Serverless apps with ‘
Apache OpenWhisk

CLOUD NATIVE @ EVENT DRIVEN @ MICROSERVICES

Agenda

* Evolution of Serverless

* Introducing OpenWhisk
* OpenWhisk Architecture
* OpenWhisk & Containers
* Demos & Use cases

 Customers & Partners

What makes serverless,
event driven computing so
attractive?

Serverless deve

opers focus more

on code, less on infrastructure

Increasing focus on business logic

Bare Metal

<> - <>
<P <

RIS
HH

n n Containers

Virtual machines

Decreasing concern (and control) over stack implementation

Runs code only on-demand on
a per-request basis

> <>

-3

<> <>

No servers Just code

Problem: Microservices can be
hard to manage at scale

Region A

&+ &

¥ttt o° o &0 ot
R e
e a2 o7 ot ¥ o o
alninin |
20t I O - B
peoeon o & o s
$* 'ﬂbﬁ-ﬁ_

Py o of o o Call
Monolithic Break-down into Make each Protect against
Application microservices microservice HA regional outage

EVOLUTION OF SERVERLESS 6

Serverless can handle many cloud
native app 12 Factors

1. Codebase

One codebase tracked in revision control, many deploys

Handled by developer

2. Dependencies Handled by developer,
Explicitly declare and isolate dependencies facilitated by platform

3. Configuration
Store config in the environment

Handled by platform

4. Backing services
Treat backing services as attached resources

Handled by platform

5. Build, release, run
Strictly separate build and run stages Handled by platform

6. Processes
Execute the app as one or more stateless processes Handled by platform

EVOLUTION OF SERVERLESS 7

Serverless can handle many cloud
native app 12 Factors

7. Port binding

Export services via port binding

Handled by platform

8. Concurrency
Scale out via the process model

Handled by platform

9. Disposability

Maximize robustness with fast startup and graceful shutdown

Handled by platform

10. Dev/prod parity

Keep development, staging, and production as similar as possible

11. Logs

Tread logs as event streams

Handled by developer

Handled by platform

12. Admin processes
Run admin/management tasks as one-off processes

EVOLUTION OF SERVERLESS 8

Handled by developer

Problem: Programming and
pricing models aren’t efficient

Request Polling

* Continuous polling needed in the absence
of an event driven programming model

* Charged for resources, even when idle

* Worries persist about capacity
Mmanagement Application

CF Container VM

EVOLUTION OF SERVERLESS 9

Event-programming model

* Runs code in response to events

Emerging workloads are a good
fit for event-driven programming

3 Execute logic in response to database change
A Perform analytics on sensor input messages
¢/ Provide cognitive computing via chatbots

) Schedule tasks performed for a short time

e Invoke autoscaled APIs and mobile backends

New cost models more
accurately charge for usage

Memory
allocated

NENY . A
* Cloud resource cost ntances
better matches simitancously

business value gained

EVOLUTION OF SERVERLESS 12

Technological and business factors
make serverless compelling

Platforms evolving to facilitate cloud native design for developers

Growth of event driven workloads that need automated scale

Cost models getting more granular and efficient

Serverless architectures are gaining traction

EVOLUTION OF SERVERLESS 13

A couple of examples

e Ul-driven application
* Traditional architecture

-

EVOLUTION OF SERVERLESS 14

A couple of examples

e Ul-driven application
e Serverless BaaS architecture

Authentication
Service

Purchase
Database

Product
Database

EVOLUTION OF SERVERLESS 15

A couple of examples

* Message-driven application
* Traditional architecture

Click Message

Channel Database

EVOLUTION OF SERVERLESS 16

A couple of examples

* Message-driven application
e Serverless FaaS architecture

Click Message

Channel Database

EVOLUTION OF SERVERLESS 17

Comparison with PaaS

?‘lﬁi“ adrian cockcroft

W Follow
@adrianco

If your PaaS can efficiently start instances in 20ms that run for
half a second, then call it serverless. twitter.com/doctor julz/st...
6:13 PM - 28 May 2016

4« t¥162 213 o

EVOLUTION OF SERVERLESS

18

Available Serverless Solutions

FUNCTION AS A SERVICE (FAAS) BACKEND AS A SERVICE (BAAS)

* Microsoft Azure Functions * Amazon AP| Gateway

* Google Cloud Functions * Amazon Cognito

* Amazon Lambda * AWS DynamoDB

* IBM/Apache OpenWhisk * Google Cloud Datastore
* lron.io IronWorker ° Google Firebase

