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Outline of This Part of Chapter 8

e Hardware Reliability Models

o A Safety Model

e A Security Model

e A Real-Time System Model

« Software Reliability Growth Models
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Hardware Reliability Models

e Two component Markov reliability model
with repalr

e Two component Markov model with
Imperfect fault coverage

o WES reliability model
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Markov Reliability Model With Repair

o Consider the 2-component parallel system (no delay + perfect
coverage) but disallow repair from system down state.

* Note that state 0 is now an absorbing state. The state diagram
IS given in the following figure.

« This reliability model with repair cannot be modeled using a
reliability block diagram or a fault tree. We need to resort to
Markov chains. (This is a form of dependency since in order
to repair a component you need to know the status of the
other component).
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Markov Reliability Model With Repair (Contd.)

2A A

n
Absorbing state

« Markov chain has an absorbing state. In the
steady-state, system will be in state 0 with
probability 1. Hence steady state analysis will
yield a trivial answer; transient analysis is of
Interest. States 1 and 2 are transient states.

Copyright © 2006 by K.S. Trivedi



Markov Reliability Model With Repair (Contd.)

e Some authors erroneously claim that reliability
models do not admit repair.

 In the model on previous slide, we have component
repair from state 1; system has not failed in this
state.

 In a reliability model we do not allow repair from
system failure states (such as state 0).

e Thus, there must be one or more absorbing states in
a reliability model
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Markov Reliability Model With Repair (Contd.)

e Assume that the initial state of the Markov chain is 2, that
IS, 7,(0) = 1, 7, (0) = 0for k=0, 1.

» Then the system of differential Equations is written

based on:

Rate of buildup = Rate of flow in - Rate of flow out
for each state
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Markov Reliability Model With Repair (Contd.)

d Z(t ) = 22,0+ 1)

dm,(t)
dt

= 207, (1)~ (A + )7, (2)

dr, ()
dt

= A7, (t)
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Markov Reliability Model With Repair (Contd.)

Using the technique of Laplace transform, we
can reduce the above system to:

si,(s)—1=-2Ax,(s)+ umx,/(s)
sy (s) = 247, (s) — (A + 1) 7, (s)

s7t,(s) = Az (s) where 7(s) = Te_“ﬂ(t)dt
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Markov Reliability Model With Repair (Contd.)
Solving for 7,(s), we get:

247
s[s® +(BA+ u)s +21°]

o (s) =

« After an inversion, we can obtain r, (t), the probability
that no components are operating at time t = 0. For this

purpose, we carry out a partial fraction expansion.
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Markov Reliability Model With Repair (Contd.)

Inverting the transform, we get

2/12 e—alt e—azt
R(t)=1-7,(t) = (—- )
a—u, o o,

where

(BA+ ) AP + 64+ 12
Uy, Oy = 5
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Markov Reliability Model With Repair (Contd.)

Recallingthat MTTF = j' R(¢) dt we get:
0

2
MITF = { % / } 24 (“1”2)
— & o, o',

2/12(32,+,u) 3 L H
(222)2 24 2X°
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Markov Reliability Model With Repair (Contd.)

* Note that the MTTF of the two component parallel
redundant system,in the absence of a repair facility
(1.e., 2= 0), would have been equal to the first term,
3/(2*1), In the above expression.

* Therefore, the effect of a repair facility Is to increase
the mean life by «/ (2*12), or by a factor

A/
QN _ M
3
4/1 31
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Model made in SHARPE GUI

Ei SHARPE graphics - version 1.3.1 September 2002
File Model Editor Analysis Editor Plot Browse Examples Help

ﬂ E gl El| O ijoﬁe |—la&&: | 2 Modif. fre | Rate [\-lairix | Copyr | E Paste | xj .CLI‘.t | :'ﬁ Delete | I|:| Mowe | fé Clear

Markoy Chain Model

P BRI

f=1 project : Rel_Rep and its models.
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Parameters entered for the Model

f=5 SHARPE graphics - version 1.3.1 September 2002

- [2]X]
File Wodel Editor Analysiz Editor Plot Browse Examples  Help

ﬂ E gl E!‘ O ijode |Z:- q&ﬁ: | £ Modif. Arc | Rate M.a‘lrix | Copy | E Paste | é’t‘y .Cl.rll | :‘ﬂ Delete

model with ABSOR N =) T ——
i ____E‘ahnalysmtrame.

F3 project : Rel.

