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Outline of This Part of Chapter 8

• Hardware Reliability Models
• A Safety Model
• A Security Model 
• A Real-Time System Model
• Software Reliability Growth Models
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Hardware Reliability Models 

• Two component Markov reliability model 
with repair

• Two component Markov model with 
imperfect fault coverage

• WFS reliability model
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• Consider the 2-component parallel system (no delay + perfect 
coverage)  but disallow repair from system down state.

• Note that state 0 is now an absorbing state.  The state diagram 
is given in the following figure. 

• This reliability model with repair cannot be modeled using a 
reliability block diagram or a fault tree. We need to resort to 
Markov chains.   (This is a form of dependency since in order 
to repair a component you need to know the status of the 
other component).

Markov Reliability Model With Repair



Copyright © 2006 by K.S. Trivedi 5

• Markov chain has an absorbing state. In the 
steady-state, system will be in state 0 with 
probability 1. Hence steady state analysis will 
yield a trivial answer; transient analysis is of 
interest. States 1 and 2 are transient states.

Markov Reliability Model With Repair (Contd.)

Absorbing state
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• Some authors erroneously claim that reliability 
models do not admit repair.

• In the model on previous slide, we have component 
repair from state 1; system has not failed in this 
state.

• In a reliability model we do not allow repair from 
system failure states (such as state 0).

• Thus, there must be one or more absorbing states in 
a reliability model

Markov Reliability Model With Repair (Contd.)
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• Assume that the initial state of the Markov chain is 2, that 
is, π2(0) = 1, πk (0) = 0 for k = 0, 1.

• Then the system of differential Equations is written
based on:

Rate of buildup = Rate of flow in - Rate of flow out
for each state

Markov Reliability Model With Repair (Contd.)
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Using the technique of Laplace transform, we
can reduce the above system to: 
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Solving for            , we get: 

• After an inversion, we can obtain π0 (t), the probability 
that no components are operating at time t    0.  For this 
purpose, we carry out a partial fraction expansion.
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Markov Reliability Model With Repair (Contd.)
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Inverting the transform, we get 

where 
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Recalling that                                   , we get:∫
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• Note that the MTTF of the two component parallel 
redundant system,in the absence of a repair facility 
(i.e., μ = 0), would have been equal to the first term, 
3 / ( 2*λ ), in the above expression.  

• Therefore, the effect of a repair facility is to increase 
the mean life by μ / (2*λ2), or by a factor
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Markov Reliability Model With Repair (Contd.)
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Model made in SHARPE GUI
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Parameters entered for the Model
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Sharpe Input file generated by GUI
• format 8 
• factor on 

• markov Rel_Rep(lambda, mu) 
• 2 1 2*lambda
• 1 0 lambda
• 1 2 mu
• end
• * Initial Probabilities defined: 
• 2 init_Rel_Rep_2 
• 1 init_Rel_Rep_1 
• 0 init_Rel_Rep_0 
• end

• * Initial Probailities assigned:
• bind
• init_Rel_Rep_2 0
• init_Rel_Rep_1 0
• init_Rel_Rep_0 0
• end

• echo 
***************************************************
************************* 

• echo *********  Outputs asked for the model: Rel_Rep
************** 

• * Initial Probability: ini1
• bind
• init_Rel_Rep_2  1
• init_Rel_Rep_1  0
• init_Rel_Rep_0  0
• end 

• bind lambda 0.0002
• bind mu 1/5

• func Reliability(t) 1-tvalue(t;Rel_Rep; lambda, mu)
• loop t,1,1000,10
• expr Reliability(t)
• end

• bind lambda 0.0002
• bind mu 1/5

• var MTTAb mean(Rel_Rep, 0; lambda, mu)
• expr MTTAb

• end

Output 
asked

Initial prob. 
assigned

Model 
defined
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Output generated by SHARPE GUI
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Graph between Reliability and time



Copyright © 2006 by K.S. Trivedi 19

Markov Reliability Model With 
Imperfect Coverage
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Markov Model With Imperfect Coverage

• Next consider a modification of the above  example 
proposed by Arnold as a model of  duplex 
processors of an electronic switching system. 

• Assuming that not all faults are recoverable and that 
c is the coverage factor which denotes the 
conditional probability that the system recovers 
given that a fault has occurred.  