- Joyent Manta Functions ° AnyPresence

* PubNub BLOCKS * Appery.io

 Serverless Docker * BaaSBox

EVOLUTION OF SERVERLESS 19

Drawbacks

* Vendor control

* Multitenancy Problems

* Vendor lock-in

* Security concerns

* Loss of Server optimizations

* No in-server state for Serverless FaaS

EVOLUTION OF SERVERLESS 20

Introducing
OpenWhisk

FaaS platform to execute code
In response to events

* Provides serverless deployment and operations

model
* Runs code only on-demand on a per-request
basis
* Optimized utilization, fine-grained metering at
any scale
* Flexible, extensible, polyglot programming OpenWhisk is a
model cloud platform that
* Open source and open ecosystem (Apache executes code in
Incubator) response to events

e Ability to run in public, private, and hybrid
models

INTRODUCING OPENWHISK 22

Developers work with packages,
triggers, actions, and rules

Package Data sources define events N A,) @

o (feed) they emit as Triggers $)) @) e .)}
o Trigger
(event)

Packages provide integration ._m

with external event sources

I #
The @ g

katka Weather)
Company = Watson

Developers map Actions

Action to Triggers via Rules
(function)

« ik
p::m J‘;%;) 8 Swift @ docker
o Rule (map)

INTRODUCING OPENWHISK 23

Triggers

G A class of events that can occur

00 @ __ @&

Data changes User input

o o

Social events Location updates

INTRODUCING OPENWHISK 24

Actions

Code that runs in response to an event
(that is, an event handler)

o)) :_: »

INTRODUCING OPENWHISK 25

Actions

Can be written in a variety of languages, such as
JavaScript, Python, Java, Swift, ...

function main(params) {
return { message: 'Hello, ' + params.name + ' from

+ params.place };

};

S

INTRODUCING OPENWHISK 26

Actions

° Or any other language by packaging with Docker

101 10
01001

BIN

gocker

INTRODUCING OPENWHISK 27

Actions

Can be composed to create sequences
that increase flexibility and foster reuse

INTRODUCING OPENWHISK 28

Rules

An association of a trigger to an action
in @ many to many mapping.

INTRODUCING OPENWHISK 29

Packages

INTRODUCING OPENWHISK

° A shared collection of triggers and actions

4 IBM Cloudant’ The @)
Weather
=== o read Company
====5= 0 write
€9 changes () translate () forecast
NG =
4 4 V4 -~ "\
& kafka Git)
.
Source o post Party o myAction
) topic) commit) myFeed
\ \ VAN /

30

OpenWhisk enables event driven
applications

Cloudant

GitHub

Weather |y
Event

Providers Slack
JS | Swift | Docker| ...

An event occurs, for example Which triggers execution of
associated OpenWhisk action

* Commit pushed to Github repository

* Data changed in Cloudant

INTRODUCING OPENWHISK 31

OpenWhisk can implement
REST microservices

(Browser) .

API
(bl) Send HTTP request
(Mobile App) HTTP GET

app.com/customers

Creating the action

function main() ¢!

consocle.log('Hello World');
return { hello: 'world' }:

wsk action create myAction action.js

wsk action invoke myAction

INTRODUCING OPENWHISK

OpenWhisk
Architecture

OpenWhisk under the hood:
Developer view

1 Router (NGINX)

ﬂl @ K) Controller

Router receives
request to APl via CLI

or Ul Invoker Invoker

2. Controller checks
entitlement and

dispatches requests to

Kafka Executor Executor Executor
3. Invokers pull requests Java

from CouchDB and

start execution of the
action

Docker

OPENWHISK ARCHITECTURE 35

OpenWhisk under the hood:
A deeper look

Entering the NGINX

wsk action invoke myAction

POST /api/vl/namespaces/SuserNamespace/actions/myAction
Host: SopenwhiskEndpeoint

OPENWHISK ARCHITECTURE

Storing the results

"activationId": "31805ddcacfedcfcSde2S37ebd44fbhbs",
"response": {
"statusCode": 0,
"result": {
"hello": "world"

tr
"end": 1474459415621,
"logs": [

"201e-09-21T12:03:35.619234386Z stdout: Hello World"™

1,
"start": 1474459415595,

wsk activation get 318059ddcacfed4cfcSde2537ebd44fbbs

OPENWHISK ARCHITECTURE

OpenWhisk container model

Action creation

DB
0K
PUT fapi/vl/../hello , ~
{ .. “exec”: “.” } PUT
/% Controller Invoker
0K

/$ wsk -v action create hello-js hello.js

OPENWHISK ARCHITECTURE 39

OpenWhisk container model

Action invocation (blocking)

PUT
{ “greeting” : “hello” }
DB
GET 0K
{ .|"exec”: “." }
POST /api/vl/../hello, ~, Invoke: user:hello - ~
{ “name”: “.* } Params: { “name*: “.* }
* Locate or initialize
/% Controller Invoker container for action
Result: { “greeting”: .. } * Run container with
oK input parameters
{ “greeting”: .. } \ / E -

/$ wsk -v action invoke -b hello-js -p ...

