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1. Introduction

• Random walks

A drunk walks along a pavement of width 5. At each time step he/she moves one position

forward, and one position either to the left or to the right with equal probabilities.

Except: when in position 5 can only go to 4 (wall), when in position 1 and going to the

right the process ends (drunk falls off the pavement).

0 1 2 3 4 →
1
2
3
4
5

{

wall
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How far will the walker get on average? What is the probability for the walker to arrive

home when his/her home is K positions away?

• The trained mouse

room A

room B room C

A trained mouse lives in the house shown. A bell

rings at regular intervals, and the mouse is trained

to change rooms each time it rings. When it changes

rooms, it is equally likely to pass through any of

the doors in the room it is in. Approximately what

fraction of its life will it spend in each room?

• The fair casino

You decide to take part in a roulette game, starting with a capital of C0 pounds. At

each round of the game you gamble £10. You lose this money if the roulette gives an

even number, and you double it (so receive £20) if the roulette gives an odd number.

Suppose the roulette is fair, i.e. the probabilities of even and odd outcomes are exactly

1/2. What is the probability that you will leave the casino broke?

• The gambling banker

Consider two urns A and B in a casino game. Initially A contains two white balls, and

B contains three black balls. The balls are then ‘shuffled’ repeatedly at discrete time

steps according to the following rule: pick at random one ball from each urn, and swap
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them. The three possible states of the system during this (discrete time and discrete

state space) stochastic process are shown below:

A B

i
i

y
yy

state 1

A B

i
y

y
iy

state 2

A B

y
y

i
yi

state 3

A banker decides to gamble on the above process. He enters into the following bet: at

each step the bank wins 9M£ if there are two white balls in urn A, but has to pay

1M£ if not. What will happen to the bank?

• Mutating virus

A virus can exist in N different strains. At each generation

the virus mutates with probability α ∈ (0, 1) to another

strain which is chosen at random. Very (medically) relevant

question: what is the probability that the strain in the n-th

generation of the virus is the same as that in the 0-th?

• Simple population dynamics (Moran model)

We imagine a population of N individuals of two types, A and a. ‘Birth’: at each step

we select at random one individual and add a new individual of the same type. ‘Death’:

we then pick at random one individual and remove it. What is the probability to have

i individuals of type a at step n? (subtlety: in between birth and death one has N + 1

individuals)

• Google’s fortune

How did Google displace all the other search engines about ten years ago? (Altavista,

Webcrawler, etc). They simply had more efficient algorithms for defining the relevance

of a particular web page, given a user’s search request. Ranking of webpages generated

by Google is defined via a ‘random surfer’ algorithm (stochastic process, Markov chain!).

Some notation:

N = nr of webpages, Li = links away from page i, Li ⊆ {1, . . . , N}
Random surfer goes from any page i to a new page j with probabilities:

with probability q : pick any page from {1, . . . , N} at random

with probability 1− q : pick one of the links in Li at random
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This is equivalent to

j ∈ Li : Prob[i → j] =
1− q

|Li| +
q

N
, j /∈ Li : Prob[i → j] =

q

N

Note: probabilities add up to zero:
N∑

j=1

Prob[i → j] =
∑

j∈Li

Prob[i → j] +
∑

j /∈Li

Prob[i → j]

=
∑

j∈Li

(1−q

|Li| +
q

N

)
+

∑

j /∈Li

q

N

= |Li|
(1−q

|Li| +
q

N

)
+

(
N−|Li|

) q

N
= 1− q + q = 1

Calculate the fraction fi of times the site will be visited asymptotically if the above

process is iterated for a very large number of iterations. Then fi will define Google’s

ranking of the page i. Can we predict fi? What can one do to increase one’s ranking?

• Gene regulation in cells - cell types & stability

The genome contains the blueprint of an organism.

Each gene in the genome is a code for the

production of a specific protein. All cells in an

organism contain the same genes, but not all genes

are switched on (‘expressed’), which allows for

different cell types. Let θi ∈ {0, 1} indicate whether

gene i is switched on. This is controlled by other

genes, via a dynamical process of the type

Prob[θi(t+1)=1] = f
( ∑

j

J+
ij θj(t)

︸ ︷︷ ︸
activators

−∑

j

J−ij θj(t)

︸ ︷︷ ︸
repressors

)

0

0.2

0.4

0.6

0.8

1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

A

f(A)
cell type at time t: θ(t) = (θ1(t), . . . , θN(t))

evolution of cell type:

θ(0) → θ(1) → θ(2) → . . . ?

multiple stationary states θ of the dynamics?

stable against perturbations (no degenerated ‘runaway cells’)?

dependence on activation & suppression efficacies J±ij ?
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• Many many other real-world processes ...

Dynamical systems with stochastic (partially or fully random) dynamics.

Some are really fundamentally random, others are ‘practically’ random.

E.g.

– physics: quantum mechanics, solids/liquids/gases at nonzero temperature, diffusion

– biology: interacting molecules, cell motion, predator-prey models,

– medicine: epidemiology, gene transmission, population dynamics,

– commerce: stock markets & exchange rates, insurance risk, derivative pricing,

– sociology: herding behaviour, traffic, opinion dynamics,

– computer science: internet traffic, search algorithms,

– leisure: gambling, betting,
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2. Definitions and properties of stochastic processes

We first define stochastic processes generally, and then show how one finds discrete time

Markov chains as probably the most intuitively simple class of stochastic processes.

2.1. Stochastic processes

• defn: Stochastic process

Dynamical system with stochastic (i.e. at least partially random) dynamics. At each

time t ∈ [0,∞〉 the system is in one state Xt, taken from a set S, the state space. One

often writes such a process as X = {Xt : t ∈ [0,∞〉}.
consequences, conventions

(i) We can only speak about the probabilities to find the system in certain states at

certain times: each Xt is a random variable.

(ii) To define a process fully: specify the probabilities (or probability densities) for the

Xt at all t, or give a recipe from which these can be calculated.

(iii) If time discrete: label time steps by integers n ≥ 0, write X = {Xn : n ≥ 0}.

• defn: Joint state probabilities for process with discrete time and discrete state space

Processes with discrete time and discrete state space are conceptually the simplest:

X = {Xn : n ≥ 0} with S = {s1, s2, . . .}. From now on we define
∑

X ≡ ∑
X∈S, unless

stated otherwise. Here we can define for any set of time labels {n1, . . . , nL} ⊆ INL:

P (Xn1 , Xn2 , . . . , XnL
) = the probability of finding the system

at the specified times {n1, n2, . . . , nL} in the

states (Xn1 , Xn2 , . . . , XnL
) ∈ SL (1)

consequences, conventions

(i) The probabilistic interpretation of (1) demands

non−negativity : P (Xn1 , . . . , XnL
) ≥ 0 ∀(Xn1 , . . . , XnL

)∈ SL (2)

normalization:
∑

(Xn1 ,...,XnL
)

P (Xn1 , . . . , XnL
) = 1 (3)

marginalization : P (Xn2 , . . . , XnL
) =

∑

Xn1

P (Xn1 , Xn2 , . . . , XnL
) (4)
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(ii) All joint probabilities in (1) can be obtained as marginals of the full probabilities

over all times, i.e. of the following path probabilities (if T is chosen large enough):

P (X0, X1, . . . , XT ) = the probability of finding the system

at the times {0, 1, . . . , T} in the

states (X0, X1, . . . , XT ) ∈ ST+1 (5)

Knowing (5) permits the calculation of any quantity of interest. The process is

defined fully by giving S and the probabilities (5) for all T .

(iii) Stochastic dynamical equation: a formula for P (Xn+1|X0, . . . , Xn), the probability

of finding a state Xn+1 given knowledge of the past states, which is defined as

P (Xn+1|X0, . . . , Xn) =
P (X0, . . . , Xn, Xn+1)

P (X0, . . . , Xn)
(6)

2.2. Markov chains

Markov chains are discrete state space processes that have the Markov property. Usually

they are defined to have also discrete time (but definitions vary slightly in textbooks).

• defn: the Markov property

A discrete time and discrete state space stochastic process is Markovian if and only if

the conditional probabilities (6) do not depend on (X0, . . . , Xn) in full, but only on the

most recent state Xn:

P (Xn+1|X0, . . . , Xn) = P (Xn+1|Xn) (7)

The likelihood of going to any next state at time n + 1 depends only on the state we

find ourselves in at time n. The system is said to have no memory.

consequences, conventions

(i) For a Markovian chain one has

P (X0, . . . , XT ) = P (X0)
T∏

n=1

P (Xn|Xn−1) (8)

Proof:

P (X0, . . . , XT ) = P (XT |X0, . . . , XT−1)P (X0, . . . , XT−1)

= P (XT |X0, . . . , XT−1)P (XT−1|X0, . . . , XT−2)P (X0, . . . , XT−2)

=
...

= P (XT |X0, . . . , XT−1)P (XT−1|X0, . . . , XT−2) . . .

