
Homework 1. Construct a martingale which is NOT a Markov chain.

Homework 2. For every i = 1, . . . ,m let
{
M (i)

n

}∞
n=1

be a sequence of martingales w.r.t. {Xn}∞n=1. Show
that

Mn := max
1≤i≤n

M (i)
n

is a submartingal w.r.t. {Xn}.

Homework 3. Let F : R→ [0, 1] be a function which satisfies the conditions (1)-(3) of Theorem ?? of File
"Some basic facts from probability theory". Let Ω := (0, 1), F be the Borel σ-algebra on the interval (0, 1)
and let P be the Lebesgue measure on the interval (0, 1). For an ω ∈ (0, 1) let

X(ω) := sup {y : F (y) < ω} . (1)

(a) Show that {ω : X(ω) ≤ x} = {ω : ω ≤ F (x)}.

(b) Prove that F is the CDF for the r.v. X.

(c) Although F is not a bijection we can define F−1 := X. Let U be the uniform distribution on (0, 1).
Prove that the CDF of F−1(U) is F .

Figure 1: F−1 in Homework 3.The figure is from Durrett’s book

Homework 4. Let (X, d) be a metric space and let h : R+ → R+ be a function satisfying:

1. h(0) = 0

2. h is differentiable

3. h′(x) decreasing on [0,∞),

4. h′(x) > 0 for all x > 0

Prove that h(d(x, y)) is a metric.
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Homework 5. Let d be the following distance between random variables X, Y defined on the same prob-
ability space:

d(X, Y ) := E
[
|X − Y |

1 + |X − Y |

]

Prove that: d(Xn, X)→ 0 iff Xn
P→ X.

The following 5 homeworks are due at 27 September 2014.

Homework 6. Let X, Y ∈ L1(ΩF ,P) satisfying

E [X|Y ] = Y and E [Y |X] = X

Show that P(X = Y ) = 1.

Homework 7. Let ξ1, ξ2, . . . standard normal variables. (Recall that in this case the moment generating
function M(θ) = E

[
eθξi

]
eθ2/2.) Let a, b ∈ R and

Sn :=
n∑
k=1

ξk and Xn := eaSn−bn

Prove that

(a) Xn → 0 a.s. iff b > 0

(b) Xn → 0 in Lr iff r < 2b
a2 .

Homework 8. Consider the simple symmetric random walk {Sn}∞n=1 on Z2. That is Sn = X1 + · · ·+Xn,
where X1, X2, . . . are Z2-valued iid r.v. with

P (X1 = (i, j)) =
{

1
4 , if (i, j) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)};
0, otherwise.

Let Dn := ‖Sn‖ and we write νr := inf {n : Sn > r}. Prove that

(a) D2
n − n is a martingale,

(b) lim
r→∞

r−2E [νr] = 1

Homework 9. The same as Homework 8 with the difference that now X1 is a random unit vector whose
angle is chosen uniformly from [0, 2π].

Homework 10. Let Sn := X1 + · · ·+Xn, where X1, X2, . . . are iid with X1 ∼ Exp(1). Verify that

Mn := n!
(1 + Sn)n+1 · e

Sn

is a martingale w.r.t. the natural filtration Fn.

The following 5 homeworks are due at 10 October 2014.

Homework 11. Let Y = P (C|F). Then for every B ∈ F , P(B) 6= 0 we have

E [Y ;B]
P(B) = P (C|B) .

Using this, complete the proof of File A Theorem 6.9.
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Homework 12. Prove the general version of Bayes’s formula: Given the probability space (Ω,F ,P) and
let G be a sub-σ-algebra of F . Let G ∈ G. Show that

P (G|A) =

∫
G
P (A|G) dP∫
Ω
P (A|G) dP (2)

Homework 13. Prove the conditional variance formula

Var(X) = E [Var(X|Y )] + Var (E [X|Y]) (3)

Homework 14. Let X1, X2, . . . iid r.v. and N is a non-negative integer valued r.v. that is independent of
Xi, i ≥ 1. Prove that

Var
(

N∑
i=1

Xi

)
= E [N ] Var(X) + (E [X])2Var(N). (4)

Homework 15. Let X, Y be two independent Exp(λ) r.v. and Z := X+Y . Show that for any non-negative

measurable h we have E [h(X)|Z] = 1
Z

Z∫
0
h(t)dt.

