
5. Continuous-time Markov Chains

• Many processes one may wish to model occur in
continuous time (e.g. disease transmission
events, cell phone calls, mechanical component
failure times, . . .). A discrete-time
approximation may or may not be adequate.

• {X(t), t ≥ 0} is a continuous-time Markov
Chain if it is a stochastic process taking values
on a finite or countable set, say 0, 1, 2, . . ., with
the Markov property that

P
[
X(t + s)= j |X(s)= i, X(u)= x(u) for 0 ≤ u ≤ s

]

= P
[
X(t + s)= j |X(s)= i

]
.

• Here we consider homogeneous chains,
meaning
P[X(t + s)= j |X(s)= i] = P[X(t)= j |X(0)= i]
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• Write {Xn, n ≥ 0} for the sequence of states
that {X(t)} arrives in, and let Sn be the
corresponding arrival times. Set
XA

n = Sn − Sn−1.

• The Markov property for {X(t)} implies the
(discrete-time) Markov property for {Xn}, thus
{Xn} is an embedded Markov chain, with
transition matrix P = [Pij ].

• Similarly, the inter-arrival times
{
XA

n

}
must be

conditionally independent given {Xn}. Why?

• Show that XA
n has a memoryless property

conditional on Xn−1, P
[
XA

n > t + s |XA
n >

s,Xn−1= x
]

= P
[
XA

n > t |Xn−1= x
]

i.e., XA
n is

conditionally exponentially distributed given
Xn−1.
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• We conclude that a continuous-time Markov
chain is a special case of a semi-Markov process:

Construction 1. {X(t), t ≥ 0} is a
continuous-time homogeneous Markov chain if it
can be constructed from an embedded chain
{Xn} with transition matrix Pij , with the
duration of a visit to i having Exponential (νi)
distribution.

• We assume 0 ≤ νi < ∞ in order to rule out
trivial situations with instantaneous visits.
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• An alternative to Construction 1 is as follows:

Construction 2

When X(t) arrives in state i, generate random
variables having independent exponential
distributions, Yj ∼ Exponential (qij) where
qij = νiPij for j 6= i. Choose the next state to be
k = arg minj Yj , and the time until the transition
(i.e. the visit time in i) to be minj Yj .

• Why is this equivalent to Construction 1?
(i) check that P

[
next state is k

]
= Pik
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(ii) Check that minj Yj ∼ Exponential (νi).

• We assume that Markov chains of interest are
regular, meaning that the # of transitions in
any finite length of time is finite with probability
1. A non-regular process is explosive. E.g., if
an increasing chain takes time αn to jump from
n to n + 1, then the chain will reach infinity in a
finite time, 1/(1− α) for 0 < α < 1.
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• We define Pij(t) = P[X(t + s) = j |X(s) = i]

Lemma 1 (see Ross, Problem 5.8 with solution
in the back)

(i) limt→0
1−Pii(t)

t = νi

(ii) limt→0
Pij(t)

t = qij for j 6= i

• This leads to another characterization of
continuous Markov chains. . .

Construction 3. A continuous-time
homogeneous Markov chain is determined by its
infinitesimal transition probabilities:

Pij(h) = hqij + o(h) for j 6= 0

Pii(h) = 1− hνi + o(h)

• This can be used to simulate approximate
sample paths by discretizing time into small
intervals (the Euler method).

• The Markov property is equivalent to
independent increments for a Poisson counting
process (which is a continuous Markov chain).
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• Lemma 1 can be rewritten as
d
dtγ(t) | t=0 = γ(0)Q

with γ(t) a row vector, γi(t) = P[X(t) = i], and

Qij = qij for i 6= j

Qii = −νi = −
∑

j 6=i

qij

• this identity follows from definitions of γ(t) and
Pij(t), noting the necessary interchange of
sum & limit.
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Example. A population of size N has It infected
individuals, St susceptible individuals and Rt

recovered/removed individuals. New infections
occur at rate βItSt and infected individuals
become removed/recovered at rate γ, i.e. the
overall rate of leaving the infected state is γIt.
Supposing the system is Markovian, what are the
infinitesimal transition probabilities?
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Theorem (Kolmogorov’s Backward Equation)
d
dtPij(t) =

∑
k 6=i qikPkj(t)− νiPij(t).

Or, in matrix notation, with P (t) = [Pij(t)],

d
dtP (t) = QP (t)

• The backward equation can be used to find
transition probabilities, since it has solution
P (t) = eQt [when this is well defined] where
eQt =

∑∞
k=0 Qktk

/
k!

Example: For the two-state Markov chain, with
rates α and β as shown, find
P[X(t) = 0 |X(0) = 0].

0

1

¸
®

α β
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Example continued
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• To sketch a proof of the backward equation, we
first show

Lemma 2. Pij(t + s) =
∑∞

k=0 Pik(t)Pkj(s).

Why is this true?