. . . P (X2|X0, X1)P (X1|X0)P (X0)

Markovian : = P (XT |XT−1)P (XT−1|XT−2) . . . P (X2|X1)P (X1|X0)P (X0)
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= P (X0)
T∏

n=1

P (Xn|Xn−1) []

(ii) Let us define the probability Pn(X) to find the system at time n ≥ 0 in state

X ∈ S:

Pn(X) =
∑

X0

. . .
∑

Xn

P (X0, . . . , Xn)δX,Xn (9)

This defines a time dependent probability measure on the set S, with the usual

properties
∑

X Pn(X) = 1 and Pn(X) ≥ 0 for all X ∈ S and all n.

(iii) For any two times m > n ≥ 0 the measures Pn(X) and Pm(X) are related via

Pm(X) =
∑

X′
WX,X′(m,n)Pn(X ′) (10)

with

WX,X′(m,n) =
∑

Xn

. . .
∑

Xm

δX,XmδX′,Xn

m∏

`=n+1

P (X`|X`−1) (11)

WX,X′(m,n) is the probability to be in state X at time m, given the system was

in state X ′ at time n, i.e. the likelihood to travel from X ′ → X in the interval

n → m.

Proof:

subtract the two sides of (10), insert the definition of WX,X′(m, n), use (9), and

sum over x′,

LHS− RHS = Pm(X)−∑

X′
WX,X′(m, n)Pn(X ′)

= Pm(X)−∑

X′

∑

Xn

. . .
∑

Xm

δX,XmδX′,Xn

[ m∏

`=n+1

P (X`|X`−1)
]
Pn(X ′)

=
∑

X0

. . .
∑

Xm

P (X0, . . . , Xm)δX,Xm

−∑

X′

∑

Xn

. . .
∑

Xm

δX,XmδX′,Xn

[ m∏

`=n+1

P (X`|X`−1)
] ∑

X′
0

. . .
∑

X′
n

P (X ′
0, . . . , X

′
n)δX′,X′

n

=
∑

Xn+1

. . .
∑

Xm

δX,Xm





∑

X0

. . .
∑

Xn

P (X0, . . . , Xm)

−∑

Xn

[ m∏

`=n+1

P (X`|X`−1)
] ∑

X0

. . .
∑

Xn−1

P (X0, . . . , Xn)





=
∑

X1

. . .
∑

Xm

δX,Xm



P (X0, . . . , Xm)−

[ m∏

`=n+1

P (X`|X`−1)
]
P (X0, . . . , Xn)





= 0 []
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• defn: homogeneous (or stationary) Markov chains

A Markov chain with transition probabilities that depend only on the length m− n of

the separating time interval,

WX,X′(m,n) = WX,X′(m− n), (12)

is called a homogeneous (or stationary) Markov chain. Here the absolute time is

irrelevant: if we re-set our clocks by a uniform shift n → n + K for fixed K, then all

probabilities to make certain transitions during given time intervals remain the same.

consequences, conventions

(i) The transition probabilities in a homogeneous Markov chain obey the Chapman-

Kolmogorov equation:

∀X, Y ∈ S : WX,Y (m) =
∑

X′′
WX,X′′(1)WX′′,Y (m− 1) (13)

The likelihood to go from Y to X in m steps is the sum over all paths that go first

in m − 1 steps to any intermediate state X ′, followed by one step from X ′ to X.

The Markovian property guarantees that the last step is independent of how we got

to X ′. Stationarity ensures that the likelihood to go in m − 1 steps to X ′ is not

dependent on when various intermediate steps were made.

Proof:

Rewrite Pm(X) in two ways, first by choosing n = 0 in the right-hand side of (10),

second by choosing n = m− 1 in the right-hand side of (10):

∀X ∈ S :
∑

X′
WX,X′(m)P0(X

′) =
∑

X′
WX,X′(1)Pm−1(X

′) (14)

Next we use (10) once more, now to rewrite Pm−1(X
′) by choosing n = 0:

∀X ∈ S :
∑

X′
WX,X′(m)P0(X

′) =

∑

X′
WX,X′(1)

∑

X′′
WX′,X′′(m− 1)P0(X

′′) (15)

Finally we choose P0(X) = δX,Y , and demand that the above is true for any Y ∈ S:

∀X, Y ∈ S : WX,Y (m) =
∑

X′
WX,X′(1)WX′,Y (m− 1) []
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• defn: stochastic matrix

The one-step transition probabilities WXY (1) in a homogeneous Markov chain are from

now on interpreted as entries of a matrix W = {WXY }, the so-called transition matrix

of the chain, or stochastic matrix.

consequences, conventions:

(i) In a homogeneous Markov chain one has

Pn+1(X) =
∑

Y

WXY Pn(Y ) for all n ∈ {0, 1, 2, . . .} (16)

Proof:

This follows from setting m = n+1 in (10), together with the defn WXY = WXY (1).

[]

(ii) In a homogeneous Markov chain one has

P (X0, . . . , XT ) = P (X0)
T∏

n=1

WXn,Xn−1 (17)

Proof:

This follows directly from (8), in combination with our identification of WXY in

Markov chains as the probability to go from Y to X in one time step. []

2.3. Examples

Note: the mathematical analysis of stochastic equations can be nontrivial, but most mistakes

are in fact made before that, while translating a problem into stochastic equations of the

type P (Xn) = . . ..

• Some dice rolling examples:

(i) Xn = number of sixes thrown after n rolls?

6 at stage n : Xn = Xn−1 + 1, probability 1/6

no 6 at stage n : Xn = Xn−1, probability 5/6

So P (Xn) depends only on Xn−1, not on earlier values: Markovian!

If Xn−1 had been known exactly:

P (Xn|Xn−1) =
1

6
δXn,Xn−1+1 +

5

6
δXn,Xn−1

If Xn−1 is not known exactly, average over all possible values of Xn−1:

P (Xn) =
∑

Xn−1

[1

6
δXn,Xn−1+1 +

5

6
δXn,Xn−1

]
P (Xn−1)

Hence

WXY =
1

6
δX,Y +1 +

5

6
δX,Y
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Simple test:
∑

X WXY = 1.

(ii) Xn = largest number thrown after n rolls?

Xn = Xn−1 : Xn−1 possible throws, probability Xn−1/6

Xn > Xn−1 : 6−Xn−1 possible throws, probability (6−Xn−1)/6

So P (Xn) depends only on Xn−1, not on earlier values: Markovian!

If Xn−1 had been known exactly (note: if Xn > Xn−1 then each of the 6 − Xn−1

possibilities is equally likely):

P (Xn|Xn−1) = 0 for Xn < Xn−1

P (Xn|Xn−1) = Xn−1/6 for Xn = Xn−1

P (Xn|Xn−1) = (1−Xn−1/6)/(6−Xn−1) =
1

6
for Xn > Xn−1

If Xn−1 is not known exactly, average over all possible values of Xn−1:

P (Xn) =
∑

Xn−1

P (Xn−1)





0 if Xn−1 > Xn

Xn−1/6 if Xn−1 = Xn

1/6 if Xn−1 < Xn

Hence

WXY =





0 if Y > X

Y/6 if Y = X

1/6 if Y < X

Simple test:
∑

X

WXY =
∑

X<Y

0 +
Y

6
+

∑

X>Y

1

6
=

Y

6
+

1

6
(6− Y ) = 1

(iii) Xn = number of iterations since most recent six?

6 at stage n : Xn = 0, probability 1/6

no 6 at stage n : Xn = Xn−1 + 1, probability 5/6

So P (Xn) depends only on Xn−1, not on earlier values: Markovian!

If Xn−1 had been known exactly:

P (Xn|Xn−1) =
1

6
δXn,0 +

5

6
δXn,Xn−1+1

If Xn−1 is not known exactly, average over all possible values of Xn−1:

P (Xn) =
∑

Xn−1

[1

6
δXn,0 +

5

6
δXn,Xn−1+1

]
P (Xn−1)

Hence

WXY =
1

6
δX,0 +

5

6
δX,Y +1

Simple test:
∑

X WXY = 1.
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• The drunk on the pavement (see section 1). Let Xn ∈ {0, 1, . . . , 5} denote the position

on the pavement of the drunk, with Xn = 0 representing him lying on the street. Let

σn ∈ {−1, 1} indicate the (random) direction he takes after step n− 1 (provided he has

a choice at that moment, i.e. provided Xn−1 6= 0, 5. If σn and Xn−1 had been known

exactly:

Xn−1 = 0 : Xn = 0

0 < Xn−1 < 5 : Xn = Xn−1 + σn

Xn−1 = 5 : Xn = 4

Since σn ∈ {−1, 1} with equal probabilities:

P (Xn|Xn−1) =





δXn,0 if Xn−1 = 0
1
2
δXn,Xn−1+1 + 1

2
δXn,Xn−1−1 if 0 < Xn−1 < 5

δXn,4 if Xn−1 = 5

If Xn−1 is not known exactly, average over all possible values of Xn−1:

WXY =





δX,0 if Y = 0
1
2
δX,Y +1 + 1

2
δX,Y−1 if 0 < Y < 5

δX,4 if Y = 5

Simple test:

∑

X

WXY =





∑
X δX,0 if Y = 0

∑
X

[
1
2
δX,Y +1 + 1

2
δX,Y−1

]
if 0<Y <5

∑
X δX,4 if Y = 5

=





1 if Y = 0

1 if 0<Y <5

1 if Y = 5

• The Moran model of population dynamics (see section 1). Define Xn as the number of

individuals of type a at time n. The number of type A individuals at time n is then

