
would not be required or even allowed.
A new effort to formalize what routers (in the most general sense of the term)

do promises to be relevant to the application layer [7]. In particular, it can help
to define the space from which potential optimizations can be chosen.

5.3 Future work

Before we can propose a specific middleware system for routing in the application
layer, three broad open questions must be answered.
First, the most powerful routing functions are expensive in terms of visits

to servers and routers. We must understand how to provide a large range of
cost/function trade-offs, and how to guide users in making choices.
Second, the proposed new middleware must support convergence of different

applications, and it must compose well with middleware for other purposes.
These are areas in which there is little general knowledge, and much research to
be done.
Third, we must understand how to extend the current routing scheme to mul-

tiple administrative domains. Both routing and subscription mechanisms must
be examined from a security perspective.

6 Summary

This paper has explained why routing through middleboxes is an important
coordination mechanism in the application layer, and justified the claim with
examples from Web services, home networks, telecommunications, mobile IP,
automotive infotronics, and multiplayer games.
The current mechanisms available for influencing routing in the Internet are

not general enough to meet the needs of applications, nor do they enhance secu-
rity or facilitate the deployment and maintenance of applications. The biggest
gap is caused by the fact that applications have a great deal of source/destination
symmetry, while routing at the network level is focused exclusively on the des-
tination.
The application-specific routing capability of the DFC architecture is a better

model, and meets many requirements that are shared by all applications. How-
ever, the fact that it was designed for a specific application means, inevitably,
that some requirements of different applications are neglected. This paper iden-
tifies the deficiencies and explains the questions that must be answered before
the routing requirements of all applications can be met.

References

1. H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish. A layered naming architecture for the Internet. In Proceedings of
SIGCOMM ‘04. ACM, August 2004.

2. M. S. Blumenthal and D. D. Clark. Rethinking the design of the internet: The
end-to-end arguments vs. the brave new world. ACM Transactions on Internet
Technology, 1(1):70–109, August 2001.

3. G. W. Bond, E. Cheung, H. H. Goguen, K. J. Hanson, D. Henderson, G. M.
Karam, K. H. Purdy, T. M. Smith, and P. Zave. Experience with component-
based development of a telecommunication service. In Proceedings of the Eighth
International Symposium on Component-Based Software Engineering, pages 298–
305. Springer-Verlag LNCS 3489, May 2005.

4. G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open
architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83–123, February 2004.

5. M. Jackson and P. Zave. Distributed Feature Composition: A virtual architec-
ture for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

6. JSR 289: SIP Servlet API Version 1.1. Java Community Process Early Draft
Review, http:// www.jcp.org/ en/ jsr/ detail?id=289, 2007.

7. M. Karsten, S. Keshav, and S. Prasad. An axiomatic basis for communication. In
Proceedings of the Fifth Workshop on Hot Topics in Networks. ACM SIGCOMM,
2006.

8. A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coordination model and
middleware supporting mobility of hosts and agents. ACM Transactions on Soft-
ware Engineering and Methodology, 15(3):279–328, July 2006.

9. M. J. O’Donnell. Separate handles from names on the Internet. Communications
of the ACM, 48(12):79–83, December 2005.

10. C. E. Perkins. Mobile IP. IEEE Communications, May 1997.
11. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

12. J. Saltzer, D. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

13. M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In Proceedings of the Sixth Usenix
Symposium on Operating Systems Design and Implementation. ACM, December
2004.

14. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford. On static reachability analysis of IP networks. In Proceedings of IEEE Info-
com. IEEE, March 2005.

15. P. Zave. An experiment in feature engineering. In A. McIver and C. Morgan,
editors, Programming Methodology, pages 353–377. Springer-Verlag, 2003.

16. P. Zave. Ideal connection paths in DFC. Technical report, AT&T Research, Novem-
ber 2003.

17. P. Zave. Compositional binding in network domains. In Proceedings of the Four-
teenth International Symposium on Formal Methods, pages 332–347. Springer-
Verlag LNCS 4085, 2006.

18. P. Zave and E. Cheung. Compositional control of IP media. In Proceedings of the
Second Conference on Future Networking Technologies. ACM SIGCOMM, 2006.

