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Introduction to Stream Processing 
and Apache Flink
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Stream Processing
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 Stream processing is a computer programming paradigm, 
equivalent to:
• Dataflow Programming

• Event Stream Programming

• Reactive Programming

 Stream processing is designed to analyze and act on real-
time streaming data, using “continuous queries” (i.e. SQL-
type queries that operate over time and buffer windows).

 Stream processing solutions are designed to handle high 
volume in real time with a scalable, highly available and 
fault tolerant architecture.



Use Cases for Real Time Stream Processing 
Systems
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 Financial Services
• Real-time fraud detection.
• Real-time mobile notifications.

 Healthcare
• Smart hospitals - collect data and readings from hospital devices 

(vitals, IVs, MRI, etc.) analyze and alert in real time.
• Biometrics - collect and analyze data from patient devices that collect 

vitals while outside of care facilities.
 Ad Tech

• Real-time user targeting based on segment and preferences.
 Oil & Gas

• Real-time monitoring of pumps/rigs.
 Telecommunications

• Real-time antenna optimization based on user location data.
• Real-time charging and billing based on customer usage, ability to 

populate up-to-date usage dashboards for users.



What are the Requirements?

 Low latency
• Results in millisecond

 High throughput
• Millions of events per second

 Exactly-once consistency
• Correct results in case of failures

 Out-of-order events
• Process events based on their associated time
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What is Apache Flink?
 Apache Flink is an open source platform for scalable stream and 

batch processing.
 The core of Flink is a distributed streaming dataflow engine.

• Executes dataflows in parallel on clusters
• Provides a reliable backend for various workloads
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Comparison

 One of the strengths of Apache Flink is the way it combines many desirable 

capabilities that have previously required a trade-off in other projects.

8



Who uses Flink?
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Flink in Streaming Architectures
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Auto-Parallelizing Stateful 
Distributed Streaming Applications
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Stream Graph

 Streaming applications are directed graphs

• Vertices are operators

• Edges are data streams.
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Stream Graph
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 When operators are connected in chains, they expose 
inherent pipeline parallelism.

 When the same streams are fed to multiple operators that 
perform distinct tasks, they expose inherent task parallelism
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Data Parallelism
 Data parallelism involves splitting data streams and replicating operators.

 In a streaming context, replication of operators is data parallelism because each 
replica of an operator performs the same task on a different portion of the data.

 The parallelism obtained through replication can be more well-balanced than the 
inherent parallelism in a particular stream graph, and is easier to scale to the 
resources at hand.

 Data parallelism has the advantage that it is not limited by the number of 
operators in the original stream graph.
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Data Parallelism
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Routing

 When parallel regions only have stateless operators, the splitters route 
tuples in round-robin fashion, regardless of the ordering strategy.

 When parallel regions have partitioned state, the splitter uses all of the 
attributes that define the partition key to compute a hash value. That 
hash value is then used to route the tuple, ensuring that the same 
attribute values are always routed to the same operators.

 Stateful Operators:
• Join

• Aggregate

• KeyBy (PartitionBy)

• Windows

• …

 Stateless Operators:
• Map

• Filter

• …
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Flink’s Dataflow Programming 
Model
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Programs and Dataflows
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Parallel Dataflows
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Tasks and Operator Chains
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Distributed Execution
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Task Slots and Resources
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 Each worker (TaskManager) is a JVM process, and may execute one or more 
subtasks in separate threads.

 Each task slot represents a fixed subset of resources of the TaskManager. A 
TaskManager with three slots, for example, will dedicate 1/3 of its managed 
memory to each slot.

 By adjusting the number of task slots, users can define how subtasks are isolated 
from each other. Having one slot per TaskManager means each task group runs in 
a separate JVM

 Tasks in the same JVM share TCP connections (via multiplexing) and heartbeat 
messages



Handling Time
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Notions of Time
 Processing Time

• The time that the event is observed by the machine that is processing it.

• Best performance and the lowest latency.

 Event Time
• The time that an event actually happened in the real world.

 Ingestion Time
• The time that the event enters the stream processing framework.
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Notions of Time

25



Notions of Time

 Event time and processing time always have a time-varying lag 
(called event time skew).
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Window

 Windows are the mechanism to group and collect a bunch of 
events by time or some other characteristic in order to do 
some analysis on these events as a whole (e.g., to sum them 
up).
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Time Window

 Tumbling Windows
• A tumbling windows assigner assigns each element to a window of a 

specified window size.

• Tumbling windows have a fixed size and do not overlap.
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Time Window

 Sliding Windows
• The sliding windows assigner assigns elements to windows of fixed length.

• Sliding windows can be overlapping if the slide is smaller than the window size.
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Session Windows

 Session Windows
• The session windows assigner groups elements by sessions of activity.

• A session window closes when it does not receive elements for a 
certain period of time.
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Watermarks

 The mechanism in Flink to measure progress in event time is Watermarks.

 Watermarks flow as part of the data stream and carry a timestamp t

 A Watermark(t) declares that event time has reached time t in that 
stream, meaning that there should be no more elements from the stream 
with a timestamp t’ <= t
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Watermarks in Parallel Streams
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 As the watermarks flow through the streaming program, they advance the event time at the 
operators where they arrive.

 Whenever an operator advances its event time, it generates a new watermark downstream 
for its successor operators.

 The operator’s current event time is the minimum of the input streams’ event time. As the 
input streams update their event time, so does the operator.



Late Elements

 If a certain elements violate the watermark condition, 
delaying the watermarks by too much is often not desirable, 
because it delays the evaluation of the event time windows by 
too much.