N − Xn. However, each step involves two events: ‘birth’ (giving Xn−1 → X ′
n), and

‘death’ (giving X ′
n → Xn). The likelihood to pick an individual of a certain type, given

the numbers of type a an A are (X, N −X), is:

Prob[a] =
X

N
, Prob[A] =

N −X

N

First we suppose we know Xn−1. After the ‘birth’ process one has N + 1 individuals,

with X ′
n of type a and N + 1−X ′

n of type A, and

P (X ′
n|Xn−1) =

Xn−1

N
δX′

n,Xn−1+1 +
N −Xn−1

N
δX′

n,Xn−1
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After the ‘death’ process one has again N individuals, with Xn of type a and N −Xn

of type A. If we know X ′
n then

P (Xn|X ′
n) =

X ′
n

N + 1
δXn,X′

n−1 +
N + 1−X ′

n

N + 1
δXn,X′

n

We can now simply combine the previous results:

P (Xn|Xn−1) =
∑

X′
n

P (Xn|X ′
n)P (X ′

n|Xn−1)

=
∑

X′
n

[
X ′

n

N+1
δXn,X′

n−1 +
N+1−X ′

n

N+1
δXn,X′

n

] [
Xn−1

N
δX′

n,Xn−1+1 +
N−Xn−1

N
δX′

n,Xn−1

]

=
1

N(N+1)

∑

X′
n

{
X ′

nXn−1δXn,X′
n−1δX′

n,Xn−1+1 + X ′
n(N−Xn−1)δXn,X′

n−1δX′
n,Xn−1

+(N+1−X ′
n)Xn−1δXn,X′

n
δX′

n,Xn−1+1 + (N+1−X ′
n)(N−Xn−1)δXn,X′

n
δX′

n,Xn−1

}

=
(Xn−1+1)Xn−1

N(N+1)
δXn,Xn−1 +

Xn−1(N−Xn−1)

N(N+1)
δXn,Xn−1−1

+
(N−Xn−1)Xn−1

N(N+1)
δXn,Xn−1+1 +

(N+1−Xn−1)(N−Xn−1)

N(N+1)
δXn,Xn−1

=
(Xn−1+1)Xn−1 + (N+1−Xn−1)(N−Xn−1)

N(N+1)
δXn,Xn−1

+
Xn−1(N−Xn−1)

N(N+1)
δXn,Xn−1−1 +

(N−Xn−1)Xn−1

N(N+1)
δXn,Xn−1+1

Hence

WXY =
(Y +1)Y +(N+1−Y )(N−Y )

N(N+1)
δX,Y +

Y (N−Y )

N(N+1)
δX,Y−1 +

(N−Y )Y

N(N+1)
δX,Y +1

Simple test:

∑

X

WXY =
(Y +1)Y +(N+1−Y )(N−Y )

N(N+1)
+

Y (N−Y )

N(N+1)
+

(N−Y )Y

N(N+1)
= 1

Note also that:

Y = 0 : WXY = δX,0, Y = N : WXY = δX,N

representing the stationary situations where either the a individuals or the A individuals

have died out.
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3. Properties of homogeneous finite state space Markov chains

3.1. Simplification of notation & formal solution

Since the state space S is discrete, we can represent/label the states by integer numbers,

and write simply S = {1, 2, 3, . . .}. Now the X are themselves integer random variables. To

exploit optimally the simple nature of Markov chains we change our notation:

S → {1, 2, 3, . . .}, X, Y → i, j Pn(X) → pi(n), WXY → pji (18)

From now on we will limit ourselves for simplicity to Markov chains with finite state spaces

S = {1, . . . , |S|}. This is not essential but removes distracting technical complications.

• defn: homogeneous Markov chains in standard notation

In our new notation the dynamical eqn (16) of the Markov chain becomes

∀n ∈ IN, ∀i ∈ S : pi(n + 1) =
∑

j

pji pj(n) (19)

where: n ∈ IN : time in the process

pi(n) ≥ 0 : probability that the system is in state i ∈ S at time n

pji ≥ 0 : probability that, when in state j, it will move to i next

consequences, conventions

(i) The probability (17) of the system taking a specific path of states becomes

P (X0 = i0, X1 = i1, . . . , XT = iT ) =
( T∏

n=1

pin−1,in

)
pi0(0) (20)

(ii) Upon denoting the |S|×|S| transition matrix as P = {pij} and the time-dependent

state probabilities as a time-dependent vector p(n) = (p1(n), . . . , p|S|(n)), the

dynamical equation (19) can be interpreted as multiplication from the right of

a vector by a matrix P (alternatively: from the left by P †, where (P †)ij = pji):

∀n ∈ IN : p(n + 1) = p(n)P (21)

(iii) the formal solution of eqn (19) is

pi(n) =
∑

j

(P n)ji pj(0) (22)

proof:

We iterate formula (21). This gives p(1) = p(0)P , p(2) = p(1)P = p(0)P 2,

p(3) = p(2)P = p(0)P 3, etc. Generally: p(n) = p(0)P n. From this one extracts

∀n ∈ IN, ∀i ∈ S : pi(n) = (p(0)P n)i =
∑

j

(P n)jipj(0) []
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3.2. Simple properties of the transition matrix and the state probabilities

• properties of the transition matrix

Any transition matrix P must satisfy the conditions below. Conversely, any |S|×|S|
matrix that satisfies these conditions can be interpreted as a Markov chain transition

matrix:

(i) The first is a direct and trivial consequence of the meaning of pij:

∀(i, j) ∈ S2 : pij ∈ [0, 1] (23)

(ii) normalization:

∀k ∈ S :
∑

i

pki = 1 (24)

proof:

This follows from the demand that the state probabilities pi(n) are to be normalized

at all times, in combination with (19) where we choose pj(n) = δjk:

1 =
∑

i

pi(n + 1) =
∑

ij

pjipj(n) =
∑

i

pki

Since this must hold for any choice of k ∈ S, it completes our proof. []

Note 1: a matrix that satisfies (23,24) is often called ‘stochastic matrix’.

Note 2: instead of (23) we could weaken this first condition to pij ≥ 0 for all (i, j) ∈ S2,

since combination (24) will ensure that pij ≤ 1 for all (i, j) ∈ S2.

• conservation of sign and normalization of the state probabilities

(i) If P is a transition matrix of a Markov chain defined by (19), then∑

i

pi(n + 1) =
∑

i

pi(n) (25)

proof:

this follows from (19) and the imposed normalization (24):∑

i

pi(n + 1) =
∑

i

∑

j

pjipj(n) =
∑

j

∑

i

pjipj(n) =
∑

j

pj(n) []

(ii) If P is a transition matrix of a Markov chain defined by (19), and pi(n) ≥ 0 for all

i ∈ S, then

pi(n + 1) ≥ 0 for all i ∈ S (26)

proof:

this follows from (19) and the non-negatively of all pij and all pj(n):

pi(n + 1) =
∑

j

pjipj(n) ≥ ∑

j

0 = 0 []



17

(iii) If P is a transition matrix of a Markov chain defined by (19), and the pi(0) represent

normalized state probabilities, i.e. pi(0) ∈ [0, 1] with
∑

i pi(0) = 1, then

∀n ∈ IN : pi(n) ∈ [0, 1] for all i ∈ S,
∑

i

pi(n) = 1 (27)

proof:

this follows by combining and iterating the previous identities, noting that pi(n) ≥ 0

for all i ∈ S together with
∑

i pi(n) = 1 implies also that pi(n) ≤ 1 for all i ∈ S. []

• properties involving powers of the transition matrix

(i) meaning of powers of the transition matrix

(P m)ki = the probability for the system to move

in m steps from state k to state i (28)

proof:

calculate the stated probability by putting the system at time zero in state k, i.e.

pj(0) = δjk, and use (22) to find the probability of seeing it n steps later in state i:

pi(n) =
∑

j

(P n)jiδjk = (P n)ki

(note: the stationarity of the chain ensures that the result cannot depend on us

choosing the moment where the system is state k to be time zero!) []

(ii) If P is a transition matrix, then also P ` has the properties of a transition matrix

for any ` ∈ IN: (P `)ik ≥ 0 ∀(i, k) ∈ S2 and
∑

i(P
`)ki = 1 ∀k ∈ S.

proof:

This follows already implicitly from (28), but can also be shown directly by

induction. For m = 0 one has P 0 = 1I (identity matrix), so (P 0)ik = δik and

the conditions are obviously met. Next we prove the induction step, assuming P `

to be a stochastic‘ matrix and proving the same for P `+1:

(P `+1)ki =
∑

j

pkj(P
`)ji ≥

∑

j

0 = 0

∑

i

(P `+1)ki =
∑

i

∑

j

(P `)kjpji =
∑

j

( ∑

i

pji

)
(P `)kj =

∑

j

(P `)kj = 1

Thus also P `+1 is a stochastic matrix, which completes the proof. []
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3.3. Classification definitions based on accessibility of states

• defn: regular Markov chain

(∃n ≥ 0) : (P n)ij > 0 for all (i, j) (29)

Note that if the above holds for some n ≥ 0, it will hold for all n′ ≥ n (see exercises).

