
Performance Evaluation of

Computer Systems

By Ali Movaghar

Fall 2012

1

Fall 2012

Grading Policy

• 2 Programming Assignments: 20%

• Final Research Paper: 20%

• Exam(s): 60%

2

• Exam(s): 60%

Textbooks

• Main Text:

– K. Kant, Introduction to Computer System Performance
Evaluation, McGraw-Hill Inc., 1992.

• Secondary Texts:

– B.R. Haverkort, Performance of computer Communication
Systems, John Wiley & Sons Ltd., 1998.

3

Systems, John Wiley & Sons Ltd., 1998.

– G. Bolch, S. Greiner, H. de Meer and K.S. Trivedi,

Queueing Networking and Markov Chains, John Wiley &

Sons Ltd., 1998.

– D.W. Stroock, An Introduction to Markov Processes,
Springer-Verlag, Berlin Heidelberg, 2005

Performance Measures

• Responsiveness: These measures are

intended to evaluate how quickly a given task

can be accomplished by the system. Possible

measures are waiting time, queue length, etc.

4

• Usage Level: These measures are intended to

evaluate how well the various components of the

system are being used. Possible measures are

throughput and utilization of various resources.

Performance Measures (continued)

• Missionability: These measures indicate if the

system would remain continuously operational

for the duration of a Possible measures are the

distribution of the work accomplished during the

mission time, interval availability (probability that

5

mission time, interval availability (probability that

the system will keep performing satisfactorily

throughout the mission time), and the life-time

(time when the probability of unacceptable

behavior increases beyond some threshold).

Performance Measures (continued)

• Dependability: These measures indicate
how reliable the system is over the long
run. Possible measures are the number of
failures per day, MTTF (mean time to

6

failures per day, MTTF (mean time to
failure), MTTR (mean time to repair), long-
term availability, and the cost of a failure.

Performance Measures (continued)

• Productivity: These measures indicate
how effectively a user can get his or her
work accomplished. Possible measures
are user friendliness, maintainability, and

7

are user friendliness, maintainability, and
understandability.

Application Domains

• General purpose computing: These

Systems are designed for general purpose
problem solving. Relevant measures are
responsiveness, usage level, and

8

responsiveness, usage level, and
productivity. Dependability requirements
are modest, especially for benign failures.

Application Domains (continued)

• High availability: Such systems are
designed for transaction processing
environments (banks, airlines, or
telephone databases, switching systems,

9

telephone databases, switching systems,
etc.). The most important measures are
responsiveness and dependability. Both of
these requirements are more sever than
for general purpose computing systems.
Productivity is also an important factor.

Application Domains (continued)

• Real-time control: Such systems must
respond to both periodic and randomly
occurring events within some (possibly
hard) timing constraints. They require high

10

hard) timing constraints. They require high
levels of responsiveness and
dependability for most workloads and
failure types and are therefore significantly
over-designed. Note that the utilization
and throughput pay little role in such

Application Domains (continued)

• Mission oriented: These systems require high

levels of reliability over a short period, called the

mission time. Little or no repair / tuning is

possible during the mission. Such systems

include fly-by-wire airplanes, battlefield systems,

11

include fly-by-wire airplanes, battlefield systems,

and spacecrafts. Responsiveness is also

important, but usually not difficult to achieve.

Such systems may try to achieve high reliability

during short term at the expense of poor

reliability beyond mission period.

Application Domains (continued)

• Long-life: Systems like the ones used in
unmanned spaceships need long life
without provision for manual diagnostics
and repairs. Thus, in addition to being
highly dependable, they should have

12

highly dependable, they should have
considerable intelligence built in to do
diagnostics and repair either automatically
or by remote control from a ground station.
Responsiveness is important but not
difficult to achieve.

Techniques for Performance

Evaluation

• Measurement: Measurement is the most
fundamental technique and is needed
even in analysis and simulation to
calibrate the models. Some

13

calibrate the models. Some
measurements are best done in hardware,
some in software, and some in hybrid
manner.

Techniques for Performance

Evaluation (continued)

• Simulation Modeling: Simulation involves
constructing a model for the behavior of
the system and driving it with an
appropriate abstraction of the workload.