• The state diagram is now given by the following 
picture:
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Markov Model With Imperfect Coverage 
(Contd.)

c
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• Assume that the initial state is 2 so that:

• Then the system of differential equations are:
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Using Laplace transforms as before, the above system 
reduces to: 
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• After solving the differential equations we obtain:
R(t)=π2(t) + π1(t)

• From R(t), we can system MTTF:

• It should be clear that the system MTTF and system 

reliability are critically dependent on the coverage factor.
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Model made in SHARPE GUI
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Graph between R(t) and time 
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Markov Reliability Model with 
Repair  (WFS Example)
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• WFS: Workstation File System

• Assume that the computer system does not recover if 

both workstations fail, or if the file-server fails.

Markov Reliability Model With Repair    
(WFS Example)
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Markov Reliability Model With Repair

• States (0,1), (1,0) and (2,0) become absorbing states while (2,1) and (1,1) 
are transient states.
• Note: we have made a simplification that, once the CTMC reaches a 
system failure state, we do not allow any more transitions.
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Markov Reliability Model With Repair (Contd.)

• If we solve for π2,1(t) and π1,1(t) then 

R(t)=π2,1(t) + π1,1(t)
• For a Markov chain with absorbing states:

A: the set of absorbing states
B = Ω - A: the set of remaining states
τi,j: Mean time spent in state i,j until absorption
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• Mean time to absorption MTTA is given as:

∑
∈

=
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• QB derived from Q by restricting it to only
states in B

Markov Reliability Model With Repair (Contd.)
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• Mean time to failure is 19992 hours (input values 
refer to Part 2 of Chapter 8).
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Model made in SHARPE GUI
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Parameters assigned and output asked
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SHARPE (textual) input file
• format 8 
• factor on 

• markov repair(lamW, lamF, muW) 
• 2_1 1_1 2*lamW
• 2_1 2_0 lamF
• 1_1 0_1 lamW
• 1_1 1_0 lamF
• 1_1 2_1 muW
• end
• * Initial Probabilities defined: 
• 2_1 init_repair_2_1 
• 1_1 init_repair_1_1 
• 0_1 init_repair_0_1 
• 2_0 init_repair_2_0 
• 1_0 init_repair_1_0 
• end

• * Initial Probailities assigned:
• bind
• init_repair_2_1 0
• init_repair_1_1 0
• init_repair_0_1 0
• init_repair_2_0 0
• init_repair_1_0 0
• end

• echo 
****************************************************************
************ 

• echo *********  Outputs asked for the model: repair ************** 

• * Initial Probability: config1
• bind
• init_repair_1_0  0
• init_repair_0_1  0
• init_repair_2_1  1
• init_repair_2_0  0
• init_repair_1_1  0
• end 

• bind lamW 0.0003
• bind lamF 0.0001
• bind muW 1

• var MTTAb mean(repair; lamW, lamF, muW)
• echo Mean time to absorption for repair
• expr MTTAb

• bind lamW 0.0003
• bind lamF 0.0001
• bind muW 1

• func Reliability(t) 1-tvalue(t;repair; lamW, lamF, muW)
• loop t,1,1000,100
• expr Reliability(t)
• end

• end

Output 
asked

Initial prob. 
assigned

Model 
defined
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Output generated by SHARPE GUI
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Graph between R(t) and time



Copyright © 2006 by K.S. Trivedi 39

Markov Reliability Model 
Without Repair
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Markov Reliability Model without Repair: Case 1 
(Contd.)

States (0,1), (1,0) and (2,0) 
become absorbing states
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Model made in SHARPE GUI
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Parameters assigned and Output asked
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Output generated by SHARPE GUI
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Overlapped graph R(t) for with and without 
repair
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• Mean time to failure is 9333 hours (see Part2 of Chapter 
8).
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3 Active Units and One Spare
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• Consider a system with three active units and one spare. 
The active configuration is operated in TMR (Triple 
Modular Redundancy) mode. An active unit has a failure 
rate λ, while a standby spare unit has a failure rate µ.

3 Active Units and One Spare
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•

3 Active Units and One Spare (Contd.)
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3 Active Units and One Spare (Contd.)

• So lifetime distribution becomes 

• The expression outside the square brackets is the 
Laplace–Stieltjes transform of EXP(3λ+µ), while 
the expression within the braces is the LST of 
HYPO (2 λ, 3 λ). .
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3 Active Units and One Spare (contd.)

• Therefore, the system lifetime X has the stage-type 
distribution given as in this figure.
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Model made in SHARPE GUI
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Parameter assigned and output asked
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Output generated by SHARPE GUI
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Graph between R(t) and time
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Operational Security
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Operational Security
• Assuming that at each newly visited node of the privilege 

graph, the attacker chooses one of the elementary attacks 
that can be issued from that node only (memoryless 
property) and assigning to each arc a rate at which the 
attacker succeeds with the corresponding elementary 
attack, the privilege graph is transformed into a CTMC.
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Operational Security (Contd.)