Thus, irrespective of the initial state i, after a finite number of iterations there is a

non-zero probability in a regular Markov chain for the system to be in any state j.

• defn: existence of paths

i → j : ∃n ≥ 0 such that (P n)ij > 0 (30)

i→/ j : ∃/n ≥ 0 such that (P n)ij > 0 (31)

In the first case it is possible to get to state j after starting in state i. In the second

case one can never get to j starting from i, irrespective of the number of steps executed.

• defn: communicating states

i ↔ j : ∃n,m ≥ 0 such that (P n)ij > 0 and (P m)ji > 0 (32)

Given sufficient time, we can always get from i to j and also from j to i.

• defn: closed set

any set C ⊆ S of states such that (∀i ∈ C, j /∈ C) : i→/ j (33)

So no state inside C can ever reach any state outside C via transitions allowed by the

Markov chain, irrespective of the number of iterations. Put differently, (P n)ij = 0 for

all n ≥ 0 is i ∈ C and j /∈ C.

• defn: absorbing state

A state which constitutes a closed set with just one element. So if i is an absorbing

state, one cannot leave this state ever via transitions of the Markov chain.

Note: if i is absorbing, then pij = 0 for all j 6= i. Since also
∑

j pij = 1, we conclude

that pii = 1 and pij = 0 for all j 6= i:

i ∈ S is absorbing if and only if pij = δij (34)

• defn: irreducible set of states

This is any set C ⊆ S of states such that:

∀i, j ∈ C : i ↔ j (35)

All states in an irreducible set are connected to each other, in that one can go from any

state in C to any other state in C in a finite number of steps.



19

• defn: ergodic (or ‘irreducible’) Markov chain

A Markov chain with the property that the complete set of states S is itself irreducible.

Equivalently, one can go from any state in S to any other state in S in a finite number

of steps.

Ergodicity appears to be very similar to regularity (see above); let us clarify the relation

between the two:

(i) All regular Markov chains are also ergodic.

proof:

This follows from the definition of regular Markov chains: (∃n ≥ 0) : (P n)ij >

0 for all (i, j). It follows that one can indeed go from any state i to any state j in

n steps of the dynamics. Hence the chain is ergodic. []

(ii) The converse is not true: not all ergodic Markov chains are regular.

proof:

We only need to give one example of an ergodic chain that is not regular. The

following will do:

P =

(
0 1

1 0

)

Clearly P is a stochastic matrix (although in the limit where there is at most

randomness in the initial conditions, not in the dynamics), and P 2 = 1I. So one

has P n = P for n odd and P n = 1I for n even. We can then solve the dynamics

using (22) and write

n even : p1(n) = p1(0), p2(n) = p2(0)

n odd : p1(n) = p2(0), p2(n) = p1(0)

However, as there is no n for which P n has all entries nonzero, this chain is not

regular. (see exercises for other examples). []

3.4. Graphical representation of Markov chains

Graphical representation: appropriate and possible only if |S| is small!

nodes: all states i ∈ S of the Markov chain

arrows: all allowed one-step transitions



20

arrow from i to j

if and only if pij > 0

translation of concepts in terms of network:

(i) j → i: there is a path from j to i, following arrows

j →/ i: there is no path from j to i, following arrows

(ii) communicating states i ↔ j:

there is path from j to i, and also a path from i to j, following arrows

(iii) ergodic Markov chain:

there is a path from any node j to any node i, following arrows

(iv) closed set: subset of nodes from which one cannot escape following arrows

(v) absorbing state: node with no outgoing arrows (‘sink’)
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4. Convergence to a stationary state

4.1. Simple general facts on stationary states

• defn: stationary state of a Markov chain

A stationary state of a Markov chain defined by the equation pi(n + 1) =
∑

j pjipj(n) is

a vector p = (p1, . . . , p|S|) such that

∀i ∈ S : pi =
∑

j

pjipj and ∀i ∈ S : pi ≥ 0,
∑

j

pj = 1 (36)

Thus p is a left eigenvector of the stochastic matrix, with eigenvalue λ = 1 and with

non-negative entries, and represents a time-independent solution of the Markov chain.

• chains for which limn→∞ P n exists

If a transition matrix has the property that limn→∞ P n = Q, then this has many useful

consequences:

(i) The matrix Q = limn→∞ P n is a stochastic matrix.

proof:

This follows trivially from the fact that P n is a stochastic matrix for any n ≥ 0. []

(ii) The solution (22) of the Markov chain will also converge:

lim
n→∞ pi(n) =

∑

j

Qji pj(0) (37)

proof: trivial []

(iii) Each such limiting vector p = limn→∞ p(n), which p(n) = (p1(n), . . . , p|S|(n)), is a

stationary state of the Markov chain. In such a solution the probability to find any

state will not change with time.

proof:

Since Q is a stochastic matrix, it follows from pi =
∑

j Qjipj(0), in combination with

the fact (established earlier) that stochastic matrices map normalized probabilities

onto normalized probabilities, that the components of p obey pi ≥ 0 and
∑

i pi = 1.

What remains is to show that p is a left eigenvector of P :
∑

j

pjipj =
∑

jk

pjiQkjpk(0) =
∑

k

(
∑

j

Qkjpji

)
pk(0)

=
∑

k

(QP )kipk(0) = lim
n→∞

∑

k

(P n+1)kipk(0)

= lim
n→∞

∑

k

(P n)kipk(0) =
∑

k

Qkipk(0) = pi []
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(iv) The stationary solution to which the Markov chain evolves is unique (independent

of the choice made for the pi(0)) if and only if Qij is independent of i for all k, i.e.

all rows of the matrix Q are identical.

proof:

Suppose we choose our initial state to be k ∈ S, so pi(0) = δik. This would lead

to the stationary solution pj =
∑

i Qijpi(0) = Qkj for all j ∈ S. It follows that the

stationary probabilities are independent of the choice made for k if and only if Qkj

is independent of k for all j. []

• convergence of time averages

In many practical problems one is not necessarily interested in stationary states as

defined above, but rather in the asymptotic averages over time of state probabilities, viz.

in limM→∞ M−1 ∑
n≤M pi(n) = limM→∞ M−1 ∑

n≤M

∑
j(P

n)jipj(0). Hence one would

like to know whether the following limit exists, and find it:

Q = lim
M→∞

1

M

M∑

n=1

P n (38)

We note: if limn→∞ P n = Q, one will recover Q = Q (since the individual P n are all

bounded). In other words, if the first limit Q exists then also the second one Q will

exist, and the two will be identical. There will, however, be Markov chains for which

Q = limn→∞ P n does not exist, yet Q does.

To see what could happen, let us return to the earlier example of an ergodic chain that

is not regular,

P =

(
0 1

1 0

)

One has P n = P for n odd and P n = 1I for n even, so limn→∞ P n does not exist.

However, for this Markov chain the limit Q does exist:

Q = lim
M→∞

1

M

M∑

n=1

P n

= lim
M→∞

1

M





1
2
(M+1)∑

n=1

P 2n−1 +

1
2
M∑

n=0

P 2n





= lim
M→∞

1

M





1
2
(M+1)∑

n=1

P +

1
2
M∑

n=0

1I





=
1

2
P +

1

2
1I
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4.2. Fundamental theorem for regular Markov chains

This theorem states:

If P is the stochastic matrix of a regular Markov chain, then limn→∞ P n = Q

exists, and all rows of the matrix Q are identical. Hence the Markov chain will

always converge to a unique stationary state, independent of the initial conditions.

proof:

as a result of the importance of this property, one can find several different proofs in

literature. Here follows one version which is rather intuitive, in that it focuses on how

the differences between the stationary state probabilities and the actual time-dependent

state probabilities become smaller and smaller as the process progresses.

• Existence of a stationary state

First we prove that there exists a left eigenvector of P = {pij} with eigenvalue λ = 1,

then we prove that there exists such an eigenvector with non-negative entries.

(i) If P is a stochastic matrix, it has at least one left eigenvector with eigenvalue λ = 1.

proof:

left eigenvectors of P are right eigenvectors of P †, where (P †)ij = pji. Since

det(P − λ1I) = det(P − λ1I)† = det(P † − λ1I), the left- and right eigenvalue

polynomials of any matrix P are identical. Since P has a right eigenvector with

eigenvalue 1 (namely (1, . . . , 1), due to the normalization
∑

j pij = 1 for all i ∈ S),

we know that there exists at least one left eigenvector φ with eigenvalue one:∑
i φipij = φj for all j ∈ S. []

(ii) If P is the stochastic matrix of a regular Markov chain, then each left eigenvector

with eigenvalue λ = 1 has strictly positive components.