I|:| Mowe | ﬁ Clear

EEak: '
= [oIX]

Parameters |Cnde| Qutput | Graph | Persanal Modication

Marne ofthe model:  |Rel_Rep = Output(s) selected:

Cutputs:

Reliability
Cumulative dist. function oftime to absorption
Reliability
Prob of absorption at time t (unreliability)

Mean time to absorption (failure)
ﬂ Add |
Mean time to absorption (failure) 1 -e}z
State probability at absorption = J L |

State probability at absorption for all states . ) A
Expected reward rate attime t (exrt)

>

| €

“Parameter(s) for the current output:

~Values for the variables not bound:

Wariable Walue

larnbda 0.0002
fmiu 118

Close |

Copyright © 2006 by K.S. Trivedi 15



Sharpe Input file generated by GUI

format 8
factor on

markov Rel_Rep(lambda, mu)
2 1 2*lambda

10 lambda

12mu

end

* Initial Probabilities defined:
2 init_Rel _Rep 2

1linit Rel Rep 1
0init Rel Rep 0

end

* Initial Probailities assigned:

bind
init Rel Rep 20
init Rel Rep 10
init Rel Rep 00

end

echo

*hhkkkhkhkhkhkhhhhrhhhhkhkhkhkhkhkhrhhhhhhhhhhdhrhhhiihrhhhhixixkx
*hhkhkhkhkkkhkhkhkhkkhkkikkikhkihhhhkhkhkixx

echo ********* Qutputs asked for the model: Rel_Rep
*kkkhkhkkkhkhkkhkkikkik

* Initial Probability: inil
bind
init Rel Rep 2 1
init Rel Rep 1 0
init Rel Rep 0 0
end

bind lambda 0.0002
bind mu 1/5

func Reliability(t) 1-tvalue(t;Rel_Rep; lambda, mu)
loop t,1,1000,10

expr Reliability(t)

end

bind lambda 0.0002
bind mu 1/5

var MTTAb mean(Rel_Rep, 0; lambda, mu)
expr MTTAb

end
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Output generated by SHARPE GUI

Parameters | Code Output ] Graph | Persanal Madication |

1=881.000000

1=901.000000

1=911.000000

1=921.000000

1=931.000000

1=941.000000

1=951.000000

1=961.000000

1=971.000000

1=981.000000

1=921.000000

Reliability(t):

Reliahility(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):
MTTADb: 2.50750000e+006

9.99646716e-001

9.99642728e-001

9.99638743e-001

9.99634756e-001

9.99630770e-001

9.99626783e-001

9.99622796e-001

9.99618810e-001

9.99614823e-001

9.99610837e-001

9.98606850e-001

Goto Line

W

Print Output J

Cloge ‘
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Graph between Reliability and time
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Markov Reliability Model With
Imperfect Coverage
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Markov Model With Imperfect Coverage

» Next consider a modification of the above example
proposed by Arnold as a model of duplex
processors of an electronic switching system.

« Assuming that not all faults are recoverable and that
¢ IS the coverage factor which denotes the
conditional probability that the system recovers
given that a fault has occurred.

 The state diagram is now given by the following
picture:
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Markov Model With Imperfect Coverage
(Contd.)

2AC

2A(1-¢c) A
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Markov Model With Imperfect Coverage (Contd.)

e Assume that the initial state 1s 2 so that:

5(0)=1 =(0)=r(0)=0

* Then the system of differential equations are:

d?flt(f) = 2 (t) = 2A(L—¢) 75 (£) + 17 (¢)

dgz(t) =24 () — (A+ 1) 7 (1)

dgt(t) =2A(—c) m(1) + Az ()
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Markov Model With Imperfect Coverage (Contd.)

Using Laplace transforms as before, the above system
reduces to:

s, (s)—1=—-2Ax,(s)+ urx,(s)
$7,(5) = 2207, (5) — (A + 1)7,(5)
sty (s)=An,(s)+2A(1—c)m,(s)
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Markov Model With Imperfect Coverage (Contd.)

o After solving the differential equations we obtain:

R(t)=m,(1) + 7,(1)
e From R(t), we can system MTTF:
A1+2c)+ u

2+ u(l—c)]
[t should be clear that the system MTTF and system

MTTF =

reliability are critically dependent on the coverage factor.
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Model made in SHARPE GUI

[25 SHARPE graphics - wersion 1.2 July 2000 ] 4
File Model Editor  Analysis Editor  Plot  Browse Examples  Help

E”lﬂ Igl ﬂl "} Hode | — Arc | S Modif. Arc I Rate hdatrix | Copy IE. Pashe | & cut I =4 Dalate I:‘"?D Mowe | i Clear I ‘

Markow Chain Model | |

_lo x|
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Graph between R(t) and time

2 Results of the SHARPE execu tion
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Markov Reliability Model with
Repair (WFS Example)

Copyright © 2006 by K.S. Trivedi
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Markov Reliability Model With Repair
(WFES Example)

 WES: Workstation File System

» Assume that the computer system does not recover if

both workstations fail, or if the file-server falils.
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Markov Reliability Model With Repalr

« States (0,1), (1,0) and (2,0) become absorbing states while (2,1) and (1,1)
are transient states.

* Note: we have made a simplification that, once the CTMC reaches a
system failure state, we do not allow any more transitions.

