
Homework 7 (Stats 620, Winter 2015)

Due Tuesday March 24, in class

1. Show that a continuous-time Markov chain is regular, given (a) that νi < M <∞ for all i or
(b) that the corresponding embedded discrete-time Markov chain with transition probabilities
Pij is irreducible and recurrent.

Hint: For (a), you may follow the method suggested in the book solution (p. 491).

Solution:

(a) Let Xn denote the duration of the nth transition and N(t) the number of transitions up
to time t. Define, X̃n ≡ νiXn/M . Thus X̃n ≤ Xn and X̃n ∼ exp(M). Let

Ñ(t) = max{n :
n∑
i=0

X̃i ≤ t} .

Then Ñ(t) is a Poisson random variable with mean Mt and Ñ(t) ≥ N(t) for all t. Thus

P[N(t) =∞] ≤ P[Ñ(t) =∞]

= lim
n→∞

∞∑
k=n

e−MMk/k!

= 0

(b) Let Ni(t) count visits to i by time t for some i. Recurrence and irreducibility ensure
that w.p. 1 there are a finite number of transitions between visits to i. These conditions also
imply that Ni(t) is a renewal process, due to which we know that P[Ni(t) = ∞] = 0 for any
t <∞. Thus, the number of transitions of the Markov chain, N(t), is also finite.

2. Let {X(t), t ≥ 0} be a continuous-time Markov chain on the non-negative integers, having
transition rates qij . Let P (t) = P00(t).

(a) Find limt→0
1−P (t)

t .

(b) Show that P (t)P (s) ≤ P (t+ s) ≤ 1− P (s) + P (s)P (t).

(c) Show |P (t)− P (s)| ≤ 1− P (t− s), s < t and conclude that P is continuous.

Hint: For (a) you should justify your answer but need not prove the necessary limit theorem,
so your answer could be quite short! One way to obtain (b) is through two applications of
the Chapman-Kolmogorov identity. One way to solve (c) is by algebraic manipulation of (b).

Solution:

(a) By Lemma 5.4.1, which is proved as the solution to exercise 5.8 in Ross.

(b) Note that

P (t)P (s) = P00(t)P00(s) ≤
∞∑
k=0

P0k(t)Pk0(s) = P00(t+ s) = P (t+ s)

=
∞∑
k=1

P0k(t)Pk0(s) + P00(t)P00(s) ≤
∞∑
k=1

P0k(s) + P00(t)P00(s)

= (1− P00(s)) + P (t)P (s) .
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(c) By part (b), we have,

P (s)P (t− s) ≤ P (t) ≤ 1− P (t− s) + P (t− s)P (s) .

Thus, substracting P (s) on the inequality above, we obtain

P (s)(P (t− s)− 1) ≤ P (t)− P (s) ≤ 1− P (t− s) + (P (t− s)− 1)P (s) . (1)

Note that
P (s)(P (t− s)− 1) ≥ P (t− s)− 1

and
(P (t− s)− 1)P (s) ≤ 0 ,

it follows from (1) that
|P (t)− P (s)| ≤ 1− P (t− s) .

Finally,

lim
t→s
|P (t)− P (s)| ≤ lim

t→s
1− P (t− s)

= 1− P (0)
= 0

Thus P (t) is continuous.

3. Suppose that the “state” of a system can be modeled as a two-state continuous-time Markov
chain with transition rates ν0 = λ, ν1 = µ. When the state of the system is i, “events” occur
in accordance with a Poisson process with rate αi for i = 0, 1. Let N(t) denote the number
of events in (0, t).

(a) Find limt→∞N(t)/t.

(b) If the initial state is state 0, find E[N(t)].

Hint For (a), one approach is to let return times into state 0 form a renewal process, and
consider a reward to be the number of “events” in the renewal period. For (b), you are asked
to find the exact result for finite t, rather than a limiting result as t→∞.

Solution:

(a) Define a renewal reward process as follows. A renewal occurs when the process enters
state 0 and reward in a cycle equals the number of events in that cycle. Let the length of
nth cycle Xn is the sum of time spent in states 0 and 1, say X0n and X1n respectively. Thus
E[Xn] = E[X0n] + E[X1n] = λ−1 + µ−1. Further if Rn is the reward in the nth cycle, with
R0n and R1n earned in state 0 and 1 respectively

E[Rn] = E[R0n] + E[R1n] = E[E[R0n|X0n]] + E[E[R0n|X0n]]
= E[α0X0n] + E[α1X1n] (2)
= α0/λ+ α1/µ .

Thus

lim
t→∞

N(t)
t

= lim
t→∞

R(t)
t

=
E[R]
E[X]

=
α0µ+ α1λ

λ+ µ
.
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(b) By similar argument as in Equation (2), it is clear that E[N(t)] = α0E[T0(t)]+α1E[T1(t)],
where Ti(t) is the time spent in state i up to time t. Thus

E[N(t)] = α0E[T0(t)] + α1(t− E[T0(t)])
= (α0 − α1)E[T0(t)] + α1t

= α1t+ (α0 − α1)
∫ t

0
P00(s) ds .

By the forward equation,
P ′00(t) = −(λ+ µ)P00(t) + µ .

With the boundary condition P00(0) = 1, we have

P00(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t

and

E[T0(t)] =
µt

λ+ µ
+

λ

λ+ µ

∫ t

0
e−(λ+µ)s ds .

Finally one can show that

E[N(t)] =
α0µ+ α1λ

λ+ µ
t+

α1 − α0

(λ+ µ)2
λ(e−(λ+µ)t − 1) .

4. Consider a population in which each individual independently gives birth at an exponential
rate λ and dies at an exponential rate µ. In addition, new members enter the population in
accordance with a Poisson process with rate θ. Let X(t) denote the population size at time
t.

(a) Explain why {X(t), t ≥ 0} is a birth/death process. What are its parameters?

(b) Set up and solve a differential equation to find E
[
X(T )|X(0) = i].

Solution:

(a) The Markov property comes from the memorylessness of the exponential distribution
for event times. This is a linear birth/death process with immigration, having parameters
µn = nµ and λn = nλ+ θ.

(b) Note that

E[X(t+ h)|X(0)] = E[X(t)|X(0)] + (λ− µ)E[X(t)|X(0)]h+ θh+ o(h)

Thus defining M(t) ≡ E[X(t)|X(0)] we get the differential equation

M ′(t) = (λ− µ)M(t) + θ .

With the initial condition M(0) = i, we solve

M(t) =
{
θt+ i if λ = µ

(i+ θ
λ−µ)e(λ−µ)t − θ

λ−µ otherwise
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Recommended reading:
Sections 5.3, 5.4, 5.5.

Supplementary exercise: 5.14
Optional, but recommended. Do not turn in a solution—it is in the back of the book.
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