14

appropriate abstraction of the workload.
The major advantage of simulation is its
generality and flexibility; almost any
behavior can be easily simulated.

Techniques for Performance

Evaluation (continued)

• Both measurement and simulation involve

careful experiment design, data gathering, and

data analysis. These steps could be tedious;

moreover, the final results obtained from the

data analysis only characterize the system

15

data analysis only characterize the system

behavior for the range of input parameters

covered. Although exploration can be used to

obtain results for the nearby parameter values, it

is not possible to ask “what if” questions for

arbitrary values.

Techniques for Performance

Evaluation (continued)

• Analytic Modeling: Analytic modeling involves

constructing a mathematical model of the

system behavior (at the desired level of detail)

and solving it. The main difficulty here is that the

domain of tractable models is rather limited.

16

domain of tractable models is rather limited.

Thus, analytic modeling will fail if the objective is

to study the behavior in great detail. However,

for an overall behavior characterization, analytic

modeling is an excellent tool.

Techniques for Performance

Evaluation (continued)

• The major advantages of analytic modeling

over the other two techniques are:

1) It generates good insight into the workings of the

17

1) It generates good insight into the workings of the

system that is valuable even if the model is too

difficult to solve.

2) Simple analytic models can usually be solved

easily, yet provide surprisingly accurate results.

3) Results from analysis have better predictive

value than those obtained from measurement or

simulation.

Techniques for Performance

Evaluation (continued)

• Hybrid Modeling: A complex model may
consist of several sub-models, each
representing certain aspect of the system.
Only some of these sub-models may be

18

Only some of these sub-models may be
analytically tractable; the others must be
simulated.

Applications of Performance

Evaluation

• System design: In designing a new
system, one typically starts out with certain
performance/reliability objectives and a
basic system architecture, and then
decides how to choose various

19

decides how to choose various
parameters to achieve the objectives.
This involves constructing a model of the
system behavior at the appropriate level of
detail, and evaluating it to choose the
parameters.

System Design (continued)

• At higher levels of design, simple analytic
reasoning may be adequate to eliminate
bad choices, but simulation becomes an
indispensable tool for making detailed

20

indispensable tool for making detailed
design decisions and avoiding costly
mistakes.

Applications of Performance

Evaluation (continued)

• System selection: Here the problem is to
select the “best” system from among a
group of system that are under
consideration for reasons of cost,

21

consideration for reasons of cost,
availability, compatibility, etc.

System Selection (continued)

• Although direct measurement is the ideal
technique to use here, there might be
practical difficulties in doing so (e.g., not
being able to use them under realistic

22

being able to use them under realistic
workloads, or not having the system
available locally). Therefore, it may be
necessary to make projections based on
available data and some simple modeling.

Applications of Performance

Evaluation (continued)

• System upgrade: This involves replacing
either the entire system or parts thereof
with a newer but compatible unit. The
compatibility and cost considerations may

23

compatibility and cost considerations may
dictate the vendor, so the only remaining
problem is to choose quantity, speed, and
the like.

System Upgrade (continued)

• Often, analytic modeling is adequate here;
however, in large systems involving
complex interactions between
subsystems, simulation modeling may be

24

subsystems, simulation modeling may be
essential. Note that a direct
experimentation would require installing
the new unit first, and thus is not practical.

Applications of Performance

Evaluation (continued)

• System tuning: The purpose of tune-up is
to optimize the performance by
appropriately changing the various
resource management policies. It is

25

resource management policies. It is
necessary to decide which parameters to
consider changing and how to change
them to get maximum potential benefit.

System Tuning (continued)

• Direct experimentation is the simplest
technique to use here, but may not be
feasible in a production environment.
Since the tuning often involves changes to

26

Since the tuning often involves changes to
aspects that cannot be easily represented
in analytic models, simulation is
indispensable in this application.

Applications of Performance

Evaluation (continued)

• System analysis: Suppose that we find a
system to be unacceptably sluggish. The reason
could be either inadequate hardware resources
or poor system management. In the former
case, we need system upgrade, and in the latter,

27

case, we need system upgrade, and in the latter,
a system tune-up. Nevertheless, the first task is
to determine which of the two cases applies.
This involves monitoring the system and
examining the behavior of various resource
management policies under different loading
conditions.