Copyright © 2006 by K.S. Trivedi 29



Markov Reliability Model With Repair (Contd.)

* If we solve for 7, ,(z) and =, ,(¢) then

R)=r, (1) + 7, (1)
* For a Markov chain with absorbing states:
A the set of absorbing states
B = - A: the set of remaining states
7; - Mean time spent in state ,/ until absorption

=] 7w (x)de (i, j) e B
10, =—7,(0)
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Markov Reliability Model With Repair (Contd.)

» Qg derived from Q by restricting it to only
states in B

e Mean time to absorption MTTA Is given as:

MTTA= ) 7,

(i,j)eB
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Markov Reliability Model With Repair (Contd.)

—(4,+24,) 2]

Op = :
g lLlw o (lLlw _I_/If +ﬂ“w)

- dr., (1)
First solve ;; =—(2A, + A, )70, () + 11, 701, (£)

dﬂ-l,l(t)
dt

= —(ILIW + ﬂ“f + ﬂ,w)ﬂ'l,l(t) + Zﬂ‘wﬂ&l(t)
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Markov Reliability Model With Repair (Contd.)

Then:  R(#)= mq () + 74()
next solve 7,, (—(/lf +24 )+ 7 i, =1

7:2,1 2ﬂ'w o 7’-1,1(luw T Zf T ﬂ“w) = O
Then: MTTF =1,, t1,,

* Mean time to failure i1s 19992 hours (input values
refer to Part 2 of Chapter 8).
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Model made in SHARPE GUI

24 SHARPE graphics - version 1.2 July 2000 ~=1of x|

File hodel Editor  Analysis Editor  Plot  Browse Examples  Help

= B &lol 8

) Made I = fre | £ Maodif. Arc I Fate Matris I Copy IE, Faste | + cut I =4 palete |:‘"\:|:| Mowe I iF Clear | ‘

Saved Model: ChSharpe-GuilExamplesiSys 630 arkow_WWF S rgl | Left click on the object, drag the mouse, release to the new location. |
Eg,a project : Markoy_WFS and its models. _1Oo| x|
|markuv =

| |
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Parameters assigned and output asked

L1 | = 5
Esﬂ SHARPE graphics - wversion 1.3.1 September 2002
File Model Editor Analysis Editor Plot Browse Examples Help

g"" E QIEJ Y Hode | - A |:f+_\ Modif. Arc | Fate Matrix | Copy | B Faste | & cut | # Delete |:‘""-|j Movve |ff Clear |

miodel with ABSORH

Egj Analysis frame:

) =
w53 project : Mar
3 project : Ma Parameters || code | output| Graph | Personal Modication

withoutRepair Marrne of the model: Irepair ﬂ Output(s) selected:

Outputs: Mean time to absorption (failure)

Cumulative dist. function of time to absorption S = Reliability
Reliability ﬂ Add |

Proh of absorption at time t (unreliability) -

Mean time to absorption (failure)

State probability at absorption — ﬂ fak
State probability at absorption for all states
Expected reward rate attime t (exrt}

I=

“Parameter(s) for the current output;

~Walues for the variables nat baund:

Wariabla Walue
armit 0.0003
larmF 0.0001
LY 1

Close | Help
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SHARPE (textual) input file

format 8

factor on . echo

Kk khhhkhhkhkk

. echo ********* Qutputs asked for the model: repair *******kkkxrrx

markov repair(lamw, lamF, muw)

211 12*lamW . * Initial Probability: configl
2 12 0lamF . bind
110 1lamw . init_repair 1 0 0
Taa . init_repair_0_1 0
111 0lamF . init_repair_2_1 1
112 1muw . init_repair_2_0 0
end . init_repair 1.1 0
* Initial Probabilities defined: . end
2 1linit_repair 2 1
1_linit_repair_1_1 . bind lamW 0.0003
0_linit_repair 0 1 . bind lamF 0.0001
2_0init_repair_ 2 0 . bind muw 1
1 Oinit_repair_1 0
end . var MTTAb mean(repair; lamW, lamF, muw
. echo Mean time to absorption for repair
* Initial Probailities assigned: . expr MTTAb
bl.nc.l . . bind lamWw 0.0003
init_repair_2_10 . bind lamF 0.0001
init_repair_1 10 . bind muw 1

init_repair 0 10

init_repair 2 00

init_repair_1 00
end

func Reliability(t) 1-tvalue(t;repair; lamW, lamF, muWw)
loop t,1,1000,100

expr Reliability(t)

end

. end
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Output generated by SHARPE GU

E%i Analysis frame:

Parameters | Code [Dutput lGraph] Personal Modication

|
=X

R R R R R R A AR R R R R AR AR

e Qutputs asked for the model: repajr e
Input parameters values: lamW= 0.0003, lamF=0.0001, muWv=1
Cutput:

Mean time to absorption for repair

MTTAR: 9.98205026e+003

1=1.000000
Reliability(t). 9.99899939e-001

1=101.000000
Reliability(t): 9.89933033e-001

1=201.000000
Reliability(t): 9.80065415e-001

1=301.000000
Reliability(t): 9.70296159e-001

1=401.000000
Reliability(t): 9.60624285e-001

1=501.000000
Reliability(t): 9.51048821e-001

1=601.000000
Reliability(t): 9.41568804e-001

t=701.000000

GotoLine J

b

Print Output J

Close
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Graph between R(t) and time

Reliabi Qpen
RS " Combine Plats
Save As
049
Print
ns
Waria
o7
= Property
il
Start i i
e .GrapthrWFS with Repair Seoet ]
Stop
05
Increy
04
0.3
0 2000 4000 BO000 s000 10000
1
Close
State n
1 tin Excel
Close ‘
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Markov Reliability Model
Without Repair
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Markov Reliability Model without Repair: Case 1

(Contd.)
2y A

States (0,1), (1,0) and (2,0)
become absorbing states
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Model made in SHARPE GUI

E5 SHARPE graphics - version 1.2 July 2000 : =1ol =]

File hodel Editor  Analysiz Editor Plot  Browese Examples  Help

=5 &8

) Mode I - Arc | 2B Modif. fre I Rate hstris I Copy Iﬁ. Paste I & on I =4 pelate |:‘"‘E. Fowe I i Clear I ‘

todel IRREDLICIBLE | Left click on the Panel to create a Maode. |

:g project : Markoy_WFS and its models.

markoy -
— . . . . . . . . . . . . . . . . . . . . . .
withoutRepair

larnW
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Parameters assigned and Output asked

= SHARPE graphics - wersion 1.3.1 September 2002

File Model Editor Analysis Editor Plot Browse Examples  Help

EIEQ[EI‘ @ e | - Arc |£"_~ Madif. Are | Rate Matrix | Copy | B Pacte | $ oot | # Delete |:\.'\:'|-j Mase |af Clear |

Dd8|ith #BSOR E»‘;i Analysis frame: |:H§ |

Egi project : Mar

M1
repair

Parameters I Code | Outputl Graph I Personal Modication l

Mame ofthe model: | withoutRepair i output(s) selected:

Outputs: Reliability

Cumulative dist function of time to absorption | .

Reliahility ﬂ Add |
Prob of absorption at time t (unreliability)
Mean time to absorption (failure) 2

State probability at absorption L ﬂ Delets |
State probahility at absorption for all states
Expected reward rate attime t {(exrt)

%

~FParameteris) for the current output;

“Values for the variables not bound:-

WVariahle Yalue
larnt 0.00015
larmF 0.0001

Close |
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Output generated by SHARPE GUI

B Analysis frame:

Parameters | Code |Output ] Graph | Personal Modication

FrameRrr Qutputs asked for the model: withoutRepaijr #*#sssssess s
Input parameters values: lamW= 0.00015, lamF=0.0001
Cutput:

t=1.000000
Reliabilityt): 9.99899983e-001

t=101.000000
Reliabilityity: 9.89727030e-001

t=201.000000
Reliabilityt): 9.79236120e-001

t=301.000000
Reliability(tl. 9.68457419e-001

t=401.000000
Reliabilityt): 9.57419474e-001

t=501.000000
Reliabilityit): 9.46149286e-001

t=601.000000
Reliabilityt): 9.34672380e-001

t=701.000000
Reliabilityit): 9.23012877e-001

t=801.000000
Reliabilityity 9.11193557e-001

t=901.000000
Reliabilityit): 8.99235918e-001

14l

G0 to Line Print Cutput ‘

Close | ‘
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Overlapped graph R(t) for with and without

repair

E%Plut results For: ./ GRAPH_examples,/combine.dat

1
-
sl
ozl

s
Heliahilit‘yﬂ.ﬁ:

@ Graph for Repair

I Graph for WithoutRepair
0.4+

0.3t

0.2t

0.1t

1]

0 " 4000 Booo 12000 16000 20000

1

=10f ]|

Open |

| combine Plots

Save As |

Reset

Print

Close |
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Markov Reliability Model without Repair: Case 1
(Contd.)

~(A,+24,) 24,

O = 0 —(A, +4,)

R(z) = 76,1(t)+ 7Zi,1(t)
MITF =1, % 114

e Mean time to failure is 9333 hours (see Part2 of Chapter
8). s
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3 Active Units and One Spare
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3 Active Units and One Spare

e Consider a system with three active units and one spare.
The active configuration is operated In TMR (Triple
Modular Redundancy) mode. An active unit has a failure
rate A, while a standby spare unit has a failure rate u.
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3 Active Units and One Spare (Contd.)

Differential equations for this CTAMC are written as follows:

dmz 1 : ]
_ (3 Ve 1(1).

