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What makes serverless, 
event driven computing so 

attractive?



Serverless developers focus more 
on code, less on infrastructure 
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Runs code only on-demand on
a per-request basis 
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Problem: Microservices can be 
hard to manage at scale
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Serverless can handle many cloud 
native app 12 Factors 

1. Codebase
One codebase tracked in revision control, many deploys

2. Dependencies
Explicitly declare and isolate dependencies

3. Configuration
Store config in the environment

4. Backing services
Treat backing services as attached resources

5. Build, release, run
Strictly separate build and run stages

6. Processes
Execute the app as one or more stateless processes
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Handled by developer

Handled by platform

Handled by developer, 
facilitated by platform

Handled by platform

Handled by platform

Handled by platform



Serverless can handle many cloud 
native app 12 Factors 

7. Port binding
Export services via port binding

8. Concurrency
Scale out via the process model

9. Disposability
Maximize robustness with fast startup and graceful shutdown

10. Dev/prod parity
Keep development, staging, and production as similar as possible

11. Logs
Tread logs as event streams

12. Admin processes
Run admin/management tasks as one-off processes
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Handled by platform

Handled by platform

Handled by platform

Handled by developer

Handled by developer

Handled by platform



Application

Problem: Programming and 
pricing models aren’t efficient 

• Continuous polling needed in the absence 
of an event driven programming model 

• Charged for resources, even when idle

• Worries persist about capacity 
management 
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Request Polling

CF Container VM



Event-programming model 
• Runs code in response to events 
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Emerging workloads are a good 
fit for event-driven programming 
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New cost models more 
accurately charge for usage 

• Cloud resource cost 
better matches 
business value gained 
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Technological and business factors 
make serverless compelling
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A couple of examples
• UI-driven application

• Traditional architecture
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A couple of examples
• UI-driven application

• Serverless BaaS architecture
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A couple of examples
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• Message-driven application
• Traditional architecture



A couple of examples
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• Message-driven application
• Serverless FaaS architecture



Comparison with PaaS
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Available Serverless Solutions

FUNCTION AS A SERVICE (FAAS)

• Microsoft Azure Functions

• Google Cloud Functions

• Amazon Lambda

• IBM/Apache OpenWhisk

• Iron.io IronWorker

• Joyent Manta Functions

• PubNub BLOCKS

• Serverless Docker

BACKEND AS A SERVICE (BAAS)

• Amazon API Gateway

• Amazon Cognito

• AWS DynamoDB

• Google Cloud Datastore

• Google Firebase

• AnyPresence

• Appery.io

• BaaSBox
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Drawbacks
• Vendor control

• Multitenancy Problems

• Vendor lock-in

• Security concerns

• Loss of Server optimizations

• No in-server state for Serverless FaaS
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Introducing
OpenWhisk



FaaS platform to execute code 
in response to events
• Provides serverless deployment and operations 

model 

• Runs code only on-demand on a per-request 
basis 

• Optimized utilization, fine-grained metering at 
any scale 

• Flexible, extensible, polyglot programming 
model 

• Open source and open ecosystem (Apache 
Incubator) 

• Ability to run in public, private, and hybrid 
models 
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Developers work with packages, 
triggers, actions, and rules 
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Triggers 
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T A class of events that can occur 



Actions 
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A
Code that runs in response to an event
(that is, an event handler) 



Actions 
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A
Can be written in a variety of languages, such as
JavaScript, Python, Java, Swift, …



Actions 
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A Or any other language by packaging with Docker 



Actions 
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A
Can be composed to create sequences
that increase flexibility and foster reuse 



Rules 
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R
An association of a trigger to an action
in a many to many mapping.



Packages 
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P A shared collection of triggers and actions



OpenWhisk enables event driven 
applications 

An event occurs, for example

• Commit pushed to Github repository

• Data changed in Cloudant
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Which triggers execution of
associated OpenWhisk action 



OpenWhisk can implement 
REST microservices
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Creating the action
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OpenWhisk
Architecture



OpenWhisk under the hood: 
Developer view 

1. Router receives 
request to API via CLI 
or UI

2. Controller checks 
entitlement and 
dispatches requests to 
Kafka

3. Invokers pull requests 
from CouchDB and 
start execution of the 
action
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OpenWhisk under the hood:
A deeper look
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Entering the NGINX
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Storing the results
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OpenWhisk container model 
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OpenWhisk container model 
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OpenWhisk container model 
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OpenWhisk container model 
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Action containers

• Host user-written function

• Maintain the illusion that
“action ≈ function”

• Provide a simple REST API to:
• Initialize the container

• Run the function



OpenWhisk container model 
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• Action container lifecycle
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OpenWhisk & Containers



Behind the scenes:
It’s about containers 
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• Basically, OpenWhisk is based on Docker… but we added some smartness 
to meet our performance goals… 

≈



Behind the scenes:
It’s about containers 
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Behind the scenes:
It’s about containers 
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Behind the scenes:
It’s about containers 

OPENWHISK & CONTAINERS 48



Performance is king…
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Demos & Use cases



Create a timer triggered action
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Create a Slack bot 
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IoT
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Data Processing
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Customers & Partners



Customers and Partners
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What do customers do with 
OpenWhisk? 
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What do customers do with 
OpenWhisk? 
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Q&A