Homework 16. Let X1, X2, . . . be iid r.v. with P (Xn = −n2) = 1
n2 and P

(
Xn = n2

n2−1

)
= 1 − 1

n2 . Let
Sn := X1 + · · ·+Xn. Show that

(a) lim
n→∞

Sn/n =∞.

(b) {Sn} is a martingale which converges to ∞ a.s..

The following 4 homeworks are due at 17 October 2014.

Homework 17. Let X,Z be r.v. defined on the (Ω,F ,P). Assume that
E
[
eit·X+is·Z

]
= E

[
eitX

]
· E

[
eisZ

]
, ∀s, t ∈ Rn. Prove that X,Z are independent.

Homework 18. Prove that the following two definitions of λ-system L are equivalent:

Definition 1. (a) Ω ∈ L.

(b) If A,B ∈ L and A ⊂ B then B \ A ∈ L

(c) If An ∈ L and An ↑ A (that is An ⊂ An+1 and A = ∪∞n=1An) then A ∈ L.

Definition 2. (i) Ω ∈ L.

(ii) If A ∈ L then Ac ∈ L.

(iii) If Ai ∩ Aj = ∅, Ai ∈ L then ∪∞i=1Ai ∈ L.

Homework 19. There are n white and n black balls in an urn. We pull out all of them one-by-one without
replacement. Whenever we pull:

• a black ball we have to pay 1$,

• a white ball we receive 1$.

Let X0 := 0 and Xi be the amount we gained or lost after the i-th ball was pulled. We define

Yi := Xi

2n− i , for 1 ≤ i ≤ 2n− 1, and Zi := X2
i − (2n− i)

(2n− i)(2n− i− 1) for 1 ≤ i ≤ 2n− 2.

(a) Prove that Y = (Yi) and Z = (Zi) are martingales.
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(b) Find Var(Xi) =?

Homework 20 (Extension of part (iii) of Doob’s optional stopping Theorem File A 6.6). Let X be a
supermartingale. Let T be a stopping time with E [T ] < ∞.(Like in part (iii) of Doob’s optional stopping
Theorem.) Assume that there is a C such that

E [|Xk −Xk−1||Fk−1] (ω) ≤ C, ∀k > 0 and for a.e. ω.

Prove that E [XT ] ≤ E [X0].

The following 5 homeworks are due at 29 October 2014.

Homework 21. Let {εn} be an iid sequence of real numbers satisfying P (εn = ±1) = 1
2 . Show that ∑

n
εnan

converges alsmost surely iff
∞∑
k=1

a2
n <∞.

Homework 22. Let X = (Xn) be an L2 random walk that is a martingale. Let σ2 be the variance of the
k-th increment Zk := Xk −Xk−1 for all k. Prove that the quadratic variance is An = nσ2.

Homework 23. Prove the assertion of Remark ??.

Homework 24. Let M = (Mn) be a martingale with M0 = 0 and |Mk −Mk−1| < C for a C ∈ R. Let
T ≥ 0 be a stopping time and we assume that E [T ] ≤ ∞. Let

Un :=
n∑
k=1

(Mk −Mk−1)2 · 1T≥k, Vn := 2 ∑
1≤i<j≤n

(Mi −Mi−1) · (Mj −Mj−1) · 1T≥j.

U∞ :=
∞∑
k=1

(Mk −Mk−1)2 · 1T≥k, V∞ := 2 ∑
1≤i<j

(Mi −Mi−1) · (Mj −Mj−1) · 1T≥j. Prove that

(a) M2
T∧n = Un + Vn and M2

T = U∞ + V∞.

(b) Further, if E [T 2] <∞ then lim
n→∞

Un = U∞ a.s. and E [U∞] <∞ and E [Vn] = E [V∞] = 0.

(c) Conclude that lim
n→∞

E [M2
T∧n] = E [M2

T ].