2 [3A + ft)ma 1 (f)
t‘f;‘;ﬂ _ 3,3'.,‘.-T3_|:|[_f:| 4 [3,}-.'5' + Ju:l IERALIR
AT0 o o(t) + 3ATa o).

et - |

(AT

= = 3A(1-— e)ma(t) + 2Ame.0(t).
fdt

solving this system of equations, we get

o oal 8] = !

T3,118) = s+ 3A+p

_ 3Ae +
ma,0(s) = (3 +3A+ )8+ 3A)°
o 3A(3Ac + )
T2.0(8) =

(843X + p)(s+ 3A)(s+ 2X)°
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3 Active Units and One Spare (Contd.)

and

A1) GAZ(3Ae + 1)
(8+3X+p)  (s4+2\)s+30)s+3\+p)

e So lifetime distribution becomes

Sl 8 lI

(o) 3+ [3A(1l—¢) Ble+p 23} 3A
xXhey |:."i | j}‘ ] I”:I |.i_.:!'; 1 I“-I -1.-}& - |:.'-i 1 2}'..' Il'-: L :i.-:!'hll

e The expression outside the square brackets is the
Laplace-Stieltjes transform of EXP(34+u), while
the expression within the braces is the LST of
HYPO (24, 31)..

Copyright © 2006 by K.S. Trivedi
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3 Active Units and One Spare (contd.)

* Therefore, the system lifetime X has the stage-type
distribution given as in this figure.
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Model made in SHARPE GUI

E2% SHARPE graphics - version 1.3.1 September 2002
File Wodel Editor Analysie Editor Plot Browse Examples  Help

ﬂ E g‘ EI‘ O Node |—}q§m‘ | A Modif, Arc | Rate Matriz | Copy I E Paste | 33 Cut | :'ﬂ Delete | :‘.'\:|;_| Mowve | ﬁ Clear |

Markay Chain Madel |

- -_— — = ]

>

E‘gj project : 3_active_1_spare and its models.
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Parameter assigned and output asked

[} SHARPE graphics - version 1.3.1 September 2002
File HWodel Editor Analysis Editor Plot Browse Examples Help

ﬂ E g‘ El| O N-ode |—Fq&&: | S Modif. Aro | Rate M—alrix | Copy | E Paste | é}D‘ .Cl.ri | }ﬂ Delete | I;'\:|.:| Maowe | fé Clear |
Egii' Analysis frame: : _ : .
S|[=1E

~

F& project : ia

FParameters ICude| output | Graph | Persanal Madication

Marne ofthe madel:  |3_active_1_spare ~| Output(s) selected:

Cutputs:

Reliahility
Cumulative dist function of time to absaorption

| — Mean time to absorption (failure)
Reliahility ﬂ Add I
Prob of absorption at time t {unreliability)
Mean time to absorption (failure)
State probability at absorption = @ S |
State probability at absorption for all states
Expected reward rate attime t (gxrt)

[

| €

“Parameter(s) for the current output;

“Walues for the wariahles not hound:

Yariahle Walue
C 04
lam 0.00014
mu 115

Cloge |
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Output generated by SHARPE GUI

Lol -
E-‘g; Analysis frame:

Parameters | Code  Qutput lGraph] Personal Modication

Cutput:

1=1.000000

1=101.000000

1=201.000000

1=301.000000

1=401.000000

1=501.000000

1=601.000000

1=701.000000

t=801.000000

1=001.000000

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):
MTTAD: 556673013e+003

9.99956475e-001

9.98826755e-001

9.97086109e-001

9.94175291e-001

9.90181905e-001

9.85189364e-001

9.79276357e-001

9.72517082e-001

9.64981482e-001

9.56735447e-001

e Outputs asked for the model: 3_active_1_spare =
Input parameters values: c= 0.9, lam=0.00015, mu=1/15

GotoLine

b

Print Output J

Close ‘
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Graph between R(t) and time

Parameters | Code | Output  Graph lPersonaI modication

| Relianility Open
“Experime o Cormbine Plots
0a Save Az
oa Print
0y
Wariahl 0.6
= Froperty
F 04
Startvd @ Graph for Rt ve. time Wﬂ
04
Stop va
P 0.3
Incremy oz
0.1
i]
0 4000 8000 12000 16000 20000 24000 28000 32000
"
Close
State nam
IminExcell
Close| ‘
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Operational Security
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Operational Security

e Assuming that at each newly visited node of the privilege
graph, the attacker chooses one of the elementary attacks
that can be issued from that node only (memoryless
property) and assigning to each arc a rate at which the
attacker succeeds with the corresponding elementary
attack, the privilege graph is transformed into a CTMC.
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Operational Security (Contd.)