• Then take limits, identifying an issue of
exchanging limits and summation but referring
to Ross for the details.
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• A rather subtly different result is

Kolmogorov’s Forward Equation

d
dtPij(t) =

∑
k 6=j qkjPik(t)− νjPij(t)

Or, in matrix notation,

dP
dt = P (t) Q

• This can be written as d
dtγ(t) = γ(t)Q

(Compare with comment on Lemma 1).

• Unfortunately, the forward equation requires
regularity conditions to be true (the backward
equation is generally true).

• For finite state chains, the forward equation
always holds. It can be shown that the forward
equation holds whenever

∑
k Pik(t)νk < ∞ for

any i and t,
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Example: The continuous-time birth
and death process is as shown. For
this model, the forward equation has
a unique solution which also solves the
backward equation (e.g., Grimmett &
Stirzaker, Probability and Random Pro-
cesses). We show this for the pure birth
process, with µi = 0 for all i.

0

1

2

3

4

...

¸
®

¸
®

¸
®

¸
®

λ0

λ1

λ2

λ3

µ1

µ2

µ3

µ4
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Example continued
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Derivation of the Forward Equation

(identifying issues of exchanging summation &
limits, but not attempting to fully resolve them).
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• Perhaps the main use of the forward/backward
equations is to show P (t) = eQt, assuming the
(possibly infinite-dimensional) matrix
exponential exists.

• The general method of deriving a differential
equation can be used to find other quantities. . .

Example. Let X(t) count individuals in a
population. Suppose each individual reproduces
at rate λ, dividing into two individuals (think of
bacteria). Each individual dies at rate µ.
Construct an appropriate Markov model, and
hence find E[X(t)].
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Solution Continued
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Limiting probabilities, irreducibility,

stationary distributions and ergodicity

• If the embedded chain {Xn} is ergodic with
transition matrix P = [Pij ] and
πi =

∑
j πjPji = limn→∞ Pn

ji then results for
semi-Markov models give

Pj
def= lim

t→∞
Pij(t) =

πj/νj∑
k πk/νk

• In this case, if
∑

k πk/νk < ∞ then {X(t)} is
said to be ergodic.

• {X(t)} is irreducible when {Xn} is.

• A continuous time Markov chain is a non-lattice
semi-Markov model, so it has no concept of
periodicity. Thus {X(t)} can be ergodic even if
{Xn} is periodic. If {Xn} is periodic,
irreducible, and positive recurrent then π is its
unique stationary distribution (which does not
provide limiting probabilities for {Xn} due to
periodicity).
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• Setting d
dtP (t) = 0 in the forward equation

suggests another way to calculate the stationary
distribution: Pi is the unique solution to∑

i Pi Qij = 0,
∑

i Pi = 1

Writing this out in full gives
νjPj =

∑
j 6=i qijPi,

which can be interpreted as “rate of leaving j” =
“rate of entering j.”

• If P[X(0) = j] = Pj , i.e. the chain is started in
it stationary distribution, then
d

dt
P[X(t) = j] =

d

dt

∑

i

PiPij(t) =
∑

i

Pi
d

dt
Pij(t)

=
∑

i,k

PiQikPkj(t) = 0,

i.e., {X(t)} is then stationary.

• Note that (as for semi-Markov processes) long
run time averages equal limiting probabilities.
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Example: A small barbershop, operated by a
single barber, has waiting room for only one
customer. Potential customers arrive at a Poisson
rate of 3 per hr, and each service time is
independent, exponentially distributed with mean
1/4 hr. Find

(a) the average # of customers in the shop
(including customers currently being cut).

(b) the proportion of potential customers entering
the shop.
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Example continued
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Time Reversibility in Continuous Time

• Just as for discrete time, the reversed chain
(looking backwards) is a Markov chain.

• It is intuitively clear that the time spent in a
visit to state i is the same looking forwards as
backwards, i.e. Exponential (νi).

• Thus, to find the reverse chain we must only
find the transition probabilities of the reversed
embedded chain. If {Xn} is stationary and
ergodic, with transition matrix P = [Pij ] and
stationary distribution π, then the reverse chain
has transition matrix given by

P ∗ij = πjPji/πi (1)

This implies that the Q matrix satisfies
Piq

∗
ij = Pjqji (2)

where q∗ij give the infinitesimal transition
probabilities for the reversed chain, and Pi is the
stationary distribution of {X(t)}.
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• Why are (1) and (2) equivalent?
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• A stationary, ergodic Markov chain is time
reversible if Piqij = Pjqji (3)

• Similar to the discrete time case, this means
“rate of going directly from i to j”

= “rate of going direclty from j to i”

• If {Pi} is a probability distribution satisfying
(3), then {X(t)} is reversible, with stationary
distribution {Pi}.

Example (A Stochastic Network). N customers
move among r servers. The service time at server
i is Exponential (µi). Following service, a
customer moves on to server j 6= i with equal
probability 1/(r − 1). Let X(t)= (X1(t), ..., Xr(t))
where Xk(t) counts customers at server k.
Customers wait in line until being served. Find
the limiting distribution of X(t). Hint: employ
reversibility.

Solution
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Solution continued
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