Homework 25 (Wald inequalities). Let Y1, Y2, . . . be iid r.v. with Yi ∈ L1. Let Sn := Y1 + · · · + Yn and
we write µ := E [Yi]. Given a stopping time T ≥ 1 satisfying: E [T ] <∞. Prove that

(a)
E [ST ] = µ · E [T ] . (5)

(b) Further, assume that Yi are bounded (∃Ci ∈ R s.t. |Yi| < Ci) and E [T 2] <∞. We write σ2 := Var(Yi).
Then

E
[
(ST − µT )2

]
= σ2 · E [T ] . (6)

Hint: Introduce an appropriate martingale and apply the result of the previous exercise.

The following homeworks are due at 5 November 2014.

Homework 26 (Branching Processes). You might want to recall what you have learned about Bransching
Processes. (See was Section ?? in File C of the course "Stochastic Processes".) A Branching Process
Z = (Zn)∞n=0 is defined recursively by a given family of Z+ valued iid rv.

{
X

(n)
k

}∞
k,n=1

as follows:

Z0 := 1, Zn+1 := X
(n+1)
1 + · · ·+X

(n+1)
Zn

, n ≥ 0.

Let µ = E
[
X

(n)
k

]
and Fn = σ(Z0, Z1, . . . Zn). We write f(s) for the generating function. that is

f(s) =
∞∑
`=0

P
(
X

(n)
k = `

)
︸ ︷︷ ︸

p`

·s` for any k, n.
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Further, let
{extinction} := {Zn → 0} = {∃n, Zn = 0} {explosion} = {Zn →∞} .

let q := P ([extinction]) :=. Recall that we learned that q is the smaller (if there are two) fixed point of
f(s). That is q is the smallest solution of f(q) = q. Prove that

(a) E [Zn] = µn. Hint: Use induction.

(b) For every s ≥ 0 we have E
[
sZn+1|Fn

]
= f(s)Zn . Explain why it is true that qZn is a martingale and

lim
n→∞

Zn = Z∞ exists a.s.

(c) Let T := min {n : Zn = 0}. (T =∞ if Zn > 0 always.)

(d) Prove that q = E
[
qZT

]
= E

[
qZ∞ · 1T=∞

]
+ E

[
qZT · 1T<∞

]
.

(e) Prove that E
[
qZ∞ · 1T=∞

]
= 0.

(f) Conclude that if T (ω) =∞ then Z∞ =∞.

(g) Prove that
P (extinction) + P (explosion) = 1. (7)

Homework 27 (Branching Processes cont.). Here we assume that

µ = E
[
X

(n)
k

]
<∞ and 0 < σ2 := Var(X(n)

k ) <∞.

Prove that

(a) Mn = Zn/µ
n is a martingale for the natural filtration Fn

(b) E
[
Z2
n+1|Fn

]
= µ2Zn + σ2Zn. Conclude that

M is bounded in L2 ⇐⇒ µ > 1.

(c) If µ > 1 then M∞ := lim
n→∞

Mn exists (in L2 and a.s.) and

Var(M∞) = σ2

µ(m− 1) .

Homework 28 (Branching Processes cont.). Assume that q = 1. Prove that Mn = Zn = µn is NOT a UI
martingale.

Homework 29. Let X1, X2, . . . be iid rv. with continuous distribution distribution function. Let Ei be
the event that a record occurs at time n. That is E1 := Ω and En := {Xn > Xm, ∀m < n}. Prove that
{Ei}∞i=1 independent and P ((Ei)) = 1

i
.

Homework 30 (Continuation). Let E1, E2, . . . be independent with P (Ei) = 1/i. Let Yi := 1Ei
and

Nn := Y1 + · · ·+ Yn. (In the special case of the previous homework, Nn is the number of records until time
n.) Prove that

(a)
∞∑
k=1

Yk−1/k
log k converges almost surely.

(b) Using Krocker’s Lemma conclude that lim
n→∞

Nn

logn = 1 a.s..