» The matrix Q, obtained from generator
matrix Q by restricting only to the transient

states IS
A1+ Az M Az
] (l Ag (l
[ [ Ad

e From this it follows that METF (Mean
Effort To Failure) becomes

TF | f}"l }-.:3
METF Yo (1 A _)_
ie{A,B.CY) A1+ Az Ao Mg
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Recovery Block Architecture
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Recovery Block Architecture

o Consider a recovery block (RB) architecture implemented on
a dual processor system that is able to tolerate one hardware
fault and one software fault.

* The hardware faults can be tolerated due to the hot standby
hardware component with a duplication of the RB software
and a concurrent comparator for acceptance tests.
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Recovery Block Architecture (Contd.)

he transition rates and their meanings are
given In the table

Transiton rate Valie Meaning
:'til f;-,‘a” covered handware component failire
Aon 2eAy + Asp | Not covered handware component failure

or detected RE failure

f'ng‘ fi,u;.{' nndetected BB failure

Aa cApg + Agp | detected RE failure or covered hardware

cormmponent fatlare

fll'*H Ffll'*.r.f | .-'llll.hllf' Not covered handware COImponent failure

or undetected BB failure
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Recovery Block Architecture (Contd.)

he system of differential equation is given
by dmat) (A21 + Azz + Aoy )mal(t).

cft
dmy ()
v (Arz + Awa)mi(t) + Azima(t),
il
dm. . (t) - o
g aama(t) + Awamilt),
iy p(t) Aogmalt) + Aqame(t),
di o '
Thus reliability of system becomes
K(t) malf) + m (t)
Dpe AHTASIE (9. 1) T(2AuTAs)

where Ag = Agp + Aspr
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Recovery Block Architecture (Contd.)

o Similarly, the absorption probability to the safe failure
state Is:

FP.. Top o)
20An +Asp | 2eAn(cAm +Asp)
220 + As (2Am + As (A + As)

« And the absorption probability to the unsafe failure state

IS.
F, Ty g b X0

ASLS _ 2ed g (€Al + Asur)
2An +As (2Am + As) A + As)

Copyright © 2006 by K.S. Trivedi

62



Model made in SHARPE GUI

[2} SHARPE graphics - wersion 1.3.1 September 2002
File Model Editor Analysis Editor Plot Browse Examples Help

S B B0 B O v | = o | & vt oo | [0 ke | B8 copy | @ pate | % 0 | =4 st | % vive | g e |

Markoy Chain Model |

E;i project : Recovery b_Archi and its models.

Recovery_b_A
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Parameter assigned and Output asked

Fh SHARPE graphics - version 1.3.1 September 2002 [- B[]
File MWodel Editor Analysis Editor Plot Browse Examples Help

E‘ E gl El‘ O Fiotfe |'_- -&&I £ podif. Arc | FRate M—a‘\rix | Copy | E Paste | ‘X:r .Cl.rlt | :ﬂ D'éle{.e |I‘.'\:'|;_| Mo_\.re' | ﬁ Clear |

e “h AESOR E;a Analysis frame:

: Parameters | cade | output| Graph | Persanal Modication | —
~
Mame ofthe model; IRecovenr_b_Nchi ;i Qutput(s) selected:
Outputs: Reliability
Curnulative dist function of time to abserption A —T—— Mean time to absorption (failure) ] ] =
Reliability ﬂ Add I

Prob of absorption at time t (unreliability)

Mean time to absorption (failure) 5

State probability at absorption — ﬂ Delete |
State probahility at absorption for all states . . =
Expected reward rate attime t (exrt}

|i€

“Parameter(s) for the current output:

“Values for the variables not bound:
Wariahle Walue
lamz21 0.00007
lam13 0.00015
lam14. 0.00012
lamz24 0.00007
lamz23 0.o001

Close |

%
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SHARPE Input file

format 8 . *

factor on P —

. echo ********* Qutputs asked for the mod

*hhhkhhhkhhhhhkx

markov Recovery_b_Archi(lam21, lam13, lam14, lam24, lam23)

21lam21 - S

2 UF lam24 . *_Inltlal Probability: ini

2 SF lam23 . bind .

1 SF lam13 . init_Recovery_b_Archi_UF 0
1 UF lam14 . init_Recovery b_Archi_2 1
end init_Recovery_b_Archi_1 0

init_Recovery_b_Archi_SF 0

* Initial Probabilities defined: end

2 init_Recovery_b_Archi_2
1init_Recovery_b_Archi_1
SF init_Recovery_b_Archi_SF
UF init_Recovery_b_Archi_UF

end

bind lam21 0.00007
bind lam13 0.00015
bind lam14 0.00012
bind lam24 0.00007
bind lam23 0.0001