System Analysis (continued)

• Experimentation coupled with simple
analytic reasoning is usually adequate to
identify the trouble spots; however, in
some cases, complex interactions may

28

some cases, complex interactions may
make a simulation study essential.

System Workload

• The workload of a system refers to a set of

inputs generated by the environment in which

the system is used, e.g., the inter-arrival times

and service demands of incoming jobs, and are

usually not under the control of the system

29

usually not under the control of the system

designer/administrator. These inputs can be

used for driving the real system (as in

measurement) or its simulation model, and for

determining distributions for analytic/simulation

modeling.

Workload Characterization

• Workload characterization is one of the
central issues in performance evaluation
because it is not always clear what
aspects of the workload are important, in

30

aspects of the workload are important, in
how much detail the workload should be
recorded, and how the workload should be
represented and used.

Workload Model

• Workload characterization only builds a model of

the real workload, since not every aspect of the

real workload may be captured or is relevant.

• A workload model may be executable or non-

31

• A workload model may be executable or non-

executable. For example, recording the arrival

instants and service durations of jobs creates an

executable model, whereas only determining the

distributions creates a non-executable model.

Workload Model (continued)

• An executable model need not be a record
of inputs, it can also be a program that
generates the inputs.

• Executable workloads are useful in direct

32

• Executable workloads are useful in direct
measurements and trace-driven
simulations, whereas non-executable
workloads are useful for analytic modeling
and distribution-driven simulations.

Benchmarking Computer Systems

• A benchmark of a system amounts to a set
of published data about it.

• The benchmarks are primarily intended to
provide an overall assessment of various

33

provide an overall assessment of various
types of a system on the market.

• Benchmarks are usually run by vendors or
third parties for “typical” configurations and
workloads, and not by the user interested
in the selection process.

System Performance Evaluation

Cooperative (SPEC)

• Recognizing the need for high quality

standardized benchmarks and benchmark data

on contemporary computer systems, a number

of vendors have collectively established an

organization called System Performance

34

organization called System Performance

Evaluation Cooperative (SPEC).

• SPEC publishes a quarterly newsletter

containing benchmark data on contemporary

systems as they become available.

Benchmarking Traditional

Computer Systems

• Two popular measures of the processing rate for

conventional computer systems are MIPS

(million instructions per second) and MFLOPS

(million floating point instructions per second).

35

• Taken literally, these measures must necessarily

be worthless, since the instruction formats,

complexity, and execution times vary widely

even for a single–machine type.

Benchmarking Traditional

Computer Systems (continued)

• A reasonable approach must necessarily
examine the running times of real
programs written in a high-level
language.

36

• We need to characterize the application
domain by a set of “typical” programs.

• There are two ways to do this:

a) using application benchmarks.

b) using synthetic benchmarks.

Benchmarking Traditional

Computer Systems (continued)

• In application benchmarks, we choose a
small subset of real application programs
that are representative of the application
domain of interest.

37

• In synthetic benchmarks, we design
some artificial programs that mimic a real
program execution environment by using
statistical data about real high-level
language programs.

Synthetic Benchmarks: Some

Examples

• Whetstone which is based upon the
characteristics of Fortran programs doing
extensive floating-point computation.

• Dhrystone which is written in C, and is
designed to represent applications involving

38

designed to represent applications involving
primarily integer arithmetic and string
manipulation in a block-structured language.

• Nasa7 which consists of a set of seven kernels
doing double-precision arithmetic in Fortran.

Application Benchmarks: Some

Examples

• Linpack which solves a dense 100 X 100 linear

system of equations using the Linpak library

package.

• Spice which is a large analog circuit simulation

39

• Spice which is a large analog circuit simulation

package, mostly written in Fortran, which uses

both integer and floating point arithmetic.

• gcc which is based on the GNU C compiler.

• li which is a lisp iterpreter written in C.

Reference Machine

• For historical reason, the VAX11/780 is
considered as the reference machine. It
is regarded to be a typical 1 MIPS
(MFLOPS) machine.