OPENWHISK ARCHITECTURE

OpenWhisk container model

Action invocation (non-blocking)

PUT
{ “greeting” : “hello” }
DB
GET oK
{ ..|"exec”: “.” }
POST /fapi/vl/../hello, -, Invoke: user:hello p .
{ “name”: “.» } Params: { “name”: “.” }

* Locate or initialize

/% Controller Invoker container for action
* Run container with

input parameters

0K

/$ wsk -v action invoke hello-js -p ...

OPENWHISK ARCHITECTURE 41

OpenWhisk container model

Action containers

Action container

* Host user-written function

input (. W output
* Maintain the illusion that L Function J

“action = function”

nopis
119p3s

* Provide a simple REST API to:
* |nitialize the container

* Run the function

OPENWHISK ARCHITECTURE

42

OpenWhisk container model

 Action container lifecycle

POST /run
docker run POST /init docker rm
o -0 @ 0
° S &
& & & >
o ".'DQ F
& S

OPENWHISK ARCHITECTURE

(Additionally: docker unpause /docker pause before / after each POST.)

43

OpenWhisk & Containers

Behind the scenes:
It’s about containers

* Basically, OpenWhisk is based on Docker... but we added some smartness
to meet our performance goals...

N
N

wsk action invoke docker run

OPENWHISK & CONTAINERS 45

Behind the scenes:
It’s about containers

Start container Initialize

docker run /init

cold container

OPENWHISK & CONTAINERS 46

Behind the scenes:
It’s about containers

Star. »0¢ .ainer Initialize
doc’ 21 »run /init

pre-warmed container

Behind the scenes:
It’s about containers

Star. >0 ainer

doc’” 21 run

warm container

Performance is king...

cold container pre-warmed container warm container

faster

OPENWHISK & CONTAINERS 49

Demos & Use cases

Create a timer triggered action

handler handler.]

Cron syntax alarm

Aldlre Log the current time

action

function main(params) {
var date = new Date();
var now (date.getHours() + ":" +
date.getMinutes() + ":
date.getSeconds());
console.log("Invoked at: " + now);
return { message: "Invoked at: " + now };

DEMOS & USE CASES

Create a Slack bot

GET /register

POST /event

POST /command

API
Proxy

:kmok.. 2A

myserverlessapp

+ | /randemnumber 1 99

Hey Daniel Krook, here's

somethin

B '.-.IIZI:J"I)é

DEMOS & USE CASES

Register
action

Register
the bot

OpenWhisk
Engine

Event Command

action action
Respond Respond
to direct to slash
messages commands

O

& Cloudant

changes changes

Watson
loT

A A

analyze create alert & .
reading order customer SerldGﬂd

T

alarm

ﬁ‘ OpenWhisk

DEMOS & USE CASES

Data Processing

CLIENT DEVICE PROVIDER CLOUD

0

OPENWHISK

@ GLOUDANT 1O,

P e

DATA TRIGGER

s

@ FEED
DEVELOPER e CLOUDANT NOSQL DB
CLOUDANT

OPENWHISK
ACTIONS

DEMOS & USE CASES

Customers & Partners

Customers and Partners

SiteSpirit & Santander artiC@lo LA\\ s/ -

(2]

c

k]

© breent] - b leR T e
3, aking Garbage Tucks Smerter 24 ‘OJD T\E oo A Company

o 0N / APACHE @G AwoRros [{\} nepente dl Systems

E Adobe ST RE DO ATION

£

©

o

{ @3} swaceerhub PubNub

56

CUSTOMERS & PARTNERS

What do customers do with
OpenWhisk?

Data
processing a

) siteSpirit ----.

http://ecc.ibm.com/case-
-en/ECCEF-
DC12387USEN

D s By &
10x faster P il SRS B

ELCPHANT, SUKAL(15)

90% less cost

CUSTOMERS & PARTNERS 57

What do customers do with
OpenWhisk?

Data - » _
porocessing My W T M)

BM Cloudant
Openwhisk

£ swEsia anour e, - 1278_"‘3;
!é 8745 ANGOFF DR R ok B

2 LR one_ £8)23/200
& Santander § PviotiE Anaa Michak'e Té’c?aﬁl’. | $ 104)2- Od--'
; One fhousand anf Jafﬂw‘ﬂro ddf('lb DOLLARS) “_mk
; BANK OF AMERICA I
§ grrue, ;
Less cost ﬁ NENPORTRGAEY L st k:
<$2 for all paper checks ;
processed within 1 year 3 E\”' e

)

Routing number Deposit from account number

58

CUSTOMERS & PARTNERS

Q&A