* Initial Probailities assigned:

bind
init_Recovery_b_Archi_20
init_Recovery_b_Archi_10
init_Recovery_b_Archi_SF 0

func Reliability(t) 1-tvalue(t;Recovery_b_Archi; lam21, lam13, lam14,

lam24, lam23
init_Recovery_b_Archi_UF 0 . ég;) t1 33100 )100
end . expr Reliability(t)
. end
echo . bind lam21 0.00007
. bind lam13 0.00015
. bind lam14 0.00012
. bind lam24 0.00007
. bind lam23 0.0001
. var MTTAb mean(Recovery_b_Archi, UF; lam21, lam13, lam14, lam24,
lam23)
. expr MTTAb
. end
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Output generated by SHARPE GUI

B Ana lysis frame:

Parameters | Code  Qutput lGraph] Personal Modication

Output:

1=1.000000

1=101.000000

1=201.000000

1=301.000000

1=401.000000

1=501.000000

t=601.000000

1=701.000000

1=801.000000

1=901.000000

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):

Reliability(t):
MTTAb: 5.30626781e+003

9.99830011e-001

9.82941669e-001

9.66272095e-001

9.49820941e-001

9.33587740e-001

9.17571911e-001

9.01772762e-001

8.86189500e-001

8.70821236e-001

8.55666988e-001

Input parameters values: lam21= 0.00007, lam13=0.00015, lam14=0.00012, lam24=0.00007, lam23=0.0001

GotoLine

v

Frint Cutput J

Clase ‘

Copyright © 2006 by K.S. Trivedi

66



me

Plot between R(t) and t

= [51x]

Cpen
~Experim| - Cormhbine Plots
Save Az
04
Print
0.a
nr
Yaria
GD.E Property
o —_—
Start
05 .Graph for Recovery Block Resal ﬂ
Stgp 0.4
03
Increr
0z
01
a 2000 4000 go0n goa0 10000
1
Cloze
State na
bt in Excel ‘
Close ‘ |
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Conditional MTTF of a Fault-
Tolerant System
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Conditional MTTF of a Fault-Tolerant System

e Consider the homogeneous CTMC models of three
commonly used fault-tolerant system architectures.

— The simplex system S consists of a single processor.

— The Duplex system (D) consists of two identical
processors executing the same task in parallel.

— The Duplex system reconfigurable to the simplex
system (DS) also consists of two processors executing
the same task in parallel.

[|J]
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Conditional MTTF of a Fault-Tolerant System
(Contd.)

« \We compare the three architectures with respect to the
probability of unsafe failure, the mean time to failure (MTTF) of
the system and the conditional MTTF to unsafe failure.

e (Calculating conditional MTTF O matrix becomes

o Cra i
) 041 L 0B
gy O« O« B

* Here O, Is the partition of the generator matrix consisting of
the states in 7, O, has the transition rates from states in 7'to
states in 4 and similarly Q. has the transition rates from states
In 7'to states in B.
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Conditional MTTF of a Fault-Tolerant System
(Contd.)

« Solving for the three architectures for different
parameters we have

_ll. ,lrl' fESTiTeEs _'h Ty '.'I.I'.': .'I i |".'I FITY .HI d |._l' ¥ '.'I.' " .'I i |".'I RS _Ir .;l d |._l' ¥ '.'I.' .'. .'I i |".'I RS _Ir .;l .L:'I
R I | | £,
MTTE - S _—f —
) o D)
Ty el o) e | — e | — carda
N I | | + 2e4s — I
MTTE — —
LT \ 2\ 2M(1 — Is )

Dependability measures for the three architectures
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Real Time System:
Multiprocessor Revisited
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Multiprocessor Revisitec

e We return to the multiprocessor model ear

ler discussed

but we now consider system failure state ‘0’ as

absorbing.

7

Ay W
1 ]

=
k

e Since task arrivals occur at the rate A and task service

time is EXP(u), when the reliability model

IS In State 2,

the performance can be modeled by an M/M/2/b queue.
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Multiprocessor Revisited (Contd.)

* \We make the following reward rate assignment to the

states (soft deadline case):
ro = Al — g (2)]| P Hus(2) < d)|.

ryo= All — g, (1}][P{Ru(1) < d)
ri L),

« With this reward assignment, computing the expected
accumulated reward until absorption, we can obtain the
approximate number of tasks successfully completed
until system failure:

.Irglll X | FaTa + 71T

]

where 7o and 7; are given by equation (8.116) given in the textbook.
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Multiprocessor Revisited (Contd.)

 Now we consider a hard deadline, instead of soft deadline
so that if an accepted job fails to complete within the
deadline, we will consider the system to have failed.

‘rl:_.'!‘_l.:lf_. | 1

LD O

Ao PRl 2D =

* Note that we have considered the infinite buffer case for
simplicity

 Using the z method, we can compute the values of 7, and ;
for the CTMC and the system MTTF that includes the effect

of dynamic failures.

Copyright © 2006 by K.S. Trivedi 75



NHCTMC Model of the Duplex
System
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NHCTMC Model of the Duplex System

o Consider a duplex system with two processors, each of
which has a time-dependent failure rate A(¢) = A,ct*' .