(c) Apply this to the situation of the previous exercise to get an estimate on the number of records until
time n.
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Homework 31. Let C be a class of rv on (Ω,F ,P). Prove that the following assertions (1) and (2) are
equivalent:

1. C is UI.

2. Both of the following two conditions hold:

(a) C is L1-bounded. That is A := sup {E [|X|] : X ∈ C} <∞ AND
(b) ∀ε > 0, ∃δ > 0 s.t.

F ∈ F and P (F ) < δ =⇒ E [|X|;F ] < ε.

Homework 32. Let C and D be UI classes of rv.. Prove that C + D := {X + Y : X ∈ C and Y ∈ D} is
also UI. Hint: use the previous exercise.

Homework 33. Given a C a UI family of rv.. Let us define
D := {Y : ∃X ∈ C, ∃G sub-σ-algebra of F s.t. Y = E [X|G]}. Prove that D is also UI.

Homework 34. Given a sequence of rv. Xn on (Ω,F ,P) s.t.

(i) X := lim
n→∞

Xn exists a.s..

(ii) Xn is dominated by a rv. Y ∈ L1. That is |Xn(ω)| ≤ Y (ω) for all n ∈ N and ω ∈ Ω.

Further, given an arbitrary filtration {Fn}∞n=0. Prove that

(a) For Zm := sup
r≥m
|Xr −X| we have Zn → 0 both almost surely and in L1.

(b) Prove that for n ≥ m almost surely:

|E [Xn|Fn]− E [X|F∞]| ≤ |E [X|Fn]− E [X|F∞]|+ E [Zm|Fn] .

(c) Conclude that lim
n→∞

E [Xn|Fn] = E [X|F∞] .

The following homeworks are due at 3 December 2014.

Homework 35. Let X1, X2, . . . be iid. rv. with E [X+] = ∞ and E [X−] < ∞. (Recall X = X+ − X−
and X+, X− ≥ 0.) Use SLLN to prove that Sn/n → ∞ a.s., where Sn := X1 + · · · + Xn. Hint: For
an M > 0 let XM

i := Xi ∧ M and SMn := XM
n + · · · + XM

n . Explain why lim
n→∞

SMn /n → E
[
XM
i

]
and

lim inf
n→∞

Sn/n ≥ lim
n→∞

SMn /n.

Homework 36. Let X1, X2, . . . be iid rv with E [|Xi|] <∞. Prove that E [X1|Sn] = Sn/n. (This is trivial
intuitively from symmetry, but prove it with formulas.)

Homework 37. Williams book exercise E4.9 which is on the next page. In its hint Y0 ∈ mL means Y0 ∈ L
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Homework 38. Williams book exercise E4.9.

The last comments referes to the proof of LIL.

The following homeworks are due at 12 De-
cember 2014.
Homework 39. Prove that a measure µ is ergodic if for every f ∈ L1 the fact that f is constant on µ-a.a.
orbits {T n(x)}∞n=0 is equivalent to the fact that f is constant for µ-a.a. x.
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Homework 40. Let T : [0, 1]→ [0, 1], T (x) = x3. Find all the invariant measures for T .

Homework 41. Prove that there are no invariant measures for the map Let T : [0, 1]→ [0, 1],

T (x) :=
{

x
2 , if 0 < x ≤ 1;
1, if x = 0.

Homework 42. Let T : [0, 1] → [0, 1], T (x) =

 2x, if x ∈
[
0, 1

2

]
;

2− 2x, if x ∈
[

1
2 , 1

]
.
. Construct infinitely many

invariant measures for T .

Homework 43. Assume that X := {Xn}∞n=0 is stationary, then X can be extended to a stationary process
X̃ := {Xn}∞n=−∞.

Homework 44. Given a probability space (Ω,F ,P) and a measurable map T : Ω → Ω. Let I :=
{A ∈ F : T−1A = A} Prove that

(a) A measurable map (Ω,F)→ (R,R) is I measurable iff f ◦ T (x) = f(x)

(b) (Ω,F ,P, T ) is ergodic iff for any I measurable real valued function f is almost surely constant.

Homework 45. Given an iid process {ξn}. Prove that the canonical dynamical system (for the definition
see ??) (Ω,F ,P, σ) is ergodic.
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