
ownCloud
By Sirus Shahini

1Iran University of Science and Technology

Department of Computer Engineering

Introduction

 Data and data storage

 Impotence of traditional storage mechanisms due to excessive need for larger

and more flexible media

 Larger storage capacity cannot be attained locally

 Introduction of new approaches to data storage

 Web-based cloud storage as an incarnation of modern treatment of the issue

 Introducing OwnCloud as an open source cloud service

2

So why not keep it the Dropbox way?!

3

OwnCloud’s raison d'être

 Trust issues with outsourcing storage demands

 Sensitive data is not in the sole possession of the company

 Direct company’s moderation of data is not possible

 Forensics and investigation is not possible

 Speed, capacity and other features are limited to the outsider host’s policies

 Not in control:

 Sensitive and confidential data

 Storage and servers

 User provisioning

 Security

 Governance

4

OwnCloud customers

 University of Felorida

 University of California Riverside

 Southern Oregon Unversity

 Kansas State University

 University of California San Francisco

 iThreat Cyber group

 Ecomnets

 Paranet

 Etc.

5

Architecture overview: Features

 Manageable and Protectable data

 Integrate-able with existing IT systems and policies

 Extensible functionality

 Providng users with clean, intuitive access

from many types of devices

6

Architecture overview

7

Architecture overview

8

Architecture overview: Server

 A PHP web server running on Apache or IIS

 Attached to the web server is a database to store:

 Users

 User-shared file details

 Plug-in application state

 OwnCloud file cache

 Access to database is provided by an abstraction layer

 This enables support for many kinds of databases

 Complete web server logging

 Abstracted storage tier to enable a broad range of storage

 alternatives 9

Architecture overview: Server (cont.)

10

Architecture overview: Server (cont.)

11

Architecture overview: Server (cont.)

 Abstracted storage tier:

 Ability to leverage just about any storage protocol

 CIFS

 NFS

 GFS

 Clustered systems like Red Hat Storage

 Ability to use external file system applications

 Live, Windows home directories, FTP, WebDAV,

 External cloud storage services: S3, Swift, Google Drive, Dropbox

 Enabling data segregation and multi-tenant deployments

 User configuration can include dynamically allocated storage
driven by user directory enteties

12

Architecture overview: API

 Activity: Provides an RSS feed or API call to deliver all activites

 Applications: The most powerful API to expand OwnCloud

 Capability: Offers information about features and plugins of the Owncloud

on the server

 External provisioning: Provides the ability to remotely manage users and

query metering information of the server

 Sharing: Provides the ability for external apps to share files from remote

devices

 Theming: A simplified mechanism to accommodate stylistic needs to

company’s needs

13

Deployment

14

Deployment

 Most often deployed as an n-tier load balancer web application

 A load balancer in the front-end of the deployment and connected to at least

to web servers

 PHP core as the webserver is hosted on Apache/IIS powered servers

 Webservers are connected to a database which is preferably a clustered

MySQL database instance

 Webservers are connected to one or more backend storage

 Support for REST-API based storage through application plugins

15

A real world deployment project

 As the developers teams chief you are asked to implement the webserver

infrastructure of the company in a way that stringently satisfies these

requirement:

 The company IT management refuses to schedule periodic or sporadic

storage media synchronization due to critical timing policies. For example

if at any time one of the storage media for any reason gets damaged there

must be a backup of all data of the storage in question on another backup

server.

 There must an automatic redirection mechanism to transparently route clients

traffic to an auxiliary server during down time of the master one.

16

Service topology

17

Solutions

 Using NFS-like sync and database constraints

 Very inflexible

 Hard to customize

 Hard to accommodate to system changes

 Completely dependent on web application internal functioning

 Building a custom middleware running on the gateway to monitor

and manage the traffic

 Independent from version changes

 Completely under control

18

A simple architecture

19

Dissecting the problem

20

On-the-fly session replication

21

What happens the way back to the client?

22

Revising the packets

23

Abstracting the 3-way handshake

 Client send “TCP SYN” to gateway.

 Gateway routes the packet to all 3 servers while considering one as the master

 All servers reply with “TCP SYN-ACK”

 Gateway routes the master reply to the client and saves sequence number of

the other 2

 Client sends “TCP ACK” to finish the handshake.

 Gateway builds two additional packets and revise the addresses and

acknowledgment numbers

 Gateway routes all 3 packets to their corresponding servers

 Handshake is complete and all 3 connections enter “ESTABLISHED” state

 From this point on all data packets are redirected to all servers

24

What about automatic redirection?

25



And that’s how it is done ;)

26