Aitil- €1

Unsafe Failure

Safe Failure

* The system shown is a non-homogeneous CTMC,
because, as Its name suggests, It contains one or more
(globally) time-dependent transition rates.
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NHCTMC Model of the Duplex System (Contd.)

e The transient behavior of a NHCTMC satisfies the linear
system of first order differential equations:

dmit) . : -
— . = m(t)Q(t), with ma(0)= 1.

et
e The Q matrix becomes

Ot {%[Hf-g 2M(E) 0 2AE)N1 — ea)
L i il i [

L i ] ] ]

| 1] 1 1 —
A(#) 2em 2 0 2(1— e=) AW

AlT) 0 Aty AlE)(1L f-l]w

(] [ il {1
[ [ i [

where

| U o 1l — e
W 209 2 0 2(1 —ea) |

[ [ [ [

RN
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NHCTMC Model of the Duplex System (Contd.)

 \When NHCTMC generator matrix can be
factored In this way we can solve the
equations simply

* Hence we can define an average failure rate:

- 1 [t
A -/ AlTdT,
f Jn :

and get the solution to the NHCTMC by solving a homogeneous CTAMC with the
generator matrix:

Q=W
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Software Reliability Growth
Models
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Software Reliability Growth Models

Failure data Is collected during testing

Calibrate a reliability growth model using failure data;
this model is then used for prediction

Many SRGMs exist
— NHPP

— Jelinski Moranda

We revisit the above models which we studied in
Chapter 5, studying them now as examples of CTMC:s.
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Poisson Process

* The Poisson process,{N(t) | t >0}, Is a
homogeneous CTMC (pure birth type) with
state diagram shown below

 Since failure intensity Is time independent,
It cannot capture reliability growth. Hence
we resort NHPP.
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Example —Software Reliability Growth Model
(NHPP)

« Consider a Nonhomogenous Poisson process (NHPP)

proposed by Goel and Okumoto, as a model of software
reliability growth during the testing phase. Note that the
Markov property is satisfied and it is an example of a non-
homogeneous CTMC

o Assume that the number of failures N(¢) occurring in time

Interval (0, 7] has a time-dependent failure intensity A(z).

Expected number of software failures experienced (and
equated to the number of faults found and fixed) by time ¢:

m(t) = E[N(1)] = jo A(x)dx

A1) YL Al

At
OB OR®s
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Software Reliability Growth Model

Finite faillure NHPP models

Finite expected number of faults detected, «, in an infinite interval

Expected number of faults detected by time ¢, or mean value
function, denoted by m(t)=ap=aF (1) dm(?)
m\t

Failure intensity of the software, denoted by A(z) :  A(¢) = y
t

Failure intensity function can also be written as
A(t) = af (1) =[a —m(1)]h(z)
— h(r) - failure occurrence rate per fault (hazard function)

— [a - m(¢)] = expected number of faults remaining, non-increasing
function of time

Nature of failure intensity depends on the nature of failure
occurrence rate per fault
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Example —Software Reliability Growth Model
(NHPP) (Contd.)

« Using previous equation the instantaneous failure intensity can be
rewritten by

A(t) = af (1) = [a —m(2)]h(2)

« This implies that failure intensity is proportional to expected no. of
undetected faults at ¢’

o Many commonly used NHPP software reliability growth models are
obtained by choosing different failure intensities A(¢), e.g. Goel-
Okumoto, Musa-Okumoto model etc.
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Software Reliability Growth Model
Finite failure NHPP models

Nature of the failure occurrence rate per fault and the
corresponding NHPP model

Constant :

e Goel-Okumoto model
Increasing :

o S-shaped model

» Generalized Goel-Okumoto model
Decreasing :

» Generalized Goel-Okumoto model
Increasing/Decreasing :

» Log-logistic model

h(t) = b
2
— _g°t
() = 154

h(t) =bet™ 1 e¢>1

h(t) =bet 1 c< 1

k—1
h(t) = Afjj(?t)ﬁ k> 1
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Example- Jelinski Moranda Model

* This model is based on the following assumptions:
— The number of faults introduced initially into the
software is fixed, say, n.

— At each failure occurrence, the underlying fault is
removed immediately and no new faults are introduced.

— Failure rate iIs state-dependent and is proportional to the
number of remaining faults, that is, u, = iu,i=1, 2, ... n.
* Model can be described by pure death process

* The constant of proportionality « denotes the failure intensity
contributed by each fault, which means that all the remaining
faults contribute the same amount to the failure intensity.
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Example- Jelinski Moranda Model (Contd.)

(n Lp /u,\

@ @ooo @

e The mean-value function is given by

Tl
it Zﬁ—. et = n(l - e M
k=0

e This can be seen as the expected reward rate at

time ¢ after assigning reward rate », = n-i to state i.
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