40

• Thus, if an integer (floating-point)
benchmark takes 80 seconds of CPU
time on VAX11/780, and 4 seconds on
machine A, we can claim that A is an
80/4 = 20 MIPS (MFLOPS) machine.

SPEC CPU Performance

Benchmarks
• For CPU performance, SPEC has defined a

suite of ten benchmarks, four of which (gcc,
expresso, li, and eqnott) do primarily integer
arithmetic, and other six (spice, doduc, nasa7,
matrix, fpppp, and tomcatv) primarily floating
point.

41

point.

• The reference machine used is VAX11/780.
The geometric mean of the integer benchmark
results is known as SPECint, and those of
others as SPECfp.

• The geometric mean of SPECint and SPECfp
is known as SPECmark.

Geometric Mean Versus Arithmetic

Mean

Let t1 and t2 denote the running times of two
benchmarks on a test machine, and r1
and r2 denote the running times of two
benchmarks on a reference machine.

42

benchmarks on a reference machine.
Then:

• GM(r1/t1, r2/t2) = GM(r1, r2)/GM(t1, t2)

but

• AM(r1/t1, r2/t2) ≠ AM(r1, r2)/AM(t1, t2)

Benchmark Data for Some

Selected Workstations

FPINTMarkO/SMemCPU/FPUSystem

46.945.846.5EP/IX 1.2.332 MbR6000A/6010CDC CD4680

21.121.921.5Ultrix 4.132 MbR3000/3010CDC DS5500

11.012.911.8HP UX 8.016 MbMC68040/intHP 9000/400s

43

11.012.911.8HP UX 8.016 MbMC68040/intHP 9000/400s

73.534.554.3Aix 3.164 Mb4164IBM RS6000/550

32.519.926.7Unix860/4.016 MbI860/intIntel i860/40

47.645.046.5Risc/OS4.5232 MbR6000/6010MIPS RC6280

17.622.619.5IRIX 3.364 MbR3000/3010SGI 4D/320S

21.520.721.2SunOS 4.1.116 MbCY7C601/T1Sun Sparcstn-2

Measurement

Measurement of a system concerns
monitoring the real system. It can be
broadly divided into into the following three
classes:

44

classes:

• Hardware monitoring

• Software monitoring

• Hybrid monitoring

Hardware monitoring

• This technique employs additional monitoring

hardware that is interfaced with the system

under measurement in non-intrusive way.

• The main advantage of this technique is that the

45

• The main advantage of this technique is that the

measurement does not interfere with the normal

functioning of the monitored system and fast

events can be captured.

• However, it is expensive and has difficulty in

doing software-level measurements.

Software monitoring

• This technique uses some measurement
code either embedded in the existing
software or as a separate set of routines.

• The main advantage of this technique is its

46

• The main advantage of this technique is its
generality and flexibility.

• The disadvantages are that it may
seriously interfere with the normal
functioning of the system and cannot be
used to capture fast occurring events.

Software monitoring (continued)

• This technique is most appropriate for
obtaining user program and operating
system related information, such as the
time spent executing a particular routine,

47

time spent executing a particular routine,
page fault frequency, and average number
of processes in each possible state.

Hybrid monitoring

• This technique draws upon the
advantages of both hardware and software
monitoring.

• All relevant signals are collected under

48

• All relevant signals are collected under
software control and sent to another
machine for measurement and processing.

Hybrid monitoring (continued)

• The advantages are that it is flexible and that its

domain of application overlaps those of both

hardware and software monitoring.

• The disadvantages are that the synchronization

49

• The disadvantages are that the synchronization

requirements between the measuring and

measured system may cause some interference,

and it is expensive and cumbersome to obtain

detailed program or O/S-level measurements.

Some Important Issues in Selecting

an Appropriate Monitoring

Technique

• Accessibility

• Event frequency

50

• Event frequency

• Monitor Artifact

• Overhead

• Flexibility

Accessibility

• The hardware may be unaware of the software-

level information and thus unable to obtain it. An

example is the information regarding the

allocation of various resources to a process.

51

allocation of various resources to a process.

• Similarly, the functions that are handled entirely

in hardware such as cache management, and

physical layer of networking may be inaccessible

to software.

