
Math 450 - Homework 5

Solutions

1. Exercise 1.3.2, textbook. The stochastic matrix for the gambler prob-
lem has the following form, where the states are ordered as (0, 2, 4, 6, 8, 10):

P =


1 0 0 0 0 0
1
2 0 1

2 0 0 0
1
2 0 0 0 1

2 0
0 1

2 0 0 0 1
2

0 0 0 1
2 0 1

2
0 0 0 0 0 1


The corresponding diagram is shown below, with the absorbing states
boxed.
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Figure 1: Digraph for the gambler problem.

To find the probability of reaching state 10 before state 0, we need to solve
the following system of equations, where hi is the hitting probability of
state 10 starting at i.

h2 =
1
2
h4 +

1
2
h0

h4 =
1
2
h8 +

1
2
h0

h6 =
1
2
h2 +

1
2
h10

h8 =
1
2
h6 +

1
2
h10.
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Using the values h0 = 0, h10 = 1 the system has a unique solution, which
is easily found by simple substitution. We obtain h2 = 1/5.

Now denote by µi the expected time before reaching either 0 or 10 given
that the process starts at state i. Then µ0 = 0, µ10 = 0, and the following
system holds:

µ2 = 1 +
1
2
µ4 +

1
2
µ0

µ4 = 1 +
1
2
µ8 +

1
2
µ0

µ6 = 1 +
1
2
µ2 +

1
2
µ10

µ8 = 1 +
1
2
µ6 +

1
2
µ10.

This is also easily solved for µ2. The result is µ2 = 2.

The program below can be used for the simulation. (See program in the
cat-and-mouse problem of homework 4.)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%I will enumerate the states in the following
%order: 0 2 6 10 4 8, and use the program
%stop_at_set of homework 4.
rand(’seed’,324)
p=[0 1 0 0 0 0];
P=zeros(6,6);
P(2,[1,5])=1/2;
P(3,[2,4])=1/2;
P(5,[1,6])=1/2;
P(6,[3,4])=1/2;
P(1,1)=1;
P(4,4)=1;
A=[1 4];
a=0;
for j=1:1000

x=stop_at_set(p,P,A,100000);
a=a+length(x)-1;

end
a=a/1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The above gave the simulated value µ2 = 1.9760.

2. The linear system for finding the hi in the cat and mouse problem is (using
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notation as in the previous problem): h7 = 0, h9 = 1 and

2 −1 0 −1 0 0 0
−1 3 −1 0 −1 0 0

0 −1 2 0 0 −1 0
−1 0 0 3 −1 0 0

0 −1 0 −1 4 −1 −1
0 0 −1 0 −1 3 0
0 0 0 0 −1 0 3





h1

h2

h3

h4

h5

h6

h8


=



0
0
0
0
0
1
1


.

This can be solved numerically. The result is

h1 = 0.4, h3 = 0.6, h4 = 0.3, h2 = h5 = h8 = 0.5, h6 = 0.7.

The value we want is h3 = 0.6.

3. Let X0, X1, X2, . . . be a Markov chain with state space S. Decide whether
the random variable T in each case below is a stopping time or not. Ex-
plain your answer.

(a) T is the time of the rth visit to state i ∈ S, where r is a positive
integer. This is a stopping time. The event {T = n} can be written
as the union of events of the type: E0 ∩ E1 ∩ · · · ∩ En, where En =
{Xn = i}, and each Ek for k < n is either {Xk 6= i} or {Xk = i},
where the latter occurs exactly r − 1 times. Therefore, {T = n} is
an event expressible in terms of the Xk for k up to time n.

(b) T = TA + n0, where A is a subset of S, TA is the hitting time at A,
and n0 is a positive integer. This is a stopping time. In fact

{T = n} = {TA = n− n0}.

As TA is a stopping time, the event {T = n} only depends on Xk for
k ≤ n− n0.

