
Serverless apps with
Apache OpenWhisk

CLOUD NATIVE ● EVENT DRIVEN ● MICROSERVICES

SINA NOURIAN 1



• Evolution of Serverless

• Introducing OpenWhisk

• OpenWhisk Architecture

• OpenWhisk & Containers

• Demos & Use cases

• Customers & Partners

2

Agenda



3

What makes serverless, 
event driven computing so 

attractive?



Serverless developers focus more 
on code, less on infrastructure 

4EVOLUTION OF SERVERLESS



Runs code only on-demand on
a per-request basis 

EVOLUTION OF SERVERLESS 5



Problem: Microservices can be 
hard to manage at scale

6EVOLUTION OF SERVERLESS



Serverless can handle many cloud 
native app 12 Factors 

1. Codebase
One codebase tracked in revision control, many deploys

2. Dependencies
Explicitly declare and isolate dependencies

3. Configuration
Store config in the environment

4. Backing services
Treat backing services as attached resources

5. Build, release, run
Strictly separate build and run stages

6. Processes
Execute the app as one or more stateless processes

EVOLUTION OF SERVERLESS 7

Handled by developer

Handled by platform

Handled by developer, 
facilitated by platform

Handled by platform

Handled by platform

Handled by platform



Serverless can handle many cloud 
native app 12 Factors 

7. Port binding
Export services via port binding

8. Concurrency
Scale out via the process model

9. Disposability
Maximize robustness with fast startup and graceful shutdown

10. Dev/prod parity
Keep development, staging, and production as similar as possible

11. Logs
Tread logs as event streams

12. Admin processes
Run admin/management tasks as one-off processes

EVOLUTION OF SERVERLESS 8

Handled by platform

Handled by platform

Handled by platform

Handled by developer

Handled by developer

Handled by platform



Application

Problem: Programming and 
pricing models aren’t efficient 

• Continuous polling needed in the absence 
of an event driven programming model 

• Charged for resources, even when idle

• Worries persist about capacity 
management 

EVOLUTION OF SERVERLESS 9

Request Polling

CF Container VM



Event-programming model 
• Runs code in response to events 

EVOLUTION OF SERVERLESS 10



Emerging workloads are a good 
fit for event-driven programming 

EVOLUTION OF SERVERLESS 11



New cost models more 
accurately charge for usage 

• Cloud resource cost 
better matches 
business value gained 

EVOLUTION OF SERVERLESS 12



Technological and business factors 
make serverless compelling

EVOLUTION OF SERVERLESS 13



A couple of examples
• UI-driven application

• Traditional architecture

EVOLUTION OF SERVERLESS 14



A couple of examples
• UI-driven application

• Serverless BaaS architecture

EVOLUTION OF SERVERLESS 15



A couple of examples

EVOLUTION OF SERVERLESS 16

• Message-driven application
• Traditional architecture



A couple of examples

EVOLUTION OF SERVERLESS 17

• Message-driven application
• Serverless FaaS architecture



Comparison with PaaS

EVOLUTION OF SERVERLESS 18



Available Serverless Solutions

FUNCTION AS A SERVICE (FAAS)

• Microsoft Azure Functions

• Google Cloud Functions

• Amazon Lambda

• IBM/Apache OpenWhisk

• Iron.io IronWorker

• Joyent Manta Functions

• PubNub BLOCKS

• Serverless Docker

BACKEND AS A SERVICE (BAAS)

• Amazon API Gateway

• Amazon Cognito

• AWS DynamoDB

• Google Cloud Datastore

• Google Firebase

• AnyPresence

• Appery.io

• BaaSBox

19EVOLUTION OF SERVERLESS



Drawbacks
• Vendor control

• Multitenancy Problems

• Vendor lock-in

• Security concerns

• Loss of Server optimizations

• No in-server state for Serverless FaaS

EVOLUTION OF SERVERLESS 20



21

Introducing
OpenWhisk



FaaS platform to execute code 
in response to events
• Provides serverless deployment and operations 

model 

• Runs code only on-demand on a per-request 
basis 

• Optimized utilization, fine-grained metering at 
any scale 

• Flexible, extensible, polyglot programming 
model 

• Open source and open ecosystem (Apache 
Incubator) 