• The matrix   obtained from generator 
matrix Q by restricting only to the transient 
states is

• From this it follows that METF (Mean 
Effort To Failure) becomes

RQ̂
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Recovery Block Architecture
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Recovery Block Architecture

• Consider a recovery block (RB) architecture implemented on 
a dual processor system that is able to tolerate one hardware 
fault and one software fault.

• The hardware faults can be tolerated due to the hot standby 
hardware component with a duplication of the RB software 
and a concurrent comparator for acceptance tests.
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Recovery Block Architecture (Contd.)

• The transition rates and their meanings are 
given in the table
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Recovery Block Architecture (Contd.)

• The system of differential equation is given 
by 

• Thus reliability of system becomes
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Recovery Block Architecture (Contd.)

• Similarly, the absorption probability to the safe failure 
state is:

• And the absorption probability to the unsafe failure state 
is:
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Model made in SHARPE GUI
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Parameter assigned and Output asked
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SHARPE Input file
• format 8 
• factor on 

• markov Recovery_b_Archi(lam21, lam13, lam14, lam24, lam23) 
• 2 1 lam21
• 2 UF lam24
• 2 SF lam23
• 1 SF lam13
• 1 UF lam14
• end
• * Initial Probabilities defined: 
• 2 init_Recovery_b_Archi_2 
• 1 init_Recovery_b_Archi_1 
• SF init_Recovery_b_Archi_SF
• UF init_Recovery_b_Archi_UF
• end

• * Initial Probailities assigned:
• bind
• init_Recovery_b_Archi_2 0
• init_Recovery_b_Archi_1 0
• init_Recovery_b_Archi_SF 0
• init_Recovery_b_Archi_UF 0
• end

• echo

• ****************************************************************
************ 

• echo *********  Outputs asked for the model: Recovery_b_Archi
************** 

• * Initial Probability: ini
• bind
• init_Recovery_b_Archi_UF 0
• init_Recovery_b_Archi_2  1
• init_Recovery_b_Archi_1  0
• init_Recovery_b_Archi_SF 0
• end 

• bind lam21 0.00007
• bind lam13 0.00015
• bind lam14 0.00012
• bind lam24 0.00007
• bind lam23 0.0001

• func Reliability(t) 1-tvalue(t;Recovery_b_Archi; lam21, lam13, lam14, 
lam24, lam23)

• loop t,1,1000,100
• expr Reliability(t)
• end

• bind lam21 0.00007
• bind lam13 0.00015
• bind lam14 0.00012
• bind lam24 0.00007
• bind lam23 0.0001

• var MTTAb mean(Recovery_b_Archi, UF; lam21, lam13, lam14, lam24, 
lam23)

• expr MTTAb

• end

Output 
asked

Initial prob. 
assignedModel 

defined
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Output generated by SHARPE GUI
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Plot between R(t) and time
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Conditional MTTF of a Fault-
Tolerant System
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Conditional MTTF of a Fault-Tolerant System

• Consider the homogeneous CTMC models of three 
commonly used fault-tolerant system architectures.
– The simplex system S consists of a single processor.
– The Duplex system (D) consists of two identical 

processors executing the same task in parallel.
– The Duplex system reconfigurable to the simplex 

system (DS) also consists of two processors executing 
the same task in parallel.

(c)
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Conditional MTTF of a Fault-Tolerant System 
(Contd.)

• We compare the three architectures with respect to the 
probability of unsafe failure, the mean time to failure (MTTF) of 
the system and the conditional MTTF to unsafe failure.

• Calculating conditional MTTF Q matrix becomes

• Here QTT is the partition of the generator matrix consisting of 
the states in T, QTA has the transition rates from states in T to 
states in A and similarly QTB has the transition rates from states 
in T to states in B.
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Conditional MTTF of a Fault-Tolerant System 
(Contd.)

• Solving for the three architectures for different 
parameters  we have

Dependability measures for the three architectures
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Real Time System: 
Multiprocessor Revisited
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Multiprocessor Revisited
• We return to the multiprocessor model earlier discussed 

but we now consider system failure state ‘0’ as 
absorbing.

• Since task arrivals occur at the rate λ and task service 
time is EXP(µ), when the reliability model is in state 2, 
the performance can be modeled by an M/M/2/b queue.
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Multiprocessor Revisited (Contd.)
• We make the following reward rate assignment to the 

states (soft deadline case):

• With this reward assignment, computing the expected 
accumulated reward until absorption, we can obtain the 
approximate number of tasks successfully completed 
until system failure:

given in the textbook.
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Multiprocessor Revisited (Contd.)