(c) T = TA − n0, where A is a subset of S, TA is the hitting time at A,
and n0 is a positive integer. Essentially the same argument used in
the previous item shows that this T is not a stopping time since the
event {T = n} depends on Xk for k up to n + n0.

(d) T is the first nonnegative integer n such that Xn+1 = 1, and T = ∞
if Xn+1 6= i for all n. This T is not a stopping time since the event
{T = n} depends on knowledge of Xn+1.

4. Exercise 1.5.1. This problem refers to the diagram of figure 2.

5. Exercise 1.5.2. Let (Xn)n≥0 be a Markov chain on S = {0, 1, 2, . . . } with
transition probabilities given by

p01 = 1, pi,i+1 + pi,i−1 = 1, pi,i+1 =
(

i + 1
i

)α

pi,i−1.
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Figure 2: We know that for systems with finite state space, recurrent communi-
cating classes are precisely the closed classes. So states 1, 5 and 3 are recurrent,
whereas 2 and 4 are transient.

(In problem 1.3.4, α = 2.) First note that all pi,i−1 and pi,i+1, for i ≥ 1,
are not equal to 0. This shows that the system is irreducible, i.e., there
is only one communicating class. Therefore, either all states are recurrent
or they are all transient. If all states are recurrent, the probability that
Xn →∞ as n →∞ is 0, and if all states are transient, the same probability
is one. In fact, transience means that with probability 1, after some time
the system will never again return to a given state. That is, for ω in a set
of probability 1, for each positive integer L (a state) we can find another
positive integer N (a time step) such that Xn(ω) > L for all n ≥ N . But
this is just the calculus definition of the limit Xn(ω) →∞ as n →∞.

Therefore, the probabilities we wish to find are either 1, if the system is
transient, or 0 if it is recurrent. This is decided by using Theorem 1.5.3.
Note that, as p01 = 1,

P0(T0 < ∞) = P1(hit 0 in finite time) = h1{0}

where h1{0} is the probability of hitting 0 starting from state 1. This
probability can be calculated just as in the birth-and-death example. It
is equal to 1 if the series

C =
∞∑

j=0

γj

is divergent (see page 16-17 of text), and if the series is convergent

h1{0} =
1
C

∞∑
j=1

γj < 1.

(Recall that γ0 = 1 by definition.) Thus, the probability we seek is 0 or
1 depending on whether the series A is divergent or not, respectively. A
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simple calculation shows that

γj =
1

(j + 1)α

so that

C =
∞∑

j=0

1
(j + 1)α

.

We know that this series is divergent exactly when α ≤ 1. The conclusion
is that

P (Xn →∞ as n →∞) =

{
1 if α > 1
0 if α ≤ 1.

6. Exercise 1.6.1. The rooted binary tree is the infinite graph indicated in
figure 3. The graph on the right-hand side shows the transition prob-
abilities of moving up or down along the tree. Notice that if we prove
that the process on the right is transient, then the same is true for the
process along the tree diagram. Thus the problem is reduced to showing
transience for a birth-and-death chain. Since the chain is irreducible, we
only need to show that the bottom state, denoted by 0, is transient.

By theorem 1.5.3 it suffices to show that the probability of returning to
0 in finite time is less than 1. This probability is the same as the hitting
probability, h1,0, to 0 given that the system starts at the second state
from the bottom. The calculation used in example 1.3.4 shows that this
number is less than 1 if the series

C =
∞∑

j=0

γj

is convergent. But (with the notations of example 1.3.4) qi = q = 1/3 and
pi = p = 2/3 for i ≥ 1, so that γj = (q/p)j = (1/2)j . Therefore, the series
is a convergent geometric series, and the chain is transient.
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Figure 3: On the left: the rooted tree transition diagram. At each vertex
the probabilities of moving to any of the neighboring vertices are equal. The
transition diagram on the right shows the probabilities of moving up or down
on the set of levels.
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