Let p be a left eigenvector of P . We define S+ = {i ∈ S| pi > 0}. Let n > 0 be

such that (P n)ij > 0 for all i, j ∈ S (this n exists since the chain is regular). We

write the left eigenvalue equation for P n, which is satisfied by p, and we sum over

all j ∈ S+ (using
∑

j(P
n)ij = 1 for all i, due to P n being also a stochastic matrix):

∑

j∈S+

pj =
∑

j∈S+

∑

i

(P n)ijpi =
∑

j∈S+

[ ∑

i∈S+

(P n)ijpi +
∑

i/∈S+

(P n)ijpi

]

∑

j∈S+

pj −
∑

i,j∈S+

(P n)ijpi =
∑

j∈S+

∑

i/∈S+

(P n)ijpi

∑

i∈S+

pi

[
1− ∑

j∈S+

(P n)ij

]
=

∑

j∈S+

∑

i/∈S+

(P n)ijpi

∑

i∈S+

pi

[ ∑

j /∈S+

(P n)ij

]
=

∑

i/∈S+

pi

[ ∑

j∈S+

(P n)ij

]



24

The left-hand side is a sum of non-negative terms and the right-hand side is a sum

of non-positive terms; hence all terms on both sides must be zero:

LHS : (∀i ∈ S+) : pi = 0 or
∑

j /∈S+

(P n)ij = 0

RHS : (∀i /∈ S+) : pi = 0 or
∑

j∈S+

(P n)ij = 0

Since we also know that (P n)ij > 0 for all i, j ∈ S, and that pi > 0 for all i ∈ S+:

LHS : S+ = ∅ or S+ = S

RHS : (∀i /∈ S+) : pi = 0 or S+ = ∅
This leaves two possibilities: either S+ = S (i.e. all components pi positive), or

S+ = ∅ (i.e. all components pi negative or zero). In the former case we have

proved our claim already; in the latter case we can construct a new eigenvector via

pi → −pi for all i ∈ S, which will then have non-negative components only. What

remains is to show that none of these can be zero. If a pi were to be zero then

the eigenvalue equation would give
∑

j(P
n)jipj = 0, from which it would follow

(regular chain!) that
∑

j pj = 0; thus all components must be zero since pj ≥ 0 for

all j. This is impossible since p is an eigenvector. This completes the proof. []

• Convergence to the stationary state

Having established the existence of a stationary state, the second part of the proof of the

fundamental theorem consists in showing that the Markov chain must have a stationary

state as a limit, whatever the initial conditions pi(0), and that there can only be one

such stationary state.

(i) If P is the stochastic matrix of a regular Markov chain, and p = (p1, . . . , p|S|) is a

stationary state of the chain, then limn→∞ pk(n) = pk for all initial conditions.

proof:

Let m be such that (P n)ij >0 for all n ≥ m and all i, j ∈ S. Define z = minij(P
m)ij,

so z > 0, and choose n ≥ m. Define the sets S+(n) = {k ∈ S| pk(n) > pk},
S−(n) = {k ∈ S| pk(n) < pk}, and S0(n) = {k ∈ S| pk(n) = pk}, as well as the

sums U±(n) =
∑

k∈S±(n)[pk(n) − pk]. By construction, U+(n) ≥ 0 and U−(n) ≤ 0

for all n. We inspect how the U±(n) evolve as n increases:

U±(n+1)−U±(n) =
∑

k∈S±(n+1)

[pk(n+1)− pk]−
∑

k∈S±(n)

[pk(n)− pk]

=
∑

k∈S±(n+1)

∑

`

[p`(n)− p`]p`k −
∑

`∈S±(n)

[pk(n)− pk]

=
∑

`∈S±(n)

[p`(n)− p`]
[ ∑

k∈S±(n+1)

p`k − 1
]
+

∑

`/∈S±(n)

[p`(n)− p`]
[ ∑

k∈S±(n+1)

p`k

]
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= − ∑

`∈S±(n)

[p`(n)− p`]
[ ∑

k/∈S±(n+1)

p`k

]
+

∑

`/∈S±(n)

[p`(n)− p`]
[ ∑

k∈S±(n+1)

p`k

]

So we find

U+(n+1)−U+(n) = − ∑

`∈S+(n)

[
p`(n)−p`]

[ ∑

k/∈S+(n+1)

p`k

]

+
∑

`/∈S+(n)

[
p`(n)−p`

][ ∑

k∈S+(n+1)

p`k

]
≤ 0

U−(n+1)−U−(n) = − ∑

`∈S−(n)

[
p`(n)−p`

][ ∑

k/∈S−(n+1)

p`k

]

+
∑

`/∈S−(n)

[
p`(n)−p`

][ ∑

k∈S−(n+1)

p`k

]
≥ 0

Thus U+(n) is a non-increasing function of n, and U−(n) a non-decreasing. Next

we inspect what happens at time intervals of m steps. This means repeating the

above steps with S±(n + 1) replaced by S±(n + m), and p`k replaced by (P m)`k:

U+(n+m)−U+(n) = − ∑

`∈S+(n)

[
p`(n)−p`]

[ ∑

k/∈S+(n+m)

(P m)`k

]

+
∑

`/∈S+(n)

[
p`(n)−p`

][ ∑

k∈S+(n+m)

(P m)`k

]

≤ − z
∑

`∈S+(n)

|p`(n)−p`|
[
|S|−|S+(n + m)|

]

− z
∑

`/∈S+(n)

|p`(n)−p`||S+(n + m)|

U−(n+m)−U−(n) = − ∑

`∈S−(n)

[
p`(n)−p`

][ ∑

k/∈S−(n+m)

(P m)`k

]

+
∑

`/∈S−(n)

[
p`(n)−p`

][ ∑

k∈S−(n+m)

(P m)`k

]

≥ z
∑

`∈S−(n)

|p`(n)−p`|
[
|S| − |S−(n + m)|

]

+ z
∑

`/∈S−(n)

|p`(n)−p`||S−(n + m)|

Since U+(n) is bounded from below, it is a Lyapunov function for the dynamics,

and must tend to a limit limn→∞ U+(n) ≥ 0. Similarly, U−(n) is nondecreasing and

bounded from above, and must tend to a limit limn→∞ U−(n) ≤ 0 If these limits

have been reached we must have equality in the above inequalities, giving
∑

`∈S+(n)

|p`(n)−p`|
[
|S|−|S+(n + m)|

]
=

∑

`/∈S+(n)

|p`(n)−p`||S+(n + m)| = 0

∑

`∈S−(n)

|p`(n)−p`|
[
|S| − |S−(n + m)|

]
=

∑

`/∈S−(n)

|p`(n)−p`||S−(n + m)| = 0

or
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{
S+(n) = ∅ or S+(n + m) = S

}
and

{
S−(n) = ∅ or S+(n + m) = ∅

}

{
S−(n) = ∅ or S−(n + m) = S

}
and

{
S+(n) = ∅ or S−(n + m) = ∅

}

Using the incompatibility of the combination S+(n + m) = S and S+(n + m) = ∅
(with the same for S−(n+m)), we see that always at least one of the two sets S±(n)

must be empty. Finally we prove that in fact both must be empty. For this we

use the identity 0 =
∑

k[pk(n)− pk] =
∑

k∈S+(n) |pk(n)− pk| −∑
k∈S−(n) |pk(n)− pk|,

which can never be satisfied if S+(n) = ∅ and S−(n) 6= ∅ or vice versa. Hence we

are left with S+(n) = S−(n) = ∅, so pk(n) = pk = 0 for all k. []

(ii) A regular Markov chain has exactly one stationary state.

proof:

We already know there exists at least one stationary state. Let us now assume

there are two distinct stationary states p = (p1, . . . , p|S|) and q = (q1, . . . , q|S|). We

choose p as the stationary state in the sense of the previous result, and take q as

the initial state (so pi(0) = qi for all i). The previous result then states:

for all k : lim
n→∞

∑

i

qi(P
n)ik = pk giving qk = pk

A contradiction with the assumption p 6= q, which completes the proof. []

• If P is the stochastic matrix of a regular Markov chain, then limn→∞ P n = Q exists,

and all rows of the matrix Q are identical.

proof:

We just combine the previous results. We have already shown that there is one unique

stationary state p = (p1, . . . , p|S|), and that limn→∞
∑

i pi(0)(P n)ij = pj for all j ∈ S

and all initial conditions {pi(0)}. We now choose as our initial conditions pi(0) = δik,

for which we then find

lim
n→∞(P n)kj = pj

Since this is true for all choices of k ∈ S, we have shown

lim
n→∞P n = Q, Qkj = pj for all k

Thus the limit exists, and all rows of Q are identical. []
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4.3. Examples

Let us inspect some new and earlier examples and apply what we have learned in the previous

pages. The first example in fact covers all Markov chains with two states.

• Consider two-state Markov chains with state space S = {1, 2}. Let pi(n) denote the

probability to find the process in state i at time n, where i ∈ {1, 2} and n ∈ IN. Let

{pij} represent the transition matrix of the process.

What is the most general stochastic matrix for this set-up? We need a real-valued

matrix with entries pij ∈ [0, 1] (condition 1), such that
∑

j pij = 1 for all i (condition 2).