• Now we consider a hard deadline, instead of soft deadline 
so that if an accepted job fails to complete within the 
deadline, we will consider the system to have failed.

• Note that we have considered the infinite buffer case for 
simplicity

• Using the τ method, we can compute the values of τ2 and τ1
for the CTMC and the system MTTF that includes the effect 
of dynamic failures.
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NHCTMC Model of the Duplex 
System
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NHCTMC Model of the Duplex System

• Consider a duplex system with two processors, each of 
which has a time-dependent failure rate λ(t) = λ0αtα-1 .

• The system shown  is a non-homogeneous CTMC, 
because, as its name suggests, it contains one or more 
(globally) time-dependent transition rates.
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NHCTMC Model of the Duplex System (Contd.)

• The transient behavior of a NHCTMC satisfies the linear 
system of first order differential equations:

• The Q matrix becomes
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• When NHCTMC generator matrix can be 
factored in this way we can solve the 
equations simply

• Hence we can define an average failure rate:

NHCTMC Model of the Duplex System (Contd.)
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Software Reliability Growth 
Models
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• Failure data is collected during testing

• Calibrate a reliability growth model using failure data; 
this model is then used for prediction

• Many SRGMs exist 
– NHPP

– Jelinski Moranda 

• We revisit the above models which we studied in 
Chapter 5,  studying them now as examples of CTMCs.

Software Reliability Growth Models
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0 1 2 .......

Poisson Process
• The Poisson process,{N(t) | t ≥ 0}, is a 

homogeneous CTMC (pure birth type) with 
state diagram shown below

• Since failure intensity is time independent, 
it cannot capture reliability growth. Hence 
we resort NHPP.

λ λ λ
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Example –Software Reliability Growth Model 
(NHPP)

• Consider a Nonhomogenous Poisson process (NHPP) 
proposed by Goel and Okumoto, as a model of software 
reliability growth during the testing phase. Note that the 
Markov property is satisfied and it is an example of a non-
homogeneous CTMC

• Assume that the number of failures N(t) occurring in time 
interval (0, t] has a  time-dependent failure intensity λ(t).

• Expected number of software failures  experienced (and 
equated to the number of faults found and fixed) by time t:

∫==
t

dxxtNEtm
0

)()]([)( λ
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• Finite expected number of faults detected, a, in an infinite interval
• Expected number of faults detected by time t , or mean value 

function, denoted by m(t)=ap=aF(t)
• Failure intensity of the software, denoted by λ(t) :

• Failure intensity function can also be written as 

– h(t) failure occurrence rate per fault (hazard function)

– [a - m(t)] expected number of faults remaining, non-increasing 
function of time

• Nature of failure intensity depends on the nature of failure 
occurrence rate per fault

)()]([)()( thtmataft −==λ

Software Reliability Growth Model
Finite failure NHPP models

dt
tdmt )()( =λ
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Example –Software Reliability Growth Model 
(NHPP) (Contd.)

• Using previous equation the instantaneous failure intensity can be 
rewritten by

• This implies that failure intensity is proportional to expected no. of 
undetected faults at ‘t’

• Many commonly used NHPP software reliability growth models are 
obtained by choosing different failure intensities λ(t), e.g. Goel-
Okumoto, Musa-Okumoto model etc.

)()]([)()( thtmataft −==λ
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• Nature of the failure occurrence rate per fault and the 
corresponding NHPP model

– Constant : 

• Goel-Okumoto model

– Increasing : 

• S-shaped model

• Generalized Goel-Okumoto model

– Decreasing : 

• Generalized Goel-Okumoto model

– Increasing/Decreasing : 

• Log-logistic model

Software Reliability Growth Model 
Finite failure NHPP models
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Example- Jelinski Moranda Model

• This model is based on the following assumptions:
– The number of faults introduced initially into the 

software is fixed, say, n.
– At each failure occurrence, the underlying fault is 

removed immediately and no new faults are introduced.
– Failure rate is state-dependent and is proportional to the 

number of remaining faults, that is, µi = iµ, i = 1, 2, . . . n.
• Model can be described by pure death process
• The constant of proportionality µ denotes the failure intensity 

contributed by each fault, which means that all the remaining 
faults contribute the same amount to the failure intensity.
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Example- Jelinski Moranda Model (Contd.)

• The mean-value function is given by

• This  can be seen as the expected reward rate at 
time t after assigning reward rate ri = n-i to state i.

 

n 

nμ 

n-1 

(n-1)μ 

0 

μ 
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