• Ability to run in public, private, and hybrid 
models 

INTRODUCING OPENWHISK 22



Developers work with packages, 
triggers, actions, and rules 

INTRODUCING OPENWHISK 23



Triggers 

INTRODUCING OPENWHISK 24

T A class of events that can occur 



Actions 

INTRODUCING OPENWHISK 25

A
Code that runs in response to an event
(that is, an event handler) 



Actions 

INTRODUCING OPENWHISK 26

A
Can be written in a variety of languages, such as
JavaScript, Python, Java, Swift, …



Actions 

INTRODUCING OPENWHISK 27

A Or any other language by packaging with Docker 



Actions 

INTRODUCING OPENWHISK 28

A
Can be composed to create sequences
that increase flexibility and foster reuse 



Rules 

INTRODUCING OPENWHISK 29

R
An association of a trigger to an action
in a many to many mapping.



Packages 

INTRODUCING OPENWHISK 30

P A shared collection of triggers and actions



OpenWhisk enables event driven 
applications 

An event occurs, for example

• Commit pushed to Github repository

• Data changed in Cloudant

INTRODUCING OPENWHISK 31

Which triggers execution of
associated OpenWhisk action 



OpenWhisk can implement 
REST microservices

INTRODUCING OPENWHISK 32



Creating the action

INTRODUCING OPENWHISK 33



34

OpenWhisk
Architecture



OpenWhisk under the hood: 
Developer view 

1. Router receives 
request to API via CLI 
or UI

2. Controller checks 
entitlement and 
dispatches requests to 
Kafka

3. Invokers pull requests 
from CouchDB and 
start execution of the 
action

OPENWHISK ARCHITECTURE 35



OpenWhisk under the hood:
A deeper look

OPENWHISK ARCHITECTURE 36



Entering the NGINX

OPENWHISK ARCHITECTURE 37



Storing the results

OPENWHISK ARCHITECTURE 38



OpenWhisk container model 

OPENWHISK ARCHITECTURE 39



OpenWhisk container model 

OPENWHISK ARCHITECTURE 40



OpenWhisk container model 

OPENWHISK ARCHITECTURE 41



OpenWhisk container model 

OPENWHISK ARCHITECTURE 42

Action containers

• Host user-written function

• Maintain the illusion that
“action ≈ function”

• Provide a simple REST API to:
• Initialize the container

• Run the function



OpenWhisk container model 

OPENWHISK ARCHITECTURE 43

• Action container lifecycle



44

OpenWhisk & Containers



Behind the scenes:
It’s about containers 

OPENWHISK & CONTAINERS 45

• Basically, OpenWhisk is based on Docker… but we added some smartness 
to meet our performance goals… 

≈



Behind the scenes:
It’s about containers 

OPENWHISK & CONTAINERS 46



Behind the scenes:
It’s about containers 

OPENWHISK & CONTAINERS 47



Behind the scenes:
It’s about containers 

OPENWHISK & CONTAINERS 48



Performance is king…

OPENWHISK & CONTAINERS 49



50

Demos & Use cases



Create a timer triggered action

DEMOS & USE CASES 51



Create a Slack bot 

DEMOS & USE CASES 52



IoT

DEMOS & USE CASES 53



Data Processing

DEMOS & USE CASES 54



55

Customers & Partners



Customers and Partners

CUSTOMERS & PARTNERS 56



What do customers do with 
OpenWhisk? 

CUSTOMERS & PARTNERS 57



What do customers do with 
OpenWhisk? 

CUSTOMERS & PARTNERS 58



59

Q&A