 Some streaming programs will explicitly expect a number 
of late elements.

 Late elements are elements that arrive after the system’s 
event time clock (as signaled by the watermarks) has already 
passed the time of the late element’s timestamp.
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Stateful Computation
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Stateful Computation

 A stateful program creates output based on multiple events 
taken together
• All types of windows

• All kinds of state machines used for complex event processing (CEP).

• All kinds of joins between streams as well as joins between streams, 
and static or slowly changing tables.
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Notions of Consistency

 Consistency is, really, a different word for            
“level of correctness”

• How correct are my results after a failure and a successful 
recovery compared to what I would have gotten without 
any failures?

 Assume that we are simply counting user logins 
within the last hour.

• What is the count (the state) if the system experiences a 
failure?
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Notions of Consistency

 People distinguish between three different levels of 
consistency:

• At most once: At most once is really a euphemism for no 
correctness guarantees whatsoever—the count may be 
lost after a failure.

• At least once: At least once, in our setting, means that the 
counter value may be bigger than but never smaller than 
the correct count. So, our program may over-count (in a 
failure scenario) but guarantees that it will never under-
count.

• Exactly once: Exactly once means that the system 
guarantees that the count will be exactly the same as it 
would be in the failure-free scenario.
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Checkpoints: Guaranteeing Exactly Once

 Checkpoints allow Flink to recover state and positions in the 
streams to give the application the same semantics as a 
failure-free execution.

 Asynchronous Barrier Snapshotting (ABS) Algorithm
• Low impact on performance

• Low space costs

• Linear scalability

• Performing well with frequent snapshots.

• Inspired by the standard Chandy-Lamport algorithm
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ABS for Acyclic Dataflows
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ABS for Cyclic Dataflows
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Checkpointing in Flink

 Barriers
• Injected into the data stream and flow with the records as part of the 

data stream.

• A barrier separates the records in the data stream into the set of 
records that goes into the current snapshot, and the records that go 
into the next snapshot.

• Barriers do not interrupt the flow of the stream and are hence very 
lightweight.
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Checkpointing in Flink
 As soon as the operator received snapshot barrier n from an incoming stream, it cannot 

process any further records from that stream until it has received the barrier n from the 
other inputs as well. Otherwise, it would have mixed records that belong to snapshot n and 
with records that belong to snapshot n+1.
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Checkpointing in Flink
 Streams that report barrier n are temporarily set aside. Records that are 

received from these streams are not processed, but put into an input buffer.
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Checkpointing in Flink
 Once the last stream has received barrier n, the operator emits all pending 

outgoing records, and then emits snapshot n barriers itself.
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Checkpointing in Flink
 After that, it resumes processing records from all input streams, processing 

records from the input buffers before processing the records from the 
streams.
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Stateful Operations
 When operators contain any form of state, this state must be part of the 

snapshots as well. Operator state comes in different forms

• User-defined state: This is state that is created and modified directly by the 
transformation functions (like map() or filter()).

• System state: This state refers to data buffers that are part of the operator’s 
computation. A typical example for this state are the window buffers
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Stateful Operations

 Flink offers the user facilities to define state.

 An example:
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Stateful Operations
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Stateful Operations
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Stateful Operations
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Stateful Operations

51

KeyBy

KeyBy

KeyBy

Map

“b”, 2

“c”, 1

“b”, 5

pos1

4

5

3Checkpoint Complete

Map

Map

pos2 pos3

ckpt

ckpt

ckpt

0 5 1

“a”, 2“a”, 4

“c”, 3



Stateful Operations
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Stateful Operations

53

KeyBy

KeyBy

KeyBy

Map

“b”, 2

“c”, 1

“b”, 5

pos1

0

5

1Restore positions 
and counter values

Map

Map

pos2 pos3

ckpt

ckpt

ckpt

0 5 1

“a”, 2“a”, 4

“c”, 3

“a”, 2

“a”, 2

“c”, 2



Flink Performance
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Batch API

 Apache Flink does the TeraSort job in about half of the time of Apache 
Spark. For very small cases, Apache Flink almost has no execution time 
while Apache Spark needs a significant amount of execution time to 
complete the job.
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Batch API

 Apache Flink has about a constant rate of incoming and outgoing network 
traffic and Apache Spark does not have this constant rate of incoming and 
outgoing network traffic.
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Batch API

 The behaviour of the disk also reflects to behaviour of the network.
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Stream API

 The fact that Apache Flink is fundamentally based on data streams is 
clearly reflected. The mean latency of Apache Flink is 54ms (with a 
standard deviation of 50ms) while the latency of Apache Spark is centered 
around 274ms (with a standard deviation of 65ms).
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Stream API

 Spark Streaming suffered from a throughput-latency tradeoff. As batches 
increase in size, latency also increases. If batches are kept small to 
improve latency, throughput decreases. Storm and Flink can both sustain 
low latency as throughput increases.

59



Conclusion

 Flink is an open-source framework for distributed stream 
processing that:
• Provides results that are accurate, even in the case of out-of-order or late-

arriving data.

• Is stateful and fault-tolerant and can seamlessly recover from failures 
while maintaining exactly-once application state.

• Performs at large scale, running on thousands of nodes with very good 
throughput and latency characteristics.

• Guarantees exactly-once semantics for stateful computations.

• Supports stream processing and windowing with event time semantics.

• Supports flexible windowing based on time, count, or sessions in addition 
to data-driven windows.

• Flink’s fault tolerance is lightweight and allows the system to maintain 
high throughput rates and provide exactly-once consistency guarantees at 
the same time.

• Is capable of high throughput and low latency (processing lots of data 
quickly).
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