First row: p11 + p12 = 1 so p12 = 1− p11 with p11 ∈ [0, 1]

Second row: p21 + p22 = 1 so p22 = 1− p21 with p21 ∈ [0, 1]

Call p11 = α ∈ [0, 1] and p21 = β ∈ [0, 1] and we have

P =

(
α 1−α

β 1−β

)
α, β ∈ [0, 1]

For what values of (α, β) does this process have absorbing states? A state i is absorbing

iff pij = δij for j ∈ {1, 2}. Let us check the two candidates:

state 1 absorbing iff α = 1 (giving p11 = 1, p12 = 0)

state 2 absorbing iff β = 0 (giving p21 = 0, p22 = 1)

So our process has absorbing states only for α = 1 and for β = 0.

As soon as α 6= 1 and β 6= 0 we see in a simple diagram that our process is ergodic. If

in addition α > 0 and β < 1, we have pij > 0 for all (i, j), so it is even regular. Next let

us calculate the stationary solution(s). These are left-eigenvectors of P with eigenvalue

λ = 1, that have non-negative components only and p1 + p2 = 1. So we have to solve

p1 = p1p11 + p2p21 : (1− α)p1 = β(1− p1)

p2 = p1p12 + p2p22 : (1− α)p1 = β(1− p1)

Result:

p1 =
β

1− α + β
, p2 =

1− α

1− α + β
,

Let us next calculate the general solution pi(n) =
∑

j pj(0)(P n)ji of the Markov chain,

for the case β = 1− α. This requires finding expressions for P n. Note that now

P =

(
α 1−α

1−α α

)
α ∈ [0, 1]

P is symmetric, so we must have two orthogonal eigenvectors, and left- and right

eigenvectors are identical. Inspect the eigenvalue polynomial:

det

(
α− λ 1−α

1− α α− λ

)
= 0 ⇒ (λ− α)2 − (1− α)2 = 0 ⇒ λ = α± (1− α)
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There are two eigenvalues: λ = 1 and λ = 2α− 1. The corresponding eigenvectors are

λ1 = 1 :

{
αx1 + (1− α)x2 = x1

(1− α)x1 + αx2 = x2
⇒ x1 = x2 ⇒ (x1, x2) = (1, 1)

λ2 = 2α− 1 :

{
αx1 + (1− α)x2 = (2α− 1)x1

(1− α)x1 + αx2 = (2α− 1)x2
⇒ x1 = −x2 ⇒ (x1, x2) = (1,−1)

Normalize the two eigenvectors: ê(1) = (1, 1)/
√

2, ê(2) = (1,−1)/
√

2.

We can now expand P in eigenvectors: pij =
∑2

`=1 λ`e
(`)
i e

(`)
j . More generally, since

eigenvectors of P with eigenvalue λ are also eigenvectors of P n with eigenvalue λn:

(P n)ij =
2∑

`=1

λn
` e

(`)
i e

(`)
j = e

(1)
i e

(1)
j + (2α− 1)ne

(2)
i e

(2)
j

=
1

2
+ (2α− 1)ne

(2)
i e

(2)
j

Here this gives

pi(n) =
∑

j

pj(0)
(1

2
+ (2α− 1)ne

(2)
i e

(2)
j

)

=
1

2
[p1(0) + p2(0)] + (2α− 1)n e

(2)
i√
2
[p1(0)− p2(0)]

or

p1(n) =
1

2
+

1

2
(2α− 1)n[p1(0)− p2(0)]

p2(n) =
1

2
− 1

2
(2α− 1)n[p1(0)− p2(0)]

Let us inspect what happens for large n. The limits limn→∞ pi(n) exists if and only

if |2α − 1| < 1, i.e. 0 < α < 1. If the latter condition holds, then limn→∞ p1(n) =

limn→∞ p2(n) = 1/2.

So-called periodic states i are defined by the following property: starting from state i,

pi(n) > 0 only if n is a multiple of some integer λi ≥ 2. For α ∈ (0, 1) this clearly

doesn’t happen (stationary state); this leaves α ∈ {0, 1}.
α = 1 : p1(n) = 1

2
+ 1

2
[p1(0)− p2(0)], p2(n) = 1

2
− 1

2
[p1(0)− p2(0)]

both are independent of time, so never periodic states.

α = 0 : p1(n) = 1
2

+ 1
2
(−1)n[p1(0)− p2(0)], p2(n) = 1

2
− 1

2
(−1)n[p1(0)− p2(0)]

both are oscillating. To get zero values repeatedly one needs p1(0)− p2(0) = ±1,

which happens for p1(0) ∈ {0, 1}.
for p1(0) = 0 we get p1(n) = 1

2
− 1

2
(−1)n, p2(n) = 1

2
+ 1

2
(−1)n

for p1(0) = 1 we get p1(n) = 1
2

+ 1
2
(−1)n, p2(n) = 1

2
− 1

2
(−1)n

conclusion: system has periodic states for α = 0.
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• Xn = number of sixes thrown after n dice rolls?

WXY =
1

6
δX,Y +1 +

5

6
δX,Y

Translated into our standard conventions, we have S = {0, 1, 2, 3, . . .}, (X, Y ) → (j, i) ∈
S2, and hence

pij =
1

6
δi,j−1 +

5

6
δij

This is not a finite state space process, the set S is not bounded. Although we can

still do several things, the proofs of the previous subsection cannot be used. One easily

convinces oneself that (P n)ij will be of the form

(P n)ij =
n∑

`=0

an,`δi,j−`

with non-negative coefficients an,` that must obey
∑n

`=0 an,` = 1 for any n ≥ 0. One

then finds a simple iteration for these coefficient by inspecting (P n+1):

(P n+1)ij =
∑

k

(P n)ikpkj =
n∑

`=0

∑

k

an,`δi,k−`

[1

6
δk,j−1 +

5

6
δkj

]

=
1

6

n∑

`=0

an,`δi,j−1−` +
5

6

n∑

`=0

an,`δi,j−`

=
1

6

n+1∑

`=1

an,`−1δi,j−` +
5

6

n∑

`=0

an,`δi,j−`

=
5

6
an,0δij +

n∑

`=1

[1

6
an,`−1 +

5

6
an,`

]
δi,j−` +

1

6
an,nδi,j−n−1

Hence:

an+1,0 =
5

6
an,0, an+1,n+1 =

1

6
an,n, 0<`<n+1 : an+1,` =

1

6
an,`−1 +

5

6
an,`

The first two are calculated directly, starting from a1,0 = 5
6

and a1,1 = 1
6
, giving

an,0 = (5
6
)n and an,n = (1

6
)n. The others are obtained by iteration. It is clear from these

expressions that there cannot be a stationary state. The long time average transition

probabilities, if they exist, would be Qij = φ(j − i), where

φ(k < 1) = 0, φ(k ≥ 1) = lim
m→∞

1

m

m∑

n=k

an,k

Using an,k ∈ [0, 1] and
∑

j Qij = 1 one can show quite easily that φ(k) = 0 for all k.

So although the overall probabilities to find any state continue to add up to one, the

continuing growth of the state space (this process is diffusive in nature) is such that the

individual probabilities Qij vanish asymptotically.
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• Xn = largest number thrown after n dice rolls?

WXY =





0 if Y > X

Y/6 if Y = X

1/6 if Y < X

Translated into our standard conventions, we have S = {1, . . . , 6}, (X,Y ) → (j, i) ∈ S2,

and hence

pij =





0 if i > j

i/6 if i = j

1/6 if i < j

We immediately notice that the state i = 6 is absorbing, since p66 = 1. Once we are at

i = 6 we can never escape. Thus the chain cannot be regular, and the absorbing state

is a stationary state. We could calculate P n but that would be messy and hard work.

We suspect that the system will always end up in the absorbing state i = 6, so let us

inspect what happens to (P n)i6:

(P n+1)i6 − (P n)i6 =
∑

k

(P n)ikpk6 = (P n)i6 +
1

6

∑

k<6

(P n)ik − (P n)i6

= (P n)i6 +
1

6

[
1− (P n)i6

]
− (P n)i6

=
1

6

[
1− (P n)i6

]
≥ 0

We conclude from this that each (P n)i6 will increase monotonically with n, and converge

to the value one. Thus, the system will always ultimately end up in the absorbing state

i = 6, irrespective of the initial conditions.

• The drunk on the pavement (see section 1):

WXY =





δX,0 if Y = 0
1
2
δX,Y +1 + 1

2
δX,Y−1 if 0 < Y < 5

δX,4 if Y = 5

Here S = {0, . . . , 5}, and

pij =





δ0,j if i = 0
1
2
δi,j−1 + 1

2
δi,j+1 if 0 < i < 5

δ4,j if i = 5

Again we have an absorbing state: p00 = 1. Once we are at i = 0 (i.e. on the street) we

stay there. The chain cannot be regular, and the absorbing state is a stationary state.

Let us inspect what happens to the likelihood of being in the absorbing state:

(P n+1)i0 − (P n)i0 =
∑

k

(P n)ikpk0 = (P n)i0 +
1

2

4∑

k=1

(P n)ikδk,1 − (P n)i0 =
1

2
(P n)i1 ≥ 0

A bit of further work shows that also this system will always end in the absorbing state.
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5. Some further developments of the theory

5.1. Definition and physical meaning of detailed balance

• defn: probability current in Markov chains

The net probability current Ji→j from any state i ∈ S to any state j ∈ S, in the

stationary state of a Markov chain characterized by the stochastic matrix P = {pij}
and state space S, is defined as

Ji→j = pipij − pjpji (39)

where p = {pi} defines the stationary state of the chain.

consequences, conventions

(i) The current is by definition anti-symmetric under permutation of i and j:

Jj→i = pjpji − pipij = −
[
pipij − pjpji

]
= −Ji→j

(ii) Imagine that the chain represents a random walk of a particle, in a stationary state.

Since pi is the probability to find the particle in state i, and pij the likelihood that it

subsequently moves from i to j, pipij is the probability that we observe the particle

moving from i to j. With multiple particles it would be proportional to the number

of observed moves from i to j. Thus Ji→j represents the net balance of observed

transitions between i and j in the stationary state; hence the term ‘current’. If

Ji→j > 0 there are more transitions i → j than j → i; if Ji→j < 0 there are more

transitions j → i than i → j.

(iii) Conservation of probability implies that the sum over all currents is always zero:
∑

ij

Ji→j =
∑

ij

[
pipij − pjpji

]
=

∑

i

pi

( ∑

j

pij

)
−∑

j

pj

( ∑

i

pji

)

=
∑

i

pi −
∑

j

pj = 1− 1 = 0

• defn: detailed balance

A regular Markov chain characterized by the stochastic matrix P = {pij} and state

space S is said to obey detailed balance if

pjpji = pipij for all i, j ∈ S (40)

where p = {pi} defines the stationary state of the chain. Markov chains with detailed

balance are sometimes called ‘reversible’.

consequences, conventions
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(i) We see that detailed balance represents the special case where all individual

currents in the stationary state are zero: Ji→j = pipij − pjpji = 0 for all i, j ∈ S.

(ii) Detailed balance is a stronger condition than stationarity. All Markov chains with

detailed balance have by definition a unique stationary state, but not all regular

Markov chains with stationary states obey detailed balance.

(iii) From (40) one can derive stationarity by summing over j:

∀i ∈ S :
∑

j

pjpji =
∑

j

pipij = pi

∑

j

pij = pi

(iv) Markov chains used to model closed physical many-particle systems with noise are

usually of the detailed balance type, as a result of the invariance of Newton’s laws

of motion under time reversal t → −t.

So far we studied situations where we are given a Markov chain and want to know its

properties. However, sometimes we are faced with the inverse problem: given a state space

S and stationary probabilities p = (p1, . . . , p|S|), find a simple stochastic matrix P for

which the associated Markov chain will give limn→∞ p(n) = p. Simple: one that is easy

to implement in computer programs. The detailed balance condition allows for this to be

achieved in a simple way, leading to so-called

5.2. Definition of characteristic times

• defn: statistics of first passage times (FPT)

fij(n) = probability that, starting from i,

first visit to j occurs at time n (41)

By definition, fij(n) ∈ [0, 1].

Can be expressed in terms of path probabilities (20):

fij(n) =

sum over all paths︷ ︸︸ ︷∑

i1,...,in−1

not visiting i earlier︷ ︸︸ ︷
( n−1∏

m=1

(1− δim,i)
)

path probability︷ ︸︸ ︷

pi,i1

( n−1∏

m=2

pim−1,im

)
pim,j (42)

Consequences, conventions:

(i) Probability of ever arriving at j upon starting from i:

fij =
∑

n>0

fij(n) (43)
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(ii) Probability of never arriving at j upon starting from i:

1− fij = 1− ∑

n>0

fij(n) (44)

(iii) mean recurrence time µi:

µi =
∑

n>0

nfii(n) (45)

note: µi ≥ fii

(iv) recurrent state i: fii = 1 (system will always return to i at some point in time)

null recurrent state: µi = ∞ (returns to i, but average time taken diverges)

positive recurrent state: µi < ∞ (returns to i, average time taken finite)

(v) transient state i: fii < 1 (nonzero chance that system will never return to i at any

point in time)

(vi) periodic/aperiodic states:

Consider the set Ni = {n ∈ IN+| fii(n) > 0} (all times at which it is possible for the

system to be in state i, given it started in state i). Define λi ∈ IN+ as the largest

common divisor of the elements in Ni, i.e. λi is the smallest integer such that all

elements in Ni can be written as integer multiples of λi.

A state i is periodic if λi > 1, aperiodic if λi = 1.

Markov chains with periodic states are apparently systems subject to persistent

oscillation, whereby certain states can be observed only on specific times that occur

periodically, and not on intermediate ones.

(vii) relation between fij(n) and the probabilities pij(n), for n > 0:

pij(n) =
n∑

r=1

pjj(n− r)fij(r) (46)

proof:

consider the probability pij(n) to go in n steps from state i to j. There are n

possibilities for when the first occurrence of state j occurs after time zero: after

r = 1 iterations, after r = 2 iterations, etc, until we have i showing up first after

n iterations. If the first occurrence is after more than n steps, then there is no

contribution to pij(n). Hence

pij(n) =
n∑

r=1

fij(r).Prob[Xn =j|Xr =j]

=
n∑

r=1

pjj(n− r)fij(r) []

note: not easy to use this eqn to calculate the fij(n) in practice.
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5.3. Calculation of characteristic times

• defn: generating functions for state transitions and first passage times

Let pij(n) = (P n)ij (itself a stochastic matrix),

for s ∈ IR, |s| < 1:

Pij(s) =
∑

n≥0

snpij(n), Fij(s) =
∑

n≥0

snfij(n) (47)

with the definition extension fij(0) = 0.

Clearly |Pij(s)|, |Fij(s)| ≤ ∑
n≥0 sn = 1/(1− s)

(uniformly convergent since |s| < 1)

Consequences, conventions

(i) simple algebraic relation between generating functions, for arbitrary (i, j):

Pij(s)− δij = Pjj(s)Fij(s) (48)

proof:

Multiply (46) by sn and sum over n ≥ 0. Use pij(0) = (P 0)ij = δij:

Pij(s) = δij +
∑

n>0

sn
n∑

r=1

pjj(n− r)fij(r)

= δij +
∑

n>0

n∑

r=1

(
sn−rpjj(n− r)

)(
srfij(r)

)
define m = n− r

= δij +
∑

m≥0

∑

n>0

n∑

r=1

δr+m,n

(
smpjj(m)

)(
srfij(r)

)

= δij +
∑

m≥0

∑

n>0

∑

r>0

δr+m,n

(
smpjj(m)

)(
srfij(r)

)

= δij +
∑

m≥0

∑

r>0

(
smpjj(m)

)(
srfij(r)

)

= δij + Pjj(s)Fij(s) []

(ii) corollary:

i 6= j : Pij(s) = Pjj(s)Fij(s), so Fij(s) = Pij(s)/Pjj(s) (49)

i = j : Pii(s) = 1/[1− Fii(s)], so Fii(s) = 1− 1/Pii(s) (50)

• Possible ways to use Fij(s): differentiation

lim
s↑1

d

ds
Fij(s) = lim

s↑1

∑

n>0

nsn−1fij(n) =
∑

n>0

nfij(n) (51)

lim
s↑1

d2

ds2
Fij(s) = lim

s↑1

∑

n>1

n(n− 1)sn−2fij(n) =
∑

n>0

n(n− 1)fij(n) (52)
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average nij and variance ∆ij of first passage times for i → j:

nij =
∑

n>0

nfij(n) = lim
s↑1

d

ds
Fij(s) (53)

∆2
ij =

∑

n>0

n2fij(n)−
[ ∑

n>0

nfij(n)
]2

= lim
s↑1

d2

ds2
Fij(s) + nij[1− nij] (54)
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Appendix A. Exercises

(i) Show that the ‘trained mouse’ example in section 1 defines a discrete time and discrete

state space homogeneous Markov chain. Calculate the stochastic matrix WXY as defined

by eqn (16) for this chain.

(ii) Show that the ‘fair casino’ example in section 1 defines a discrete time and discrete state

space homogeneous Markov chain. Calculate the stochastic matrix WXY as defined by

eqn (16) for this chain.

(iii) Show that the ‘gambling banker’ example in section 1 defines a discrete time and discrete

state space homogeneous Markov chain. Calculate the stochastic matrix WXY as defined

by eqn (16) for this chain.

(iv) Show that the ‘mutating virus’ example in section 1 defines a discrete time and discrete

state space homogeneous Markov chain. Calculate the stochastic matrix WXY as defined

by eqn (16) for this chain.

(v) Let P = {pij} be an N × N stochastic matrix. Prove the following statement. If for

some m ∈ IN one has (P m)ij > 0 for all i, j ∈ {1, . . . , N}, then for all n ≥ m it is true

that (P n)ij > 0 for all i, j ∈ {1, . . . , N}.
(vi) Consider the following matrix:

P =




0 0 1/2 1/2

0 0 1/2 1/2

1/2 1/2 0 0

1/2 1/2 0 0




Show that P is a stochastic matrix. Prove that P is ergodic but not regular.

(vii) Let i be an absorbing state of a Markov chain defined by the stochastic matrix P , i.e.

pij = δij for all j ∈ S. Prove that the chain cannot be regular. Hint: prove first by

induction with respect to n ≥ 0 that (P n)ij = δij for all j ∈ S and all n ≥ 0, where i

denotes the absorbing state.

(viii) Let i be an absorbing state of a Markov chain defined by the stochastic matrix P , i.e.

pij = δij for all j ∈ S. Prove that the state p defined by pj = δij is a stationary state of

the process.

(ix) Consider the stochastic matrix P of the ‘trained mouse’ example in section 1 (which

you calculated in an earlier exercise). Determine whether or not this chain is ergodic.

Determine whether or not this chain is regular. Determine whether or not this chain

has absorbing states. Give the graphical representation of the chain.

(x) Consider the stochastic matrix P of the ‘fair casino’ example in section 1 (which you

calculated in an earlier exercise). Determine whether or not this chain is ergodic.

Determine whether or not this chain is regular. Determine whether or not this chain

has absorbing states.
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(xi) Consider the stochastic matrix P of the ‘gambling banker’ example in section 1 (which

you calculated in an earlier exercise). Calculate its eigenvalues {λi} and verify that

|λi| ≤ 1 for each i. Determine whether or not this chain is ergodic. Determine whether

or not this chain is regular. Determine whether or not this chain has absorbing states.

Give the graphical representation of the chain.

(xii) Consider the stochastic matrix P of the ‘mutating virus’ example in section 1 (which

you calculated in an earlier exercise). Calculate its eigenvalues {λi} and verify that

|λi| ≤ 1 for each i. Determine whether or not this chain is ergodic. Determine whether

or not this chain is regular. Determine whether or not this chain has absorbing states.

Give the graphical representation of the chain.

(xiii) Consider the stochastic matrix P of the ‘trained mouse’ example in section 1 (which

you analysed in earlier exercises). Find out whether the chain has stationary states. If

so, calculate them and determine whether the stationary state is unique. If not, does

the time average limit Q = limm→∞ m−1 ∑
n≤m(P n) exist? Use your results to answer

the question(s) put forward for this example in section 1.

(xiv) Consider the stochastic matrix P of the ‘fair casino’ example in section 1 (which you

analysed in earlier exercises). Find out whether the chain has stationary states. If so,

calculate them and determine whether the stationary state is unique. If not, does the

time average limit Q = limm→∞ m−1 ∑
n≤m(P n) exist? Use your results to answer the

question(s) put forward for this example in section 1.

(xv) Consider the stochastic matrix P of the ‘gambling banker’ example in section 1 (which

you analysed in earlier exercises). Find out whether the chain has stationary states. If

so, calculate them and determine whether the stationary state is unique. If not, does

the time average limit Q = limm→∞ m−1 ∑
n≤m(P n) exist? Use your results to answer

the question(s) put forward for this example in section 1.

(xvi) Consider the stochastic matrix P of the ‘mutating virus’ example in section 1 (which

you analysed in earlier exercises). Find out whether the chain has stationary states. If

so, calculate them and determine whether the stationary state is unique. If not, does

the time average limit Q = limm→∞ m−1 ∑
n≤m(P n) exist? Use your results to answer

the question(s) put forward for this example in section 1.
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Appendix B. Probability in a nutshell

Definitions & Conventions. We define ‘events’ x as n-dimensional vectors, drawn from some

event set A ⊆ IRn. We associate with each event a real-valued and non-negative probability

measure p(x) ≥ 0. If A is discrete and countable, each component xi of x can only assume

values from a discrete set Ai so A ⊆ A1⊗A2⊗. . .⊗An. We drop explicit mentioning of sets

where possible; e.g.
∑

xi
will mean

∑
xi∈Ai

, and
∑

x will mean
∑

x∈A, etc. No problems

arise as long as the arguments of p(. . .) are symbols; only once we evaluate probabilities for

explicit values of the arguments we need to indicate to which components of x such values

are assigned. The probabilities are normalized according to
∑

x p(x) = 1.

Interpretation of Probability. Imagine a system which generates events x ∈ A sequentially,

giving the infinite series x1,x2,x3, . . .. We choose an arbitrary one-to-one index mapping

π : {1, 2, . . .} → {1, 2, . . .}, and one particular event x ∈ A (in that order), and calculate

for the first M sequence elements {xπ(1), . . . , xπ(M)} the frequency fM(x) with which x

occurred:

fM(x) =
1

M

M∑

m=1

δx,xπ(m)





δx,y = 1 if x = y

δx,y = 0 if x 6= y

We define random events as those generated by a system as above with the property that

for each one-to-one index map π, for each event x ∈ A the frequency of occurrence fM(x)

tends to a limit as M → ∞. This limit is then defined as the ‘probability’ associated with

x:

∀x ∈ A : p(x) = lim
M→∞

fM(x)

Since fM(x) ≥ 0 for each x, and since
∑

x fM(x) = 1 for any M , it follows that p(x) ≥ 0

and that
∑

x p(x) = 1 (as it should).

Marginal & Conditional Probabilities, Statistical Independence. The so-called ‘marginal

probablities’ are obtained upon summing over individual components of x = (x1, . . . , xn):

p(x1, . . . , x`−1, x`+1, . . . , xn) =
∑
x`

p(x1, . . . , xn) (B.1)

In particular we obtain (upon repeating this procedure):

p(xi) =
∑

x1,...,xi−1,xi+1,...,xn

p(x1, . . . , xn) (B.2)

Marginal probabilities are normalized. This follows upon combining their definition with the

basic normalization
∑

x p(x) = 1, e.g.
∑

x1,...,x`−1,x`+1,...,xn

p(x1, . . . , x`−1, x`+1, . . . , xn) = 1,
∑
xi

p(xi) = 1
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For any two disjunct subsets {i1, . . . , ik} and {j1, . . . , j`} of the index set {1, . . . , n} (with

necessarily k + ` ≤ n) we next define the ‘conditional probability’

p(xi1 , . . . , xik |xj1 , . . . , xj`
) =

p(xi1 , . . . , xik , xj1 , . . . , xj`
)

p(xj1 , . . . , xj`
)

(B.3)

(B.3) gives the probability that the k components {i1, . . . , ik} of x take the values

{xi1 , . . . , xik}, given the knowledge that the ` components {j1, . . . , j`} take the values

{xj1 , . . . , xj`
}.

The concept of statistical independence now follows naturally. Loosely speaking:

statistical independence means that conditioning in the sense defined above does not affect

any of the marginal probabilities. Thus the n events {x1, . . . , xn} are said to be statistically

independent if for any two disjunct subsets {i1, . . . , ik} and {j1, . . . , j`} of {1, . . . , n} we have

p(xi1 , . . . , xik |xj1 , . . . , xj`
) = p(xi1 , . . . , xik)

This can be shown to be equivalent to saying

{x1, . . . , xn} are independent :
p(xi1 , . . . , xik) = p(xi1)p(xi2) . . . p(xik)

for every subset {i1, . . . , ik} ⊆ {1, . . . , n}
(B.4)
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Appendix C. Eigenvalues and eigenvectors of stochastic matrices

For P m to remain well-defined for m → ∞, it is vital that the eigenvalues are sufficiently

small. Let us inspect the right- and left-eigenvector equations
∑

j pijxj = λxi and
∑

j pjiyj =

λyi, where P is a stochastic matrix, x,y ∈ |C|S| and λ ∈ |C (since P need not be symmetric,

eigenvalues and eigenvectors need not be real-valued). Much can be extracted from the two

defining properties pik ≥ 0 ∀(i, k) ∈ S2 and
∑

i pik = 1 ∀k ∈ S alone. We will write complex

conjugation of z ∈ |C as z. Note that eigenvectors (x,y) of P need not be probabilities in

the sense of the p(n), as they could have negative or complex entries.

• The spectra of left- and right- eigenvalues of P are identical.

proof:

This follows from the fact that a right eigenvector of P is automatically a left eigenvector

of P †, where (P †)ij = pji, so

right eigenv polynomial : det[P − λ1I] = 0

left eigenv polynomial : det[P † − λ1I] = 0 ⇒ det[(P − λ1I)†] = 0

the proof then follows from the general property detA = detA†. []

• All eigenvalues λ of stochastic matrices P obey

yP = λy, y 6= 0 : |λ| ≤ 1 (C.1)

proof:

we start from the left eigenvalue equation λyi =
∑

j pjiyj, take absolute values of both

sides, sum over i ∈ S, and use the triangular inequality:
∑

i

|λyi| =
∑

i

|∑
j

pjiyj| ⇒ |λ|∑
i

|yi| =
∑

i

|∑
j

pjiyj|

≤ ∑

i

∑

j

|pjiyj| =
∑

i

∑

j

pji|yj| =
∑

j

|yj|

Since y 6= 0 we know that
∑

i |yi| 6= 0 and hence |λ| ≤ 1. []

• Left eigenvectors belonging to eigenvalues λ 6= 1 of stochastic matrices P obey

yP = λy, y 6= 0 : if λ 6= 1 then
∑

i

yi = 0 (C.2)

proof:

we simply sum both sides of the eigenvalue equation over i ∈ S and use the normalization

of the columns of P :

λyi =
∑

j

pjiyj ⇒ λ
∑

i

yi =
∑

j

yj

Clearly, either
∑

i yi = 0 or λ = 1. This proves